JPS62175681A - Cryostatic container for skid magnetometer - Google Patents

Cryostatic container for skid magnetometer

Info

Publication number
JPS62175681A
JPS62175681A JP1902786A JP1902786A JPS62175681A JP S62175681 A JPS62175681 A JP S62175681A JP 1902786 A JP1902786 A JP 1902786A JP 1902786 A JP1902786 A JP 1902786A JP S62175681 A JPS62175681 A JP S62175681A
Authority
JP
Japan
Prior art keywords
skid
container
frp
outer layer
cryogenic container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1902786A
Other languages
Japanese (ja)
Inventor
Yasuharu Yamada
康晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1902786A priority Critical patent/JPS62175681A/en
Publication of JPS62175681A publication Critical patent/JPS62175681A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the safe and accurate measurement of minute magnetism by providing a nonmagnetic thin metal sheet together with a nonmagnetic FRP (fiber glass reinforced plastics) plate forming a cryostatic container. CONSTITUTION:A cryostatic container 1 is formed in a dual structure composed of an inner layer 2 and an outer layer 3 and a vacuum space 4 is formed be tween the layers 2 and 3. The inner layer 2 is filled with such a freezing mix ture 5 as helium or the like. The outer layer 3 is constituted by a small diame ter cylinder portion 10 and a main cylinder portion 11 in correspondence with the inner layer 2 and the outer layer 3 has shielding thin aluminum sheets 13 (13a-13e) buried in an FRP 12. Even when broadcast waves or radio waves for a civil communication reach the cryostatic container 1, the container 1 is shielded by the thin aluminum sheets 13 provided in the outer layer 3 and the waves do not reach a pickup coil 6 and a skid element 8. Therefore the skid element 8 is not affected by any external wave, enabling a stable measure ment to be performed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、例えば生体の発する磁気を検出するのに有
効なスキッド(SQUI D)磁力計の極低温容器に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a cryogenic container for a SQUID magnetometer that is effective for detecting, for example, magnetism emitted by living organisms.

(ロ)従来の技術 一般に、生体の心臓、肺、脳等から発せられる磁界は非
常に小さく、10−10〜i 0−” T程度であり、
従って、生体磁気を測定するのにパーマロイで作成した
幾層ものシールドルーム内でスキッド磁力計を用いて行
うか、シールドルームを用いないで、スキッド磁力計の
ピックアップコイルの形状を差動的に形成し、二次微分
方式により外部磁気雑音を打消すようにしている。
(b) Conventional technology In general, the magnetic field emitted from the heart, lungs, brain, etc. of a living body is extremely small, on the order of 10-10 to i0-''T.
Therefore, biomagnetism can be measured using a skid magnetometer in a multi-layered shielded room made of permalloy, or alternatively, the shape of the pick-up coil of a skid magnetometer can be shaped differentially without using a shielded room. However, external magnetic noise is canceled using a second-order differential method.

一方、上記スキッド磁力計の検出部、つまりピックアッ
プコイルやスキッド素子等は、ヘリウム等の寒剤が満た
された極低温容器に収納されており、この極低温容器は
、非磁性のFRP (ガラス繊維強化プラスチック)で
形成されている。
On the other hand, the detection part of the skid magnetometer, that is, the pickup coil, skid element, etc., is housed in a cryogenic container filled with a cryogen such as helium, and this cryogenic container is made of nonmagnetic FRP (glass fiber reinforced plastic). plastic).

(ハ)発明が解決しようとする問題点 生体磁気を測定するに際し、上記のように完全なシール
ドルーム内で行うことが望ましいが、パーマロイによる
シールドルームの作成は高価となリ、実用的でない。そ
こで、二次微分方式採用のスキッド磁力計を使用するこ
とになる。このスキッド磁力計では、外部磁気雑音はあ
る程度打消せるが、放送波、民間通信電波による電波ノ
イズが問題となる。この電波ノイズの影響をなくすため
に、スキッド素子の入力端子にシャント抵抗を接続した
り、ピックアップコイルの周囲をPB、黄銅パイプ等で
電磁シールドすることが考えられる。
(c) Problems to be Solved by the Invention When measuring biomagnetism, it is desirable to conduct the measurement in a completely shielded room as described above, but creating a shielded room using permalloy is expensive and impractical. Therefore, a skid magnetometer that uses the second-order differential method will be used. Although this skid magnetometer can cancel external magnetic noise to some extent, radio wave noise caused by broadcast waves and private communication radio waves becomes a problem. In order to eliminate the influence of this radio wave noise, it is conceivable to connect a shunt resistor to the input terminal of the skid element, or to electromagnetically shield the area around the pickup coil with a PB, brass pipe, or the like.

