JPH09127220A - Squid magnetometer - Google Patents

Squid magnetometer

Info

Publication number
JPH09127220A
JPH09127220A JP7308502A JP30850295A JPH09127220A JP H09127220 A JPH09127220 A JP H09127220A JP 7308502 A JP7308502 A JP 7308502A JP 30850295 A JP30850295 A JP 30850295A JP H09127220 A JPH09127220 A JP H09127220A
Authority
JP
Japan
Prior art keywords
frp
copper
squid
magnetic
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7308502A
Other languages
Japanese (ja)
Other versions
JP2723181B2 (en
Inventor
Yasumasa Otani
泰正 大谷
Yukichi Fujimatsu
勇吉 藤松
Yasushi Sasaki
康 佐々木
Akifumi Wada
明文 和田
Yasusuke Sugiura
庸介 杉浦
Fumio Miyazawa
文夫 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7308502A priority Critical patent/JP2723181B2/en
Publication of JPH09127220A publication Critical patent/JPH09127220A/en
Application granted granted Critical
Publication of JP2723181B2 publication Critical patent/JP2723181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a SQUID magnetometer in which external radio waves are shielded and in which a magnetic noise due to an eddy current is reduced. SOLUTION: A cryogenic container 1 for a SQUID magnetometer is formed as a double structure which is composed of an external layer 2 and of an internal layer 3, a vacuum part 4 for heat insulation is installed between both layers, and the external layer 2 is formed of an FRP using a copper-coated carbon fiber which is nonmagnetic and whose conductivity is high. In addition, the internal layer 3 is filled with a freezing mixture 5 such as liquid helium or the like, and a SQUID 6 is housed in it. A nonmagnetic and nonconductive FRP is used as the internal layer 3 because its distance to the SQUID 6 is close so as to increase an influence due to an eddy current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は航空機に搭載し、たと
えば海中にある磁鉄鋼等から発生する微弱な磁気を検出
するSQUID(Super conducting
Quantum Interference Devi
ce)磁力計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SQUID (Super Conducting) that is mounted on an aircraft and detects weak magnetism generated from magnetic steel or the like in the sea.
Quantum Interference Devi
ce) It relates to a magnetometer.

【0002】[0002]

【従来の技術】SQUID磁力計は微弱な磁気を検出す
る磁気センサーであるが、マイクロ波センサーとなり得
る事から電磁干渉を受けやすく、外部磁気ノイズはもち
ろんのこと放送波、通信電波による電磁ノイズに対して
もシールドされた環境下で使用する必要がある。
2. Description of the Related Art SQUID magnetometers are magnetic sensors that detect weak magnetism, but are susceptible to electromagnetic interference because they can be microwave sensors, and are not only susceptible to external magnetic noise but also to electromagnetic noise due to broadcast waves and communication radio waves. It is necessary to use it in a shielded environment.

【0003】この電磁ノイズをシールドする技術として
は特開昭62−175681号公報に記載されているよ
うに非磁性の金属薄板を極低温容器外層FRP(Fib
erReinforced Plastics)部に埋
設する技術がある。
As a technique for shielding this electromagnetic noise, as described in Japanese Patent Application Laid-Open No. 62-175681, a non-magnetic thin metal plate is formed by using a cryogenic container outer layer FRP (Fib).
erReinforced Plastics).

【0004】[0004]

【発明が解決しようとする課題】上記のように従来技術
においては非磁性の金属薄板を外層FRP部に埋設する
技術が考案されているが、航空機の運動時発生する渦電
流を防止するために金属薄板に切り欠きが入れてあり閉
ループ構造をとらないようになっている。しかしこの切
り欠き部の存在により外来電波の偏波によってはシール
ド効果がなくなることがあり、あらゆる方向からの外来
電波に対して完全なシールドはできないという問題があ
った。
As described above, in the prior art, a technique of embedding a non-magnetic metal thin plate in the outer layer FRP portion has been devised. However, in order to prevent eddy current generated during the movement of the aircraft, Notches are made in the metal sheet to prevent it from taking a closed loop structure. However, due to the presence of the notch, the shielding effect may be lost depending on the polarization of the external radio wave, and there has been a problem that the external radio wave from all directions cannot be completely shielded.

