JP3002586B2 - Cryogenic container for skid sensor - Google Patents

Cryogenic container for skid sensor

Info

Publication number
JP3002586B2
JP3002586B2 JP3328617A JP32861791A JP3002586B2 JP 3002586 B2 JP3002586 B2 JP 3002586B2 JP 3328617 A JP3328617 A JP 3328617A JP 32861791 A JP32861791 A JP 32861791A JP 3002586 B2 JP3002586 B2 JP 3002586B2
Authority
JP
Japan
Prior art keywords
cryogenic container
frp
outer layer
magnetic
skid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3328617A
Other languages
Japanese (ja)
Other versions
JPH05203711A (en
Inventor
秀 山下
顕伸 森
俊行 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3328617A priority Critical patent/JP3002586B2/en
Publication of JPH05203711A publication Critical patent/JPH05203711A/en
Application granted granted Critical
Publication of JP3002586B2 publication Critical patent/JP3002586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measuring Magnetic Variables (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は微弱な磁気を検出する
スキッド(SQUID)センサー用極低温容器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic container for a skid (SQUID) sensor for detecting weak magnetism.

【0002】[0002]

【従来の技術】例えば、生体から発生される磁界などは
非常に小さく10-10〜10-13T程度であり、このよう
な微弱な磁気を検出するにはスキッドのような高感度な
センサーが必要不可欠である。しかしながらスキッドセ
ンサーはマイクロ波センサーでもあることから電磁干渉
を受けやすく、外部磁気ノイズはもちろんのこと放送
波、通信電波による電波ノイズもシールドされた環境下
で使用されなければならない。
2. Description of the Related Art For example, a magnetic field generated from a living body is very small and is about 10 -10 to 10 -13 T, and a highly sensitive sensor such as a skid is required to detect such a weak magnetic field. Indispensable. However, since the skid sensor is also a microwave sensor, it is susceptible to electromagnetic interference, and must be used in an environment in which not only external magnetic noise but also radio wave noise due to broadcast waves and communication radio waves is shielded.

【0003】この電波ノイズをシールドする技術として
は特開昭62−175681号公報に見られるように非
磁性の金属薄板を極低温容器外層FRP(繊維強化プラ
スチック)部に埋設する技術や、内,外層壁間に熱絶縁
材として用いられるアルミ蒸着を施したマイラフィルム
を流用する技術がある。
As a technique for shielding the radio noise, as disclosed in Japanese Patent Application Laid-Open No. 62-175681, a technique of embedding a non-magnetic metal thin plate in the outer layer FRP (fiber reinforced plastic) of a cryogenic container, There is a technique in which a mylar film on which aluminum is deposited, which is used as a heat insulating material, is used between outer layer walls.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来技
術においては非磁性の金属薄板を外層FRP部に埋設し
たり、熱絶縁材を流用する技術が発案されているが、い
ずれも渦電流の発生を防止するために金属薄板及び熱絶
縁材に切り欠きが入れてあり、閉ループ構造をとらない
ようになっている。しかしながら、この切り欠き部の存
在により新たに静電気によるノイズの発生や切り欠き部
からの外来電波の侵入などの問題が生じていた。また熱
絶縁材の中には静電気対策として切り欠き端部が短絡さ
れアースされたものもあるが、逆に渦電流の発生を招
き、これに誘起されて磁気ノイズが発生するという問題
点があった。
As described above, in the prior art, a technique of embedding a non-magnetic metal thin plate in the outer layer FRP portion or using a heat insulating material has been proposed. Notches are formed in the metal sheet and the heat insulating material in order to prevent the occurrence of cracks, so that a closed loop structure is not taken. However, due to the presence of the notch, problems such as generation of noise due to static electricity and invasion of an external radio wave from the notch have arisen. Some thermal insulation materials are short-circuited at the notch end and grounded as a countermeasure against static electricity.However, on the contrary, eddy currents are generated, and magnetic noise is generated by this. Was.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、渦電流の発生により誘起される
磁気ノイズを抑え、且つ外来電波ノイズの侵入を防止す
ることが可能なスキッドセンサー用極低温容器を得るこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a skid sensor capable of suppressing magnetic noise induced by the generation of eddy current and preventing the intrusion of external radio noise. The purpose is to obtain a cryogenic container for use.