しかし、シャント効果をきかし過ぎると、抵抗による熱
雑音が問題となるし、またピンクアップコイルの周囲に
金属パイプを設けると、外部磁界に対する二次磁界によ
る雑音が生じ、完全な対策となり得ない。
However, if the shunt effect is made too strong, thermal noise due to the resistance becomes a problem, and if a metal pipe is provided around the pink-up coil, noise is generated due to the secondary magnetic field in response to the external magnetic field, so it is not a perfect countermeasure.

この発明は、上記に鑑み、シールドルームなしで放送波
、民間通信電波等の影響を受けることなく、微小磁気を
測定し得るスキッド磁力計の極低温容器を提供すること
を目的としている。
In view of the above, an object of the present invention is to provide a cryogenic container for a skid magnetometer that can measure minute magnetism without a shield room and without being affected by broadcast waves, private communication radio waves, etc.

(ニ)問題点を解決するための手段及び作用この発明の
スキッド磁力計の極低温容器は、周壁部、底部及び天井
部がFRPによって形成され、液体ヘリウム等の寒剤が
注入され、且つピックアップコイル及びスキッド素子が
収納されるものにおいて、FRP内にシールド用の金属
薄板を重設している。この金属薄板のために、外部から
放送波や民間通信電波がスキッド素子やピックアップコ
イルまで進入しない。
(d) Means and operation for solving the problems The cryogenic container of the skid magnetometer of the present invention has a peripheral wall, a bottom, and a ceiling made of FRP, is injected with a cryogen such as liquid helium, and has a pickup coil. In the case where the skid element is housed, a thin metal plate for shielding is installed inside the FRP. This thin metal plate prevents external broadcast waves and private communication radio waves from penetrating the skid element and pickup coil.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第1図は、この発明の一実施例を示すスキッド磁力計の
極低温容器1の断面図である。この極低温容器1は、内
層2と外層3の二重構造に形成され、両層2.3間に真
空部4が形成されている。
FIG. 1 is a sectional view of a cryogenic container 1 of a skid magnetometer showing an embodiment of the present invention. This cryogenic container 1 is formed in a double structure of an inner layer 2 and an outer layer 3, and a vacuum section 4 is formed between both layers 2.3.

内層2は、内部にヘリウム等の寒剤5が満たされ、また
下部のピックアップコイル6を収納する細筒部7と上部
のスキッド素子8を浸漬する主筒部9から構成されてい
る。スキッド素子8は、公知のように、JJ素子、入力
コイル等(図示せず)から構成されている。
The inner layer 2 is filled with a cryogen 5 such as helium, and is composed of a narrow cylindrical part 7 that accommodates a pickup coil 6 at the lower part and a main cylindrical part 9 in which the skid element 8 at the upper part is immersed. As is well known, the skid element 8 is composed of a JJ element, an input coil, etc. (not shown).

外層3も、内層2に対応して、細筒部10と主筒部11
から構成されている。これら内層2及び外層3は、従来
と同様にFRPで形成されている。
The outer layer 3 also has a narrow cylindrical portion 10 and a main cylindrical portion 11 corresponding to the inner layer 2.
It consists of These inner layer 2 and outer layer 3 are made of FRP as in the conventional case.

しかし、外層3は単にFRPで形成されるものではなく
、FRP12にシールド用のアルミニウム薄板13が埋
設されている。すなわち、細筒部10の底部10aのF
RP12aにアルミニウム薄板13aが、また細筒部1
0bにアルミニウム薄板13bが埋設され、さらに主筒
部11の底部11CのFRP 12 Cにアルミニウム
薄板13cが、細筒部lidにアルミニウム薄板13d
が、また天井部11にアルミニウム薄板13eがそれぞ
れ埋設されている。
However, the outer layer 3 is not simply formed of FRP, but a thin aluminum plate 13 for shielding is embedded in the FRP 12. That is, F of the bottom part 10a of the narrow cylindrical part 10
The aluminum thin plate 13a is attached to the RP12a, and the thin cylindrical portion 1
An aluminum thin plate 13b is buried in the bottom part 11C of the main cylinder part 11, and an aluminum thin plate 13c is buried in the FRP 12C of the bottom part 11C of the main cylinder part 11, and an aluminum thin plate 13d is buried in the narrow cylinder part lid.
However, thin aluminum plates 13e are also buried in the ceiling portion 11, respectively.

上記のうち、細筒部10の底部10aのアルミニウム薄
板13aは、底部の形状に合わして、第2図に示すよう
に概略円形であるが、周縁の一点aから中心部Oを通り
、他方の周縁す近傍まで切欠部14が設けられている。
Among the above, the aluminum thin plate 13a of the bottom part 10a of the narrow cylindrical part 10 has a roughly circular shape as shown in FIG. 2 to match the shape of the bottom part. A notch 14 is provided up to the vicinity of the periphery.