【0005】この発明は上記のような課題を解決するた
めになされたもので、渦電流の発生により誘起される磁
気ノイズを抑え且つあらゆる方向からの外来電波ノイズ
の侵入を防止することが可能なSQUID磁力計を得る
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and can suppress magnetic noise induced by the generation of eddy currents and prevent external radio noise from entering from all directions. It aims to obtain a SQUID magnetometer.

【0006】[0006]

【課題を解決するための手段】この発明によるSQUI
D磁力計では、容器外層に非磁性で導電率を高めるため
に繊維の外周を銅コートした炭素繊維で強化されたFR
Pを、内層に非磁性で非導電性のFRPを用いている。
Means for Solving the Problems SQUI according to the present invention
In the D magnetometer, the outer layer of the container is nonmagnetic and FR is reinforced with carbon fiber coated with copper on the outer periphery of the fiber in order to increase conductivity.
For P, non-magnetic and non-conductive FRP is used for the inner layer.

【0007】またこの発明によるSQUID磁力計で
は、容器外層に非磁性で導電率を高めるために繊維の外
周を銅コートした炭素繊維と非磁性で非導電性の樹脂と
の体積比率を変えることにより所定のシールド効果を持
たせたFRPを、内層に非磁性で非導電性のFRPを用
いている。
In the SQUID magnetometer according to the present invention, the outer layer of the container is made of non-magnetic and non-conductive resin by changing the volume ratio of the carbon fiber and the non-magnetic and non-conductive resin in order to increase the electric conductivity. An FRP having a predetermined shielding effect is used, and a non-magnetic and non-conductive FRP is used for an inner layer.

【0008】この発明によるSQUID磁力計では、容
器外層に非磁性で導電率を高めるために繊維の外周を銅
コートした炭素繊維とさらに異なった種類の繊維とを積
層したFRPを、内層に非磁性で非導電性のFRPを用
いている。
[0008] In the SQUID magnetometer according to the present invention, the outer layer of the container is made of a non-magnetic, non-magnetic FRP in which a carbon fiber whose outer periphery is coated with copper and a different type of fiber are laminated in order to increase the conductivity. And a non-conductive FRP is used.

【0009】[0009]

【作用】この発明は、容器外層に炭素繊維の外周を銅コ
ートし導電率を高めたFRPを用いるのであらゆる方向
からの外来電波の侵入を防止することができ、且つ渦電
流の発生源となる金属薄板の閉ループ構造が存在しない
ので渦電流が非常に小さくなり、したがって渦電流によ
って誘起される磁気ノイズもセンサー感度と比べて非常
に微弱であるため渦電流による問題もない。
According to the present invention, since the outer layer of the container is made of FRP having an increased conductivity by coating the outer periphery of the carbon fiber with copper, it is possible to prevent invasion of an external radio wave from all directions and to be a source of eddy current. Since the closed loop structure of the sheet metal is not present, the eddy current is very small. Therefore, the magnetic noise induced by the eddy current is very weak as compared with the sensor sensitivity, so that there is no problem due to the eddy current.

【0010】またこの発明は、容器外層に非磁性で導電
率を高めるために繊維の外周を銅コートした炭素繊維と
非磁性で非導電性の樹脂との体積比率を変えることによ
り積層後のFRPの導電率をコントロールすることがで
き、所定の外来電波に対するシールド効果を得ることが
できる。
[0010] The present invention also provides a non-magnetic, non-conductive resin by changing the volume ratio between the carbon fiber coated with copper on the outer periphery of the fiber and the non-magnetic, non-conductive resin in order to increase the non-magnetic and electric conductivity in the outer layer of the container. Can be controlled, and a shielding effect against a predetermined external radio wave can be obtained.