【0006】[0006]

【課題を解決するための手段】この発明のスキッドセン
サー用極低温容器は、容器を形成する外層壁部を非磁性
で、導電率が4.4×10 3 〜4.9×10 4 Ω -1 ・m -1
の導電性のFRPで、内層壁部を非磁性で非導電性のF
RPで形成するとともに、上記外層壁部を構成するFR
Pは、繊維の配向方向が互いに交差する多層構造をな
し、交差する角度を60°〜150°としたものであ
る。
Means for Solving the Problems] skid sensor for cryogenic container of the invention, the outer layer wall portion forming a container with a non-magnetic, conductivity 4.4 × 10 3 ~4.9 × 10 4 Ω - 1 ・ m -1
The conductive FRP of non-magnetic and non-conductive FRP
FR formed of RP and constituting the outer layer wall portion
P has a multilayer structure in which the orientation directions of the fibers cross each other, and the crossing angle is 60 ° to 150 °.

【0007】[0007]

【0008】[0008]

【作用】この発明におけるスキッドセンサー用極低温容
器においては、容器外層壁部に、繊維の配向方向が互い
に交差する多層構造で、交差する角度が60°〜150
°であり、かつ導電率が4.4×10 3 〜4.9×10 4
Ω -1 ・m -1 の導電性のFRPを用いているので外来電波
の侵入を防止することができ、且つ発生する渦電流が非
常に小さく、これによって誘起される磁気ノイズもセン
サー感度と比べて非常に微弱であるため渦電流による問
題もない。
In the cryogenic container for a skid sensor according to the present invention, the outer wall of the container has a multilayer structure in which the orientation directions of the fibers cross each other, and the crossing angle is 60 ° to 150 °.
° and a conductivity of 4.4 × 10 3 to 4.9 × 10 4.
The use of a conductive FRP of Ω -1 · m -1 prevents the invasion of extraneous radio waves, and generates very small eddy currents. And is very weak, so there is no problem due to eddy current.

【0009】また、外層壁部のFRPの導電率を構成す
る繊維の交差角によってコントロールすることにより外
来電波のカットオフ周波数を任意に選択できる。
Further, the electric conductivity of the FRP on the outer layer wall is constituted.
The cutoff frequency of the external radio wave can be arbitrarily selected by controlling the crossing angle of the fiber .

【0010】[0010]

【実施例】【Example】

実施例1.図1はこの発明の一実施例のスキッドセンサ
ー用極低温容器を示す縦断面構成図である。この極低温
容器1は外層2と内層3からなる二重構造となってお
り、両層間に熱絶縁のための真空部4が設けられてい
る。内層3には液体ヘリウムなどの寒剤が満たされてお
り、その中にスキッドセンサー6が収納されている。内
層3はスキッドセンサー6との距離が近く、渦電流によ
る影響も大きいので、その壁には非磁性で非導電性のF
RP、例えばガラス繊維やアルミナ繊維で強化されたF
RPが用いられている。外層2の壁は非磁性で導電性の
FRP、例えば炭素繊維で強化されたFRP(CFRP
と略記する)が用いられている。
Embodiment 1 FIG. FIG. 1 is a longitudinal sectional view showing a cryogenic container for a skid sensor according to an embodiment of the present invention. The cryogenic container 1 has a double structure including an outer layer 2 and an inner layer 3, and a vacuum section 4 for thermal insulation is provided between both layers. The inner layer 3 is filled with a cryogen such as liquid helium, in which a skid sensor 6 is housed. Since the inner layer 3 is close to the skid sensor 6 and greatly affected by the eddy current, the non-magnetic and non-conductive F
RP, for example F reinforced with glass or alumina fibers
RP is used. The wall of the outer layer 2 is made of non-magnetic and conductive FRP, for example, FRP reinforced with carbon fiber (CFRP).
Abbreviated).