また、第3図(al (b)に示すように、例えば主筒
部11の細筒部11cのアルミニウム薄板13cは完全
に筒形でなく、筒の一部に縦に切欠部15を設け、横断
面形状が閉ループを描かないようにしている。いずれも
、アルミニウム薄板に渦電流が流れないようにするため
である。
Further, as shown in FIG. 3(al(b)), for example, the thin aluminum plate 13c of the narrow cylinder part 11c of the main cylinder part 11 is not completely cylindrical, but has a vertical notch 15 in a part of the cylinder. The cross-sectional shape is made not to form a closed loop.This is to prevent eddy currents from flowing through the thin aluminum plate.

また、アルミニウム薄板13c、13eは、構造上、ド
ーナツ型となる。
Moreover, the aluminum thin plates 13c and 13e have a donut shape in terms of structure.

この実施例極低温容器1において、放送波や民間通信用
の電波が到来しても、外層3に設けたアルミニウム薄板
13a、・・・・・・、13eによりシールドされ、ピ
ックアップコイル6やスキッド素子8には進入しない。
In the cryogenic container 1 of this embodiment, even if broadcast waves or radio waves for private communications arrive, they are shielded by the thin aluminum plates 13a, . . . , 13e provided on the outer layer 3, and the pickup coil 6 and skid Do not enter 8.

従って、スキッド素子8は何ら外来電波の影響を受ける
ことなく、安定な測定を行うことができる。
Therefore, the skid element 8 can perform stable measurements without being affected by external radio waves.

なお、上記実施例において、極低温容器lの外形状は細
筒部と主筒部からなる円筒状のものであるが、この発明
は、極低温容器の外形状に限ることなく適用できる。
In the above embodiments, the external shape of the cryogenic container l is cylindrical, consisting of a narrow cylindrical part and a main cylindrical part, but the present invention can be applied without being limited to the external shape of the cryogenic container.

また、上記実施例では、シールド用の金属薄板としてア
ルミニウム板を示したが、他の非磁性の金属薄板を用い
てもよい。
Further, in the above embodiments, an aluminum plate is used as the thin metal plate for shielding, but other nonmagnetic thin metal plates may be used.

また、上記実施例ではFRPにアルミニウム薄板を埋設
する場合を示したが、FRP板でアルミニウム薄板を挟
持するようにしてもよい。
Further, in the above embodiment, a case was shown in which a thin aluminum plate was embedded in FRP, but the thin aluminum plate may be sandwiched between FRP plates.

(へ)発明の効果 この発明によれば、極低温容器を形成するFRP板に並
置してアルミニウム薄板を設けるものであるから、放送
波や民間放送電波等の外部からの高周波ノイズを完全に
遮断することができ、これら高周波ノイズはスキッドの
雑音源とならないので、シールドルームを設けなくても
安全で精度の高い微小磁気測定ができる。そのため、生
体磁気測定に極めて有効である。
(f) Effects of the invention According to this invention, since the aluminum thin plate is provided in parallel to the FRP plate forming the cryogenic container, high frequency noise from the outside such as broadcast waves and private broadcast radio waves is completely blocked. Since these high-frequency noises do not become a noise source for the skid, safe and highly accurate micromagnetic measurements can be performed without providing a shield room. Therefore, it is extremely effective for biomagnetic measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示すスキッド磁力計の
極低温容器の縦断面図、第2図は、同極低温容器の底部
に配置するアルミニウム薄板の形状を示す平面図、第3
図は、同極低温容器の細筒部のアルミニウム薄板を説明
する図であり、第3図(a)はその縦断面図、第3図(
b)は同横断面図である。 1:極低温容器、    5:寒剤、 6:ビノクアソプコイル、8ニスキツド素子、12・1
2a・=−12e:FRP。 13・13a・・・・・・13eニアルミニウム薄板、
14・15;切欠部。 特許出願人      株式会社島津製作所代理人  
  弁理士 中 村 茂 信実1図 14.15:t777邪         第2図第3
FIG. 1 is a longitudinal sectional view of a cryogenic container of a skid magnetometer showing an embodiment of the present invention, FIG. 2 is a plan view showing the shape of a thin aluminum plate placed at the bottom of the same cryogenic container, and FIG.
The figures are diagrams for explaining the aluminum thin plate of the narrow cylindrical part of the same cryogenic container, and FIG.
b) is a cross-sectional view of the same. 1: Cryogenic container, 5: Cryogen, 6: Vinokur asop coil, 8 Niskit element, 12.1
2a.=-12e: FRP. 13・13a...13e Nialuminum thin plate,
14/15; Notch. Patent applicant: Shimadzu Corporation Agent
Patent Attorney Shigeru Nakamura Nobuzane 1 Figure 14.15: t777 evil Figure 2 Figure 3
figure