【0011】この発明は、容器外層に非磁性で導電率を
高めるために繊維の外周を銅コートした炭素繊維とさら
に異なった種類の繊維とを積層させてFRPを構成する
ため、それぞれの繊維の特徴を有効に利用できるという
利点を備えている。
According to the present invention, in order to form an FRP by laminating a carbon fiber whose outer periphery is copper-coated and a different type of fiber in order to increase the electric conductivity, the outer layer of the container is made of a non-magnetic material. It has the advantage that the features can be used effectively.

【0012】[0012]

【実施例】【Example】

実施例1.図1は本発明の一実施例を示すSQUID磁
力計の断面図である。SQUID磁力計用極低温容器1
は外層2と内層3からなる二重構造となっており、両層
間に熱絶縁のための真空部4が設けられている。内層3
には液体ヘリウムなどの寒剤5が満たされており、その
中にSQUID6が収納されている。内層3はSQUI
D6との距離が近く、渦電流による影響も大きいので非
磁性で非導電性のFRP、例えばガラス繊維やアルミナ
繊維で強化されたFRPが用いられている。
Embodiment 1 FIG. FIG. 1 is a sectional view of a SQUID magnetometer showing one embodiment of the present invention. Cryogenic cryocontainer for SQUID magnetometer 1
Has a double structure composed of an outer layer 2 and an inner layer 3, and a vacuum portion 4 for thermal insulation is provided between both layers. Inner layer 3
Is filled with a cryogen 5 such as liquid helium, in which SQUID 6 is stored. Inner layer 3 is SQUI
A non-magnetic and non-conductive FRP, for example, an FRP reinforced with glass fiber or alumina fiber is used because the distance from D6 is short and the influence of eddy current is large.

【0013】図2は外層2の切り欠き断面図を示す。外
層2は非磁性で導電率を高めるために銅コートされた炭
素繊維で強化されたFRP(銅コートFRP)が用いら
れており、図に示すように銅コート炭素繊維7は任意の
角度αに配向されている。
FIG. 2 shows a cutaway sectional view of the outer layer 2. The outer layer 2 is made of non-magnetic, carbon-coated carbon fiber-reinforced FRP (copper-coated FRP) in order to increase the electrical conductivity. As shown in the figure, the copper-coated carbon fiber 7 is formed at an arbitrary angle α. Oriented.

【0014】図3は銅コートFRPの銅コート炭素繊維
7の繊維と直角方向の断面図であり炭素繊維8の外周に
銅9がメッキ等によりコートされており、繊維方向の導
電率は炭素繊維8とコートされた銅9とで相乗され非常
に高くなっている。例えば炭素繊維8だけのFRPの繊
維方向の導電率は4×104 /Ωmであるが、銅コート
FRPの繊維方向の導電率は2.5×106 /Ωmと高
くなっている。外来電波に対するシールド効果は材料の
導電率と比例するためシールド効果が強化されている。
FIG. 3 is a cross-sectional view of the copper-coated carbon fiber 7 of the copper-coated FRP in a direction perpendicular to the fiber. The outer periphery of the carbon fiber 8 is coated with copper 9 by plating or the like, and the conductivity in the fiber direction is carbon fiber. 8 and coated copper 9 are synergistic and are very high. For example, the conductivity of the FRP of only carbon fiber 8 in the fiber direction of the FRP is 4 × 10 4 / Ωm, whereas the conductivity of the copper-coated FRP in the fiber direction is as high as 2.5 × 10 6 / Ωm. The shielding effect against extraneous radio waves is proportional to the conductivity of the material, so the shielding effect is enhanced.