【0011】図2は外層2壁部を切り欠いて示す模式断
面図で、図に示すようにCFRPの炭素繊維7は任意の
角度αi に配向されている。内外層に用いられるFRP
は繊維を巻回するフィラメントワインディング法やプリ
プレグシートを積層したシートワインディング法などで
成形されたものである。
FIG. 2 is a schematic cross-sectional view showing the outer layer 2 with a cutaway wall. As shown in the figure, CFRP carbon fibers 7 are oriented at an arbitrary angle α i . FRP used for inner and outer layers
Is formed by a filament winding method of winding fibers or a sheet winding method of laminating prepreg sheets.

【0012】[0012]

【表1】 [Table 1]

【0013】表1は図1に示す極低温容器1の外層壁材
に使用したCFRPの繊維配向を変化させた時のCFR
Pの導電率、外来電波のカットオフ周波数及び発生する
渦電流により誘起される磁気ノイズを求めた結果であ
る。表中には非磁性で導電性の金属であるアルミ材の値
も比較のために示してある。表中の σC、fは下式によ
り算出している。
Table 1 shows the CFR when the fiber orientation of CFRP used for the outer layer wall material of the cryogenic vessel 1 shown in FIG. 1 was changed.
It is the result of obtaining the magnetic noise induced by the conductivity of P, the cutoff frequency of the external radio wave, and the generated eddy current. In the table, the values of the aluminum material, which is a non-magnetic and conductive metal, are also shown for comparison. Σ C and f in the table are calculated by the following equations.

【0014】[0014]

【数1】 (Equation 1)

【0015】ここで σ:一方向CFRP材の繊維方
向の導電率(Ω-1・m-1) σ:一方向CFRP材の繊維と直角方向の導電率(Ω
-1・m-1) αi:第i層の繊維配向角 N :積層数 μ0:4π×10-7 δ:スキンデプス(CFRP材の厚み 2mmに設定)
Here, σ :: conductivity in the fiber direction of the unidirectional CFRP material (Ω -1 · m -1 ) σ :: conductivity in the direction perpendicular to the fiber of the unidirectional CFRP material (Ω
−1 · m −1 ) α i : fiber orientation angle of the i-th layer N: number of layers μ 0 : 4π × 10 −7 δ: skin depth (set to 2 mm in thickness of CFRP material)

【0016】以上の結果からCFRP材の繊維の配向角
を変化させることにより広い周波数帯域でカットオフ周
波数が設計でき、且つ渦電流により誘起される磁気ノイ
ズもアルミに比べて非常に微弱で問題のないことがわか
る。即ち、この発明の極低温容器は外層壁にCFRPを
使用しているので、渦電流の発生により誘起される磁気
ノイズを極く小さく抑えることができ、且つ外来電波ノ
イズの侵入も防止できる効果がある。また、CFRPの
導電率をコントロールすることによりカットオフ周波数
を任意に設計できる効果がある。
From the above results, the cutoff frequency can be designed in a wide frequency band by changing the orientation angle of the fiber of the CFRP material, and the magnetic noise induced by the eddy current is much weaker than that of aluminum, which is a problem. It turns out there is no. That is, since the cryogenic container of the present invention uses CFRP for the outer layer wall, the magnetic noise induced by the generation of the eddy current can be suppressed to a very small value, and the invasion of the external radio noise can be prevented. is there. Further, there is an effect that the cutoff frequency can be arbitrarily designed by controlling the conductivity of CFRP.