Claims (2)

【特許請求の範囲】[Claims] (1)周壁部、底部及び天井部がFRPによって形成さ
れ、液体ヘリウム等の寒剤が注入され、且つピックアッ
プコイル及びスキッド素子が収納されるスキッド磁力計
の極低温容器において、前記FRP内に、シールド用の
金属薄板を重設してなることを特徴とするスキッド磁力
計の極低温容器。
(1) In a cryogenic container for a skid magnetometer in which the peripheral wall, bottom, and ceiling are formed of FRP, a cryogen such as liquid helium is injected, and a pickup coil and skid element are housed, a shield is placed in the FRP. A cryogenic container for a skid magnetometer, which is characterized by being made of overlapping thin metal plates.
(2)前記周壁部の金属薄板は、筒部の縦方向に切欠部
を設け、横断面形状が非閉ループとなるように形成され
、且つ底部の金属薄板は、端縁から中央部を通り他方の
端縁近傍に至るまで帯状の切欠部を設けたものである特
許請求の範囲第1項記載のスキッド磁力計の極低温容器
(2) The thin metal plate of the peripheral wall portion is formed such that a notch is provided in the longitudinal direction of the cylinder portion, and the cross-sectional shape is a non-closed loop, and the thin metal plate of the bottom portion is formed such that the thin metal plate of the bottom portion passes through the center portion from the edge to the other side. 2. A cryogenic container for a skid magnetometer according to claim 1, wherein a band-shaped notch is provided up to the vicinity of an edge of the cryogenic container for a skid magnetometer.
JP1902786A 1986-01-29 1986-01-29 Cryostatic container for skid magnetometer Pending JPS62175681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1902786A JPS62175681A (en) 1986-01-29 1986-01-29 Cryostatic container for skid magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1902786A JPS62175681A (en) 1986-01-29 1986-01-29 Cryostatic container for skid magnetometer

Publications (1)

Publication Number Publication Date
JPS62175681A true JPS62175681A (en) 1987-08-01

Family

ID=11987977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1902786A Pending JPS62175681A (en) 1986-01-29 1986-01-29 Cryostatic container for skid magnetometer

Country Status (1)

Country Link
JP (1) JPS62175681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203711A (en) * 1991-12-12 1993-08-10 Mitsubishi Electric Corp Cryogenic container for skid sensor
JP2007298514A (en) * 2006-04-28 2007-11-15 Biosense Webster Inc Reduced magnetic field distortion in medical tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203711A (en) * 1991-12-12 1993-08-10 Mitsubishi Electric Corp Cryogenic container for skid sensor
JP2007298514A (en) * 2006-04-28 2007-11-15 Biosense Webster Inc Reduced magnetic field distortion in medical tool
US9364293B2 (en) 2006-04-28 2016-06-14 Biosense Webster, Inc. Reduced field distortion in medical tools

Similar Documents

Publication Publication Date Title
US4651099A (en) Scan room for magnetic resonance imager
US5043529A (en) Construction of shielded rooms using sealants that prevent electromagnetic and magnetic field leakage
US5418512A (en) Superconducting magnetic shield
US6731968B2 (en) Magnetically shielded room with internal active magnetic field cancellation, and its use
US5261403A (en) Magnetic resonance imaging apparatus
JP2005514797A (en) Wall member for magnetic shield room and magnetic shield room
JPS6013203A (en) Measuring device for measuring thickness of thick metallic material at temperature higher than curie temperature under noncontact state
JPS632350B2 (en)
JPS62175681A (en) Cryostatic container for skid magnetometer
GB2215471A (en) Superconducting magnet
USRE33505E (en) Scan room for magnetic resonance imager
JPH08236983A (en) Superconductive magnetic shield method
CA2038529A1 (en) Shielded magnetometer
JPH0366839B2 (en)
JP2005274544A (en) Method for measuring magnetic leak characteristic of magnetic shield room
Sasada et al. Large shielding factor obtained by a multiple‐shell magnetic shield having separate magnetic shaking
JPS61176199A (en) Magnetic shield
JPH07193390A (en) Formation of magnetic shield space
JPS621665Y2 (en)
JPH07283586A (en) Magnetic shield
JPH02206101A (en) Reduction in magnetization by superconductor
Paavola et al. High performance magnetically shielded room for clinical measurements
JPH02150786A (en) Thin-film and coil integrated squid element
JPH0241591Y2 (en)
JPH05114796A (en) Magnetic shielding case