【0015】図3において10はFRPに成形するため
の樹脂で、一般にはエポキシ樹脂が用いられる。エポキ
シ樹脂は非磁性で非導電性であるため、銅コート炭素繊
維の繊維直角方向は絶縁された状態となり銅コートFR
Pの繊維直角方向の導電率は小さく渦電流が流れにくく
なっており金属薄板の切り欠きと同じ役目をしている。
ただし銅コートFRPの場合は繊維の方向を任意に配向
できるため図2に示すように配向を交差させることによ
り金属薄板の切り欠きとは異なりあらゆる方向からの外
来電波の侵入を防ぐことができる。
In FIG. 3, reference numeral 10 denotes a resin for forming an FRP, which is generally an epoxy resin. Since the epoxy resin is non-magnetic and non-conductive, the copper-coated carbon fiber is insulated in the direction perpendicular to the fiber and the
The conductivity of P in the direction perpendicular to the fiber is small, so that the eddy current does not easily flow, and has the same function as the cutout of the thin metal plate.
However, in the case of the copper-coated FRP, the direction of the fiber can be arbitrarily oriented, so that the crossing of the orientation as shown in FIG. 2 can prevent invasion of an external radio wave from all directions unlike the cutout of the thin metal plate.

【0016】実施例2.また図3において非磁性で導電
率の高い銅コート炭素繊維と、非磁性で非導電性のエポ
キシ樹脂の体積比率を変えることができる。銅コート炭
素繊維の体積比率を多くすると銅コートFRP全体の導
電率は高くなる。外来電波に対するシールド効果はFR
P全体の導電率と比例するため導電率が高くなればシー
ルド効果は上がる。但し比重は銅コート炭素繊維はエポ
キシ樹脂より重く銅コート炭素繊維の体積比率を多くす
ると銅コートFRP全体の重量は重くなる。したがって
銅コート炭素繊維とエポキシ樹脂の体積比率を変えるこ
とにより、軽量で且つ所定の外来電波に対するシールド
効果を得ることができる。
Embodiment 2 FIG. Further, in FIG. 3, the volume ratio of the non-magnetic and highly conductive copper-coated carbon fiber to the non-magnetic and non-conductive epoxy resin can be changed. When the volume ratio of the copper-coated carbon fiber is increased, the conductivity of the entire copper-coated FRP is increased. FR shield effect against foreign radio waves
Since it is proportional to the conductivity of P as a whole, the higher the conductivity, the higher the shielding effect. However, the specific gravity of the copper-coated carbon fiber is heavier than that of the epoxy resin, and if the volume ratio of the copper-coated carbon fiber is increased, the weight of the entire copper-coated FRP becomes heavier. Therefore, by changing the volume ratio of the copper-coated carbon fiber and the epoxy resin, it is possible to obtain a lightweight and predetermined shield effect against external radio waves.

【0017】実施例3.さらに異なった種類の繊維を積
層することにより、それぞれの繊維のもつ特徴を有効に
利用することも可能である。一例として航空機搭載の場
合は軽量化が大きな問題であり軽量化を考えて銅コート
された炭素繊維と一般に炭素繊維を積層することができ
る。例えばフィラメント数3000本の銅コートされた
炭素繊維の重量は0.318gf/mであり、一般の炭
素繊維の重量は0.198gf/mである。外来電波の
シールド特性は最小肉厚の銅コートされた炭素繊維で受
け持ち、振動・衝撃に対する強度は重量の軽い一般の炭
素繊維で受け持つようにすることにより、軽量で高いシ
ールド特性と強度を兼ね備えることができる。
Embodiment 3 FIG. Further, by laminating different types of fibers, it is also possible to effectively utilize the characteristics of each fiber. For example, in the case of being mounted on an aircraft, weight reduction is a major problem, and carbon fiber coated with copper and carbon fiber can be generally laminated in consideration of weight reduction. For example, the weight of copper-coated carbon fiber having 3000 filaments is 0.318 gf / m, and the weight of general carbon fiber is 0.198 gf / m. The shielding characteristics of extraneous radio waves are covered by the minimum thickness of copper-coated carbon fiber, and the strength against vibration and shock is covered by general carbon fiber with light weight, so that it has both light and high shielding characteristics and strength. Can be.

【0018】[0018]

【発明の効果】以上のようにこの発明によればSQUI
D磁力計の外層に非磁性で導電率の高い銅コートCFR
Pを用いることにより、渦電流により誘起される磁気ノ
イズを抑え、あらゆる方向からの外来電波をシールドす
ることができる。
As described above, according to the present invention, the SQUI
Non-magnetic and highly conductive copper-coated CFR on the outer layer of D magnetometer
By using P, magnetic noise induced by an eddy current can be suppressed, and external radio waves from all directions can be shielded.

【0019】またこの発明によればSQUID磁力計の
外層に銅コートされた炭素繊維とエポキシ樹脂の体積比
率を変えたFRPを用いることにより、所定の外来電波
に対するシールド効果を得ることができる。
Further, according to the present invention, by using the FRP in which the outer layer of the SQUID magnetometer has a volume ratio of carbon fiber coated with copper and epoxy resin changed, a shielding effect against a predetermined external radio wave can be obtained.

【0020】さらにこの発明によればSQUID磁力計
の外層に異なった種類の繊維を積層したFRPを用いる
ことにより、それぞれの繊維のもつ特徴を有効に利用す
ることができる。
Further, according to the present invention, by using FRP in which different types of fibers are laminated on the outer layer of the SQUID magnetometer, the characteristics of each fiber can be effectively used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示すSQUID磁力計の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a SQUID magnetometer showing one embodiment of the present invention.

【図2】この発明の一実施例を示すSQUID磁力計の
外層の切り欠き断面図である。
FIG. 2 is a cutaway sectional view of an outer layer of the SQUID magnetometer showing one embodiment of the present invention.

【図3】この発明の一実施例を示すSQUID磁力計の
外層を構成する銅コート炭素繊維の繊維と直角方向の断
面図である。
FIG. 3 is a cross-sectional view of a SQUID magnetometer showing an embodiment of the present invention, taken in a direction perpendicular to the fibers of the copper-coated carbon fibers constituting the outer layer.

【符号の説明】[Explanation of symbols]

1 SQUID磁力計用極低温容器 2 外層 3 内層 4 真空部 5 寒剤 6 SQUID 7 銅コート炭素繊維 8 炭素繊維 9 銅 10 エポキシ樹脂 REFERENCE SIGNS LIST 1 cryogenic container for SQUID magnetometer 2 outer layer 3 inner layer 4 vacuum section 5 cryogen 6 SQUID 7 copper-coated carbon fiber 8 carbon fiber 9 copper 10 epoxy resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 庸介 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 宮沢 文夫 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yosuke Sugiura 325 Kamimachiya, Kamakura City Mitsubishi Electric Corporation Kamakura Factory (72) Fumio Miyazawa 325 Kamikura, Kamakura City Mitsubishi Electric Corporation Kamakura Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内層と外層がFRP(Fiber Re
inforcedPlastics)によって構成さ
れ、両層間に真空部が設けられ、上記内層に液体ヘリウ
ムなどの寒剤が注入され且つその中にSQUID(Su
per conducting Quantum In
terference Device)が収納されるS
QUID磁力計において、外層が非磁性で所要の導電率
を有する銅コート炭素繊維を使用したFRPから成り、
内層が非磁性で非導電性のFRPから成ることを特徴と
するSQUID磁力計。
An inner layer and an outer layer are made of FRP (Fiber Re
Influenced Plastics), a vacuum section is provided between both layers, a cryogen such as liquid helium is injected into the inner layer, and SQUID (Su
per conducting Quantum In
terference device)
In the QUID magnetometer, the outer layer is made of FRP using copper-coated carbon fiber having non-magnetic and required conductivity,
SQUID magnetometer wherein the inner layer is made of non-magnetic and non-conductive FRP.
【請求項2】 外層に用いるFRPは、非磁性で所要の
導電率を有する銅コート炭素繊維と非磁性で非導電性の
樹脂との体積比率を変えることにより、所定の外来電波
に対するシールド効果を得ることができることを特徴と
する請求項1記載のSQUID磁力計。
2. The FRP used for the outer layer has a shielding effect against a predetermined extraneous radio wave by changing a volume ratio between a non-magnetic and non-conductive resin and a copper-coated carbon fiber having a required electric conductivity. The SQUID magnetometer according to claim 1, wherein the SQUID magnetometer can be obtained.
【請求項3】 外層に用いるFRPは、非磁性で所要の
導電率を有する銅コート炭素繊維と、さらに異なった種
類の繊維とを積層して構成したことを特徴とする請求項
1記載のSQUID磁力計。
3. The SQUID according to claim 1, wherein the FRP used for the outer layer is formed by laminating a non-magnetic copper-coated carbon fiber having a required electric conductivity and a different type of fiber. Magnetometer.
JP7308502A 1995-11-02 1995-11-02 SQUID magnetometer Expired - Lifetime JP2723181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7308502A JP2723181B2 (en) 1995-11-02 1995-11-02 SQUID magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7308502A JP2723181B2 (en) 1995-11-02 1995-11-02 SQUID magnetometer

Publications (2)

Publication Number Publication Date
JPH09127220A true JPH09127220A (en) 1997-05-16
JP2723181B2 JP2723181B2 (en) 1998-03-09

Family

ID=17981795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7308502A Expired - Lifetime JP2723181B2 (en) 1995-11-02 1995-11-02 SQUID magnetometer

Country Status (1)

Country Link
JP (1) JP2723181B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298514A (en) * 2006-04-28 2007-11-15 Biosense Webster Inc Reduced magnetic field distortion in medical tool
JP2007311471A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Superconductive magnet device
CN104029899A (en) * 2014-05-29 2014-09-10 中国科学院电工研究所 Superconducting magnet low-temperature container conveying and supporting device
JP2018072110A (en) * 2016-10-27 2018-05-10 株式会社島津製作所 Portable magnetic detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298514A (en) * 2006-04-28 2007-11-15 Biosense Webster Inc Reduced magnetic field distortion in medical tool
US9364293B2 (en) 2006-04-28 2016-06-14 Biosense Webster, Inc. Reduced field distortion in medical tools
JP2007311471A (en) * 2006-05-17 2007-11-29 Mitsubishi Electric Corp Superconductive magnet device
CN104029899A (en) * 2014-05-29 2014-09-10 中国科学院电工研究所 Superconducting magnet low-temperature container conveying and supporting device
JP2018072110A (en) * 2016-10-27 2018-05-10 株式会社島津製作所 Portable magnetic detector

Also Published As

Publication number Publication date
JP2723181B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
US6131396A (en) Heat radiation shield, and dewar employing same
US8487727B2 (en) Magnet assemblies and methods for making the same
CA1253201A (en) Magnetic structure for nmr applications and the like
KR20110076150A (en) Low noise crycooling apparatus
JP2723181B2 (en) SQUID magnetometer
EP0430104B1 (en) Magnetic resonance imaging apparatus
US7170291B2 (en) Additional fringe field shield for a superconducting magnet coil system
Wang et al. Model and design of a novel low-frequency magnetic signal transmitter based on rotating electret
US3490034A (en) Magnetometer utilizing the delaying effect of a magnetic transmission line
JPH08236340A (en) Superconducting magnetic shield material, manufacture thereof, and superconducting magnet device equipped therewith
JP3002586B2 (en) Cryogenic container for skid sensor
Zhou et al. Cloaking the static magnetic fields by alternate superconductor–ferromagnet heterostructure
CA2038529A1 (en) Shielded magnetometer
Solovyov et al. Design of Magnetic Cloak for an Alternating Magnetic Field With Multilayer ReBCO Insert
Ye et al. Damping-enhanced magnon transmission
JP2971660B2 (en) Superconducting magnet device
JPH02206101A (en) Reduction in magnetization by superconductor
Tachiki Theories on magnetically ordered superconductors
JPH05275755A (en) Cryostat
RU2084034C1 (en) Multiple-turn solenoid
CN219017347U (en) Heat insulation device for dynamic low-temperature superconducting magnet and dynamic low-temperature superconducting magnet
Nishimura Optimal segmentation of Halbach sphere
JPH0352203A (en) Superconducting magnet
JP2004047995A (en) Superconductive magnetic shield material, its manufacturing method, and superconductive magnet device using it
JPH0521227A (en) Superconductive magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350