【0017】なお、上記実施例ではCFRP材の繊維の
配向角を変化させることによりカットオフ周波数を任意
に変える場合について示したが、繊維の体積含有率を変
化させたり、異なった種類のFRPを外層壁部の層間や
層内でハイブリッド化させることによりσを変化させ
カットオフ周波数を任意に設計することも可能である。
例えば外層壁部をグラファイトで構成する場合は黒鉛化
炭素繊維の体積含有率を約100%にしたときに匹敵
し、またCFRPの円筒でGFRP(ガラス繊維強化プ
ラスチック)製極低温容器を被う場合は外層壁部での層
間ハイブリッド化に匹敵する。
In the above embodiment, the case where the cutoff frequency is arbitrarily changed by changing the orientation angle of the fiber of the CFRP material has been described. However, the volume content of the fiber may be changed or different types of FRP may be used. It is also possible to arbitrarily design the cutoff frequency by changing σ 層 間 by hybridizing between the layers of the outer layer wall or within the layer.
For example, when the outer layer wall is made of graphite, the volume content of the graphitized carbon fiber is set to about 100%, which is comparable to the case where the GFRP (glass fiber reinforced plastic) cryogenic container is covered with a CFRP cylinder. Is comparable to interlayer hybridization at the outer layer wall.

【0018】[0018]

【発明の効果】以上のように、この発明のスキッドセン
サー用極低温容器は、容器の外層壁部に非磁性で、導電
率が4.4×10 3 〜4.9×10 4 Ω -1 ・m -1 の導電性
のFRPを用い、内層壁部に非磁性で非導電性のFRP
を用いるとともに、上記外層壁部を構成するFRPは、
繊維の配向方向が互いに交差する多層構造をなし、交差
する角度を60°〜150°としたので、渦電流により
誘起される磁気ノイズを最小に抑え、外来の高周波ノイ
ズをシールドする事が出来る効果がある。
As described above, the cryogenic container for a skid sensor according to the present invention has a non-magnetic material having a conductivity of 4.4 × 10 3 to 4.9 × 10 4 Ω -1 on the outer wall of the container. ・ Using m- 1 conductive FRP, non-magnetic and non-conductive FRP on inner layer wall
And the FRP constituting the outer layer wall portion is:
A multi-layered structure in which the orientation directions of the fibers cross each other, and the crossing angle is set to 60 ° to 150 °, so that magnetic noise induced by eddy current can be minimized and external high-frequency noise can be shielded. There is.

【0019】[0019]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例のスキッドセンサー用極低
温容器を示す縦断面構成図である。
FIG. 1 is a longitudinal sectional view showing a cryogenic container for a skid sensor according to an embodiment of the present invention.

【図2】この発明の一実施例のスキッドセンサー用極低
温容器外層壁部の切り欠き断面模式図である。
FIG. 2 is a schematic cutaway cross-sectional view of the outer layer wall of the cryogenic container for a skid sensor according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 スキッドセンサー用極低温容器 2 外層 3 内層 5 寒剤 6 スキッドセンサー DESCRIPTION OF SYMBOLS 1 Cryogenic container for skid sensors 2 Outer layer 3 Inner layer 5 Refrigerant 6 Skid sensor

フロントページの続き (56)参考文献 特開 昭62−175681(JP,A) 実開 昭58−163878(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01R 33/035 H01L 39/04 Continuation of the front page (56) References JP-A-62-175681 (JP, A) JP-A-58-163878 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01R 33 / 035 H01L 39/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 FRPによって形成される内層と外層か
らなり、上記内層内に寒剤が注入され、且つスキッドセ
ンサーが収納されるスキッドセンサー用極低温容器にお
いて、上記外層壁部を非磁性で、導電率が4.4×10
3 〜4.9×10 4 Ω -1 ・m -1 の導電性のFRPで形成
し、上記内層壁部を非磁性で非導電性のFRPで形成す
るとともに、上記外層壁部を構成するFRPは、繊維の
配向方向が互いに交差する多層構造をなし、交差する角
度を60°〜150°としたことを特徴とするスキッド
センサー用極低温容器。
1. A cryogenic container for a skid sensor, comprising an inner layer and an outer layer formed by FRP, wherein a cryogen is injected into the inner layer, and a skid sensor is housed. The rate is 4.4 × 10
3 to 4.9 × 10 4 Ω −1 · m −1 is formed of a conductive FRP, and the inner layer wall is formed of a non-magnetic and non-conductive FRP, and the FRP constituting the outer layer wall is formed. Is a cryogenic container for a skid sensor, wherein a fiber has a multilayer structure in which orientation directions cross each other, and the crossing angle is 60 ° to 150 °.
JP3328617A 1991-12-12 1991-12-12 Cryogenic container for skid sensor Expired - Fee Related JP3002586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3328617A JP3002586B2 (en) 1991-12-12 1991-12-12 Cryogenic container for skid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328617A JP3002586B2 (en) 1991-12-12 1991-12-12 Cryogenic container for skid sensor

Publications (2)

Publication Number Publication Date
JPH05203711A JPH05203711A (en) 1993-08-10
JP3002586B2 true JP3002586B2 (en) 2000-01-24

Family

ID=18212274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328617A Expired - Fee Related JP3002586B2 (en) 1991-12-12 1991-12-12 Cryogenic container for skid sensor

Country Status (1)

Country Link
JP (1) JP3002586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821499B1 (en) * 2015-09-03 2018-01-23 현대자동차주식회사 Under Cover For Automobile And The Process Of Producing Thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072110A (en) * 2016-10-27 2018-05-10 株式会社島津製作所 Portable magnetic detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163878U (en) * 1982-04-27 1983-10-31 株式会社島津製作所 superconducting magnetometer
JPS62175681A (en) * 1986-01-29 1987-08-01 Shimadzu Corp Cryostatic container for skid magnetometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821499B1 (en) * 2015-09-03 2018-01-23 현대자동차주식회사 Under Cover For Automobile And The Process Of Producing Thereof

Also Published As

Publication number Publication date
JPH05203711A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
US6131396A (en) Heat radiation shield, and dewar employing same
US5280247A (en) Filamentary cold shield for superconducting magnets
US5760335A (en) Compensation of electromagnetic distortion caused by metal mass
EP0420698A2 (en) Superconducting magnetic shield
CN209641460U (en) Superconducting magnet with electromagnetic protection component
Schwarz et al. On oxygen enrichments in Nb surface layers and their apparent conductivity as observed by the superconducting penetration depth Δλ (T, f, B ac)
Kvitkovic et al. Enhanced magnetic field sensing using planar high-temperature superconductor shields
JP3002586B2 (en) Cryogenic container for skid sensor
Hogan et al. Bulk superconducting tube subjected to the stray magnetic field of a solenoid
Fink Internal Currents and Magnetic Fields Close to the Surface for a Type-II Superconductor for Applied Magnetic Fields Near the Upper Critical Field H c 2
Boebinger et al. Studies of the Kondo insulator Ce3Bi4Pt3 in 61 T pulsed magnetic fields
JP2723181B2 (en) SQUID magnetometer
Lenk et al. Influence of the FFLO-like state on the upper critical field of a superconductor/ferromagnet bilayer: Angular and temperature dependence
Iwashita et al. Magnetic Field Shielding With Superconductors
Balasubramanian et al. A High-Frequency Solution for Scattering by a Multilayer Anisotropic Slab
JP3252311B2 (en) Electromagnetic wave shielding box
EP0458043A1 (en) Magnetic shield
JPH08236340A (en) Superconducting magnetic shield material, manufacture thereof, and superconducting magnet device equipped therewith
Zhang Magnetic field shielding
JPS61176199A (en) Magnetic shield
JPH0748418B2 (en) Superconducting magnet
Bouat et al. Thermal stability of sputtered Ni81Fe19/Ag multilayers
Rodrigues et al. Determination of inductive shielding factors in double-layer structures
Yuan et al. Correlation of static magnetization and microwave absorption measurements on superconducting films of YBa2Cu3O7− x
Stalzer et al. Inhomogeneous magnetization of a superconducting film measured with a gradiometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees