JPH09127116A - Substance with protein molecule discriminating function - Google Patents

Substance with protein molecule discriminating function

Info

Publication number
JPH09127116A
JPH09127116A JP28497495A JP28497495A JPH09127116A JP H09127116 A JPH09127116 A JP H09127116A JP 28497495 A JP28497495 A JP 28497495A JP 28497495 A JP28497495 A JP 28497495A JP H09127116 A JPH09127116 A JP H09127116A
Authority
JP
Japan
Prior art keywords
protein
water
substance
polymer membrane
insoluble polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28497495A
Other languages
Japanese (ja)
Inventor
Norihiko Minoura
憲彦 箕浦
Buroo Maachin
ブロー マーチン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP28497495A priority Critical patent/JPH09127116A/en
Publication of JPH09127116A publication Critical patent/JPH09127116A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a substance having a protein discriminating function at a low cost by forming a water-insoluble polymer membrane having a protein molecule shape die on the surface of a base. SOLUTION: Protein and a cross linking agent constituted of a vinyl monomer such as acrylic acid and a water-soluble compound having at least two vinyl linkages in a molecule are dissolved in water, an aqueous solution, or a mixed liquid (aqueous medium) of water and alcohol to form a polymerization aqueous solution, it is polymerized on a porous carrier such as silica gel fine grains, and a water-insoluble polymer membrane containing protein is formed on the surface of the carrier. An aqueous medium is kept in contact with the polymer membrane, protein is eluted and removed, and fine grains made of the polymer membrane having a protein shape die on the surface are obtained. This substance has a function selectively capturing specific protein, i.e., protein molecule discriminating function, it can be advantageously utilized as a prosthesis antibody it has thermal stability, and it can be reproduced for use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、タンパク質分子を
識別する機能を有する物質、その製造方法及び人工抗体
に関するものである。本発明の物質は、タンパク質分子
を識別する機能を有する点で抗体と同種の機能を有す
る。従って、多種類のタンパク質混合物から特定のタン
パク質を分離精製するためのアフィニティクロマトグラ
フ用担体として、また、特定のタンパク質を検出分析す
るための試薬あるいはセンサー用感応物質などとして多
方面に利用できる。
TECHNICAL FIELD The present invention relates to a substance having a function of identifying a protein molecule, a method for producing the substance, and an artificial antibody. The substance of the present invention has the same function as an antibody in that it has a function of identifying a protein molecule. Therefore, it can be used in various fields as a carrier for affinity chromatography for separating and purifying a specific protein from a mixture of many kinds of proteins, and as a reagent for detecting and analyzing the specific protein or a sensitizer for a sensor.

【0002】[0002]

【従来の技術】近年、バイオテクノロジーの分野、およ
び病気の診断・治療において、タンパク質の利用が盛ん
になってきた。タンパク質には多くの種類があり、また
一般に混合物として存在する。これらのタンパク質を利
用するためには、所望するタンパク質を分離精製して高
純度でかつ未変性のタンパク質を取り出す必要がある。
現在、特定のタンパク質を識別する方法としては動物体
に形成させたその抗体を用いるのが一般的である。しか
しながら抗体の形成には長時間かかり、しかも生体を用
いなければならないためその管理が煩雑でまた極めて高
価につくなどの点が問題となっている。したがって、所
定のタンパク質に対して抗体と同様の識別機能をもつ安
価な物質の開発が望まれていた。
2. Description of the Related Art In recent years, the use of proteins has become popular in the field of biotechnology and in the diagnosis and treatment of diseases. There are many types of proteins and they generally exist as a mixture. In order to utilize these proteins, it is necessary to separate and purify the desired protein to take out highly pure and undenatured protein.
Currently, as a method for identifying a specific protein, it is general to use the antibody formed in the animal body. However, it takes a long time to form an antibody, and since a living body must be used, its management is complicated and extremely expensive, which is a problem. Therefore, it has been desired to develop an inexpensive substance having a discrimination function similar to that of an antibody for a predetermined protein.

【0003】[0003]

【発明が解決しようとする課題】本発明は、タンパク質
に対して識別機能をもつ安価な物質及びその製造方法を
提供することをその課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive substance having a discriminating function for proteins and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者は、タンパク質
に対して識別機能をもつ物質を経済的に得るべく鋭意研
究を重ねた結果、本発明を完成するに至ったすなわち、
本発明によれば、支持体上に形成されたタンパク質の分
子形状鋳型を有する水不溶性重合体膜からなり、該タン
パク質の分子形状鋳型は、該水不溶性重合体膜中にあら
かじめ含有させたタンパク質の溶出除去跡に形成された
微細空孔からなることを特徴とするタンパク質分子識別
機能を有する物質の製造方法が提供される。また、本発
明によれば、支持体上にタンパク質を含有する水不溶性
重合体膜を形成する工程と、該水不溶性重合体膜からそ
れに含まれるタンパク質を溶出除去させる工程からなる
ことを特徴とするタンパク質分子識別機能を有する物質
が提供される。さらに、本発明によれば、前記タンパク
質分子識別機能を有する物質からなる人工抗体が提供さ
れる。
The present inventor has completed the present invention as a result of earnest researches for economically obtaining a substance having a discriminating function for proteins.
According to the present invention, it comprises a water-insoluble polymer membrane having a molecular shape template of a protein formed on a support, wherein the molecular shape template of the protein is of a protein previously contained in the water-insoluble polymer membrane. Provided is a method for producing a substance having a protein molecule-identifying function, which is characterized by comprising fine pores formed in a trace of elution and removal. Further, according to the present invention, it is characterized by comprising a step of forming a protein-containing water-insoluble polymer film on a support, and a step of eluting and removing the protein contained therein from the water-insoluble polymer film A substance having a protein molecule identifying function is provided. Furthermore, according to the present invention, an artificial antibody comprising the substance having the protein molecule identifying function is provided.

【0005】[0005]

【発明の実施の形態】本発明のタンパク質分子識別機能
を有する物質は、水不溶性重合体中にタンパク質の分子
形状鋳型を形成したものであり、このタンパク質分子の
形状鋳型は、タンパク質を含有する水不溶性重合体膜か
らそのタンパク質を溶出除去した跡に形成される微細空
孔からなるものである。この場合のタンパク質として
は、従来公知の各種のタンパク質、例えば、酵素タンパ
ク質、細菌タンパク質、微生物タンパク質、抗原タンパ
ク質、動植物タンパク質等の生体タンパク質の他、各種
の合成タンパク質が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The substance having a protein molecule-identifying function of the present invention is formed by forming a molecular shape template of a protein in a water-insoluble polymer, and the shape template of the protein molecule is water containing a protein. It is composed of fine pores formed after the protein is eluted from the insoluble polymer membrane. Examples of the protein in this case include various conventionally known proteins, for example, biological proteins such as enzyme proteins, bacterial proteins, microbial proteins, antigen proteins, animal and plant proteins, and various synthetic proteins.

【0006】本発明の物質は、支持体上にタンパク質を
含む水不溶性重合体膜を形成する工程(第1工程)と、
この水不溶性重合体膜からそのタンパク質を溶出除去す
る工程(第2工程)から製造される。第1工程の実施に
際しては、ビニルモノマーとその架橋剤とタンパク質を
水性媒体に溶解させてタンパク質を含む重合性水溶液を
調製する。ビニルモノマーとしては、水溶性のものであ
れば任意のものを用いることができる。このようなもの
としては、例えば、アクリル酸、メタクリル酸、スチレ
ンスルホン酸、これら酸のアルカリ金属塩、アクリルア
ミド、メタクリルアミド、N,N−ジメチルアミド等が
挙げられる。これらのビニルモノマーは単独又は2種以
上の混合物の形で用いられる。架橋剤としては、分子中
にビニル結合を少なくとも2個有する水溶性化合物が用
いられる。このようなものとしては、例えば、N,N’
−(1,2−ジヒドロキシエチレン)−ビスアクリルア
ミド、N,N’−メチレンビスアクリルアミド等を挙げ
ることができる。水性媒体としては、水、水溶液又は水
と水溶性有機溶媒(アルコール等)との混合液等が用い
られる。また、重合性水溶液のpHは、タンパク質の変
性を生じさせないように、3〜10、好ましくはタンパ
ク質の等電点のpHに保持するのがよい。架橋剤の使用
割合は、ビニルモノマー100重量部当り、好ましくは
30重量部以上であるが、できるだけ多い方がよい。実
際上はその水性媒体の最大溶解量にするのがよい。タン
パク質の使用割合は、ビニルモノマー100重量部当
り、10重量部以上であるが、できるだけ多い方が好ま
しい。水溶液中のビニルモノマーの濃度は、水性媒体1
リットル中、20g以上であるが、タンパク質の変性が
生じない範囲でできるだけ多い方が好ましい。本発明の
第1工程においては、前記重合性水溶液を支持体上で重
合させ、支持体表面にタンパク質を含む水不溶性重合体
膜を形成させる。この場合、重合性水溶液には慣用の重
合開始剤(例えば、過硫酸アンモニウム等)及び重合促
進剤(例えば、N,N,N’N’−テトラメチルエチレ
ンジアミン等)が適量添加される。重合温度はタンパク
質の変性を防ぐためにできるだけ低い温度が好ましく、
30℃以下の温度の使用が好ましい。
The substance of the present invention comprises a step of forming a water-insoluble polymer film containing a protein on a support (first step),
It is produced from the step (second step) of eluting and removing the protein from the water-insoluble polymer membrane. In carrying out the first step, the vinyl monomer, its crosslinking agent and the protein are dissolved in an aqueous medium to prepare a polymerizable aqueous solution containing the protein. Any vinyl monomer may be used as long as it is water-soluble. Examples of such substances include acrylic acid, methacrylic acid, styrene sulfonic acid, alkali metal salts of these acids, acrylamide, methacrylamide, N, N-dimethylamide and the like. These vinyl monomers are used alone or in the form of a mixture of two or more kinds. As the cross-linking agent, a water-soluble compound having at least two vinyl bonds in the molecule is used. As such a thing, for example, N, N '
Examples thereof include-(1,2-dihydroxyethylene) -bisacrylamide and N, N'-methylenebisacrylamide. As the aqueous medium, water, an aqueous solution, a mixed solution of water and a water-soluble organic solvent (such as alcohol), or the like is used. Further, the pH of the polymerizable aqueous solution is preferably maintained at 3 to 10, preferably at the isoelectric point pH of the protein so as not to cause denaturation of the protein. The proportion of the cross-linking agent used is preferably 30 parts by weight or more per 100 parts by weight of the vinyl monomer, but the higher the ratio, the better. In practice, the maximum amount of dissolution of the aqueous medium is recommended. The proportion of protein used is 10 parts by weight or more per 100 parts by weight of the vinyl monomer, but it is preferably as high as possible. The concentration of vinyl monomer in the aqueous solution depends on the aqueous medium 1
It is 20 g or more per liter, but it is preferably as much as possible within a range where protein denaturation does not occur. In the first step of the present invention, the polymerizable aqueous solution is polymerized on a support to form a water-insoluble polymer film containing a protein on the surface of the support. In this case, a conventional polymerization initiator (for example, ammonium persulfate or the like) and a polymerization accelerator (for example, N, N, N′N′-tetramethylethylenediamine or the like) are added to the polymerizable aqueous solution in appropriate amounts. The polymerization temperature is preferably as low as possible to prevent protein denaturation,
Preference is given to using temperatures below 30 ° C.

【0007】前記水不溶性重合体膜支持体としては、無
機系又は有機系の固体物質が用いられ、これらのものは
多孔質であっても非多孔質であってもよいが、好ましく
は多孔質物質である。多孔質物質の場合、その平均細孔
径は1〜50nm、好ましくは5〜15nmであり、そ
の比表面積は50〜1000m2/g、好ましくは10
0〜800m2/gである。無機系支持体としては、シ
リカゲル、アルミナ、チタニア、ジルコニア、シリカ−
アルミナ、ゼオライト、ガラス等が挙げられるが、シリ
カゲルの使用が好ましい。有機系支持体としては、メラ
ミン樹脂ビーズの如き硬化樹脂ビーズが好ましく使用さ
れる。支持体の形状は、粉末状、粒状、プレート状等の
各種の形状であることができる。支持体としては、重合
体膜の結合強度を高めるために、その表面にビニル基を
結合させたものの使用が好ましい。このようなビニル基
を表面に有する支持体は、ビニル基を有するシランカッ
プリング剤を用いて支持体を表面処理することにより得
ることができる他、アミノ基等の活性水素を有する官能
基を表面に有する支持体に塩化アクリロイル等の反応性
ビニル化合物を反応させることによって得ることができ
る。このようなビニル基を有する支持体を用いるときに
は、支持体上に形成される重合体膜は、このビニル基と
反応結合しているため、支持体に強固に結合したものと
なる。
As the water-insoluble polymer membrane support, an inorganic or organic solid substance may be used, which may be porous or non-porous, but is preferably porous. It is a substance. In the case of a porous substance, its average pore diameter is 1 to 50 nm, preferably 5 to 15 nm, and its specific surface area is 50 to 1000 m 2 / g, preferably 10
It is 0 to 800 m 2 / g. As the inorganic support, silica gel, alumina, titania, zirconia, silica-
Alumina, zeolite, glass, etc. may be mentioned, but the use of silica gel is preferred. As the organic support, cured resin beads such as melamine resin beads are preferably used. The shape of the support can be various shapes such as powder, granules and plates. As the support, it is preferable to use a support having a vinyl group bonded to its surface in order to increase the bonding strength of the polymer film. Such a support having a vinyl group on the surface can be obtained by surface-treating the support using a silane coupling agent having a vinyl group, and a functional group having an active hydrogen such as an amino group on the surface. It can be obtained by reacting a support having in (1) with a reactive vinyl compound such as acryloyl chloride. When such a support having a vinyl group is used, the polymer film formed on the support is reactively bonded to the vinyl group, and thus is firmly bonded to the support.

【0008】本発明の第2工程においては、前記のよう
にして得られた支持体上に形成された重合体膜から、そ
れに含まれるタンパク質を溶出除去させる。このために
は、重合体膜にタンパク質に溶解性を示す液体を接触さ
せればよい。この場合の溶出用液体としては、通常、水
性媒体が用いられる。この場合の水性媒体としては、
水、水溶液、水と水溶性有機溶媒との混合液を示すこと
ができる。タンパク質が酵素等の生体タンパク質の場
合、そのタンパク質の変性を生じさせないように、リン
酸二水素ナトリウム水溶液を用いるのが好ましい。タン
パク質溶出温度は、5〜40℃、好ましくは10〜30
℃である。また、タンパク質の溶出量は、重合体膜中に
含まれる全タンパク質量の30重量%以上、好ましくは
80重量%以上である。前記のようにしてタンパク質の
溶出除去された重合体膜中には、タンパク質の溶出跡が
微細空孔として形成されるが、このタンパク質の溶出跡
の微細空孔は、タンパク質の分子状鋳型として作用す
る。即ち、このタンパク質が溶出除去された重合体膜
に、タンパク質混合物を接触させると、そのタンパク質
混合物のうちの前記溶出除去されたタンパク質と同種の
分子形状のタンパク質がそのタンパク質溶出跡の微細空
孔に選択的に捕捉される。本明細書中で言う「タンパク
質の分子状鋳型」とは、このようなタンパク質の選択的
捕捉作用を示すタンパク質溶出跡の微細空孔を意味する
ものである。本発明におけるタンパク質の分子状鋳型
は、単なるタンパク質の形だけではなく、タンパク質表
面に存在するペプチド基、アミノ基、イミダゾール基、
アルギニル基、カルボキシル基、水酸基などの官能基
と、重合体に含まれるカルボキシル基、アミド基、水酸
基などの官能基との間の水素結合、イオン結合、疎水結
合などによる多点の分子認識相互作用を含むものであ
る。つまり、タンパク質の形、大きさだけの情報でな
く、タンパク質表面のどの位置にどの官能基が存在する
のかの認識作用を含むものである。
In the second step of the present invention, the protein contained therein is eluted and removed from the polymer film formed on the support obtained as described above. For this purpose, the polymer membrane may be contacted with a liquid that is soluble in protein. An aqueous medium is usually used as the elution liquid in this case. As the aqueous medium in this case,
It can be water, an aqueous solution, or a mixed solution of water and a water-soluble organic solvent. When the protein is a biological protein such as an enzyme, it is preferable to use an aqueous solution of sodium dihydrogen phosphate so as not to cause denaturation of the protein. The protein elution temperature is 5 to 40 ° C, preferably 10 to 30
° C. The amount of protein eluted is 30% by weight or more, preferably 80% by weight or more, of the total amount of protein contained in the polymer film. In the polymer film from which the protein has been eluted and removed as described above, protein elution traces are formed as micropores, and the micropores in the protein elution trace act as a molecular template for the protein. To do. That is, when the protein mixture is brought into contact with the polymer membrane from which this protein has been eluted and removed, a protein of the same molecular shape as the above-mentioned protein that has been eluted and removed from the protein mixture will form fine pores in the protein elution trace. Selectively captured. As used herein, the term "protein molecular template" means micropores in a protein elution trace showing such a selective capturing action of a protein. The molecular template of the protein in the present invention is not only in the form of a protein, but also a peptide group existing on the protein surface, an amino group, an imidazole group,
Multi-point molecular recognition interaction by hydrogen bond, ionic bond, hydrophobic bond etc. between functional groups such as arginyl group, carboxyl group and hydroxyl group and functional groups such as carboxyl group, amide group and hydroxyl group contained in the polymer Is included. In other words, it includes not only information on the shape and size of the protein, but also the recognition function of which functional group exists at which position on the protein surface.

【0009】[0009]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0010】実施例1 アミノ基を表面にもつ粒径0.01mmの多孔性シリカ
ゲル(Lichrosorb−NH2)に、氷冷下シク
ロヘキサン中にて塩化アクリロイルを反応させてビニル
基を表面にもつ多孔性シリカゲル〔Lichrosor
b−NH−COCHCH2〕を調製した。これと別にア
クリル酸(0.250ml)、アクリルアミド(230
mg)、N,N′−(1,2−ジヒドロキシエチレン)
−ビスアクリルアミド(120mg)、N,N′−メチ
レンビスアクリルアミド(130mg)および12mM
リン酸二水素ナトリウム水溶液(12ml)を混合して
pHを5.6に調節したモノマー混合溶液を作成した。
このモノマー混合溶液(3ml)に、上記調製したビニ
ル基を表面にもつ多孔性シリカゲル(1g)および酵素
グルコースオキシダーゼ(ECl.1.3.4)(18
mg)を混合溶解させ、その溶液中に窒素ガスを導入し
て溶存酸素を追い出した。この溶液に重合開始剤として
40%過硫酸アンモニウム水溶液(0.150ml)お
よび重合促進剤としてN,N,N′,N′−テトラメチ
ルエチレンジアミン(0.120ml)を加えて、この
混合溶液を直ちに遠心器にて室温下で毎分30000回
転で10分間遠心した。遠心終了後、静置してさらに3
時間重合反応させた。固体生成物から多孔性シリカゲル
を含む部分を破砕して取り出した。このLichros
orb−重合体膜複合体からなる微粒子を12mMリン
酸二水素ナトリウム水溶液(4ml、pH5.6)で7
回洗浄して酵素を前記複合体から溶出除去した。こうし
てシリカゲル微粒子を担体とし、タンパク質形状鋳型を
表面に有する重合体膜からなる微粒子を得た。収量0.
25g。
Example 1 Porous silica gel having a vinyl group on the surface was prepared by reacting acryloyl chloride (Acryloyl chloride) in cyclohexane on ice-cooled porous silica gel (Lichrosorb-NH 2 ) having a particle diameter of 0.01 mm. Silica gel [Lichrosor
b-NH-COCHCH 2] was prepared. Separately, acrylic acid (0.250 ml), acrylamide (230
mg), N, N '-(1,2-dihydroxyethylene)
-Bisacrylamide (120 mg), N, N'-methylenebisacrylamide (130 mg) and 12 mM
An aqueous solution of sodium dihydrogen phosphate (12 ml) was mixed to prepare a monomer mixed solution whose pH was adjusted to 5.6.
Into this monomer mixed solution (3 ml), the above-prepared porous silica gel having a vinyl group on the surface (1 g) and the enzyme glucose oxidase (ECl. 1.3.4) (18
mg) was mixed and dissolved, and nitrogen gas was introduced into the solution to expel dissolved oxygen. A 40% ammonium persulfate aqueous solution (0.150 ml) as a polymerization initiator and N, N, N ', N'-tetramethylethylenediamine (0.120 ml) as a polymerization accelerator were added to this solution, and this mixed solution was immediately centrifuged. Centrifuge at room temperature at 30,000 rpm for 10 minutes. After centrifugation, leave it still for another 3
The polymerization reaction was carried out for an hour. The portion containing the porous silica gel was crushed and taken out from the solid product. This Lichros
Fine particles of the orb-polymer membrane complex were treated with 12 mM sodium dihydrogen phosphate aqueous solution (4 ml, pH 5.6) to give 7
The enzyme was eluted and removed from the complex by washing twice. In this way, silica gel particles were used as a carrier, and particles comprising a polymer film having a protein-shaped template on the surface were obtained. Yield 0.
25 g.

【0011】実施例2 実施例1で調製した微粒子に対するタンパク質分子の識
別試験をタンパク質の再結合実験により行った。濃度
0.5mg/100mlのグルコースオキシダーゼと濃
度1mg/100mlのグルコースデヒドロゲナーゼ
(ECl、1.1.47)との混合溶液に試験すべき微
粒子を5分間浸漬した後、その上澄溶液を採取した。い
ずれの酵素が特異的に微粒子に再結合したか知るため、
この上澄溶液のそれぞれの酵素の活性を求めた。グルコ
ースデヒドロゲナーゼの酵素活性に対するグルコースオ
キシダーゼの酵素活性の比の差異を検べた結果、グルコ
ースオキシダーゼは、グルコースデヒドロゲナーゼより
も、選択的に微粒子に結合されていることが確認され
た。鋳型に結合したグルコースオキシダーゼは、乾燥微
粒子100mg当り0.4μgであった。この結果は、
重合体膜中にグルコースオキシダーゼで鋳型が形成され
ていることを示している。
Example 2 A discrimination test of protein molecules on the fine particles prepared in Example 1 was carried out by a protein rebinding experiment. The microparticles to be tested were immersed in a mixed solution of glucose oxidase having a concentration of 0.5 mg / 100 ml and glucose dehydrogenase (ECl, 1.1.47) having a concentration of 1 mg / 100 ml for 5 minutes, and then the supernatant solution was collected. To know which enzyme specifically rebound to the microparticles,
The activity of each enzyme in this supernatant solution was determined. As a result of examining the difference in the ratio of the enzyme activity of glucose oxidase to the enzyme activity of glucose dehydrogenase, it was confirmed that glucose oxidase was selectively bound to the microparticles over glucose dehydrogenase. The amount of glucose oxidase bound to the template was 0.4 μg per 100 mg of dry fine particles. The result is
It shows that the template is formed by glucose oxidase in the polymer film.

【0012】実施例3 実施例2において、濃度1mg/100mlのグルコー
スデヒドロゲナーゼの代りに0.77mg/100ml
のグルコース−6−フォスフェートデヒドロゲナーゼ
((ECl、1.1.49)を用いる以外は同様に、実
施例1で調製した微粒子に対するタンパク質の再結合試
験を行った。グルコースオキシダーゼは、グルコース−
6−フォスフェートデヒドロゲナーゼよりも多く結合し
た。この結果は、重合体膜中にグルコースオキシダーゼ
で鋳型が形成されていることを示す。
Example 3 In Example 2, 0.77 mg / 100 ml was used instead of glucose dehydrogenase having a concentration of 1 mg / 100 ml.
The protein rebinding test to the microparticles prepared in Example 1 was performed in the same manner except that the glucose-6-phosphate dehydrogenase of (ECl, 1.1.49) was used.
It bound more than 6-phosphate dehydrogenase. This result indicates that glucose oxidase forms a template in the polymer membrane.

【0013】実施例4 実施例2において、酵素グルコースオキシダーゼおよび
グルコースデヒドロゲナーゼで再結合試験を行った後の
微粒子を12mMリン酸二水素ナトリウム水溶液(4m
l、pH5.6)で7回洗浄することにより再活性化粒
子を得ることができた。つまり本発明の物質は再使用可
能であることがわかった。
Example 4 In Example 2, the particles after the rebinding test with the enzymes glucose oxidase and glucose dehydrogenase were treated with 12 mM sodium dihydrogen phosphate aqueous solution (4 m
The reactivated particles could be obtained by washing 7 times with 1, pH 5.6). That is, it was found that the substance of the present invention can be reused.

【0014】実施例5 実施例1において作成したモノマー混合溶液(9ml)
に、ビニル基を表面にもつ多孔性シリカゲル(3g)と
酵素グルコースオキシダーゼ(55mg)とを混合溶解
させ、その溶液中に窒素ガスを導入して溶存酵素を追い
出した。この溶液に重合開始剤として10%過硫酸アン
モニウム水溶液(0.900ml)および重合促進剤と
してN,N,N′,N′−テトラメチルエチレンジアミ
ン(0.360ml)を加えて、この混合溶液を直ちに
遠心器にて室温下で毎分3000回転で10分間遠心し
た。遠心終了後、静置して重合反応をさらに16時間継
続させた。固体状重合反応物から多孔性シリカゲルを含
む部分を破砕して取り出した。このLichrosor
b−重合体膜複合体からなる微粒子を12mMリン酸二
水素ナトリウム水溶液(4ml、pH5.6)で7回洗
浄して酵素を溶出除去した。
Example 5 Monomer mixed solution prepared in Example 1 (9 ml)
Then, porous silica gel (3 g) having a vinyl group on the surface and the enzyme glucose oxidase (55 mg) were mixed and dissolved, and nitrogen gas was introduced into the solution to expel the dissolved enzyme. A 10% ammonium persulfate aqueous solution (0.900 ml) as a polymerization initiator and N, N, N ', N'-tetramethylethylenediamine (0.360 ml) as a polymerization accelerator were added to this solution, and this mixed solution was immediately centrifuged. Centrifuge at 3000 rpm for 10 minutes at room temperature in a container. After completion of the centrifugation, the mixture was left standing to continue the polymerization reaction for another 16 hours. A portion containing the porous silica gel was crushed and taken out from the solid polymerization reaction product. This Lichrosor
The microparticles composed of the b-polymer membrane complex were washed 7 times with a 12 mM sodium dihydrogen phosphate aqueous solution (4 ml, pH 5.6) to elute and remove the enzyme.

【0015】タンパク質の再結合実験として、濃度0.
5mg/100mlのグルコースオキシダーゼと濃度1
mg/100mlのグルコースデヒドロゲナーゼ(EC
l、1.1.47)との混合溶液に上記の微粒子を5分
間浸漬した後、その上澄溶液を採取し、それぞれの酵素
の活性を求めた。熱安定性試験のため、その微粒子を8
0℃で20分間熱変性させたものについても同様の試験
を行った。グルコースデヒドロゲナーゼの酵素活性に対
するグルコースオキシダーゼの酵素活性の比の差異を検
討した結果、グルコースオキシダーゼは、熱変性微粒子
よりも未変性微粒子に9%多く結合することがわかっ
た。実施例3で得られた結果と比較することにより、熱
変性処理後にもなお、微粒子にグルコースオキシダーゼ
を識別する分子形状鋳型が存在することを示し、この物
質は熱安定性の高いことがわかった。
As a protein rebinding experiment, a concentration of 0.
5 mg / 100 ml glucose oxidase and concentration 1
mg / 100 ml glucose dehydrogenase (EC
The above microparticles were immersed in a mixed solution of 1, 1.1.47) for 5 minutes, and the supernatant solution was sampled to determine the activity of each enzyme. For the thermal stability test,
The same test was conducted for the one that was heat-denatured at 0 ° C. for 20 minutes. As a result of examining the difference in the ratio of the enzyme activity of glucose oxidase to the enzyme activity of glucose dehydrogenase, it was found that glucose oxidase binds to unmodified fine particles 9% more than to heat-denatured fine particles. Comparison with the results obtained in Example 3 showed that the molecular shape template for distinguishing glucose oxidase was still present in the microparticles even after the heat denaturation treatment, and it was found that this substance has high heat stability. .

【0016】[0016]

【発明の効果】本発明の物質は、特定のタンパク質を選
択的に捕捉する作用、即ち、タンパク質分子の識別機能
を有するもので、人工抗体として有利に利用することが
できる。また、本発明の物質は良好な熱安定性を有し、
しかも、使用後、再生して用いることができる。
INDUSTRIAL APPLICABILITY The substance of the present invention has an action of selectively capturing a specific protein, that is, a function of identifying a protein molecule, and can be advantageously used as an artificial antibody. Also, the substances of the invention have good thermal stability,
Moreover, it can be recycled after use.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 支持体上に形成されたタンパク質の分子
形状鋳型を有する水不溶性重合体膜からなり、該タンパ
ク質の分子形状鋳型は、該水不溶性重合体膜中にあらか
じめ含有させたタンパク質の溶出除去跡に形成された微
細空孔からなることを特徴とするタンパク質分子識別機
能を有する物質。
1. A water-insoluble polymer membrane having a molecular shape template of a protein formed on a support, wherein the molecular shape template of the protein is the elution of the protein previously contained in the water-insoluble polymer membrane. A substance having a protein molecule-identifying function, which is characterized by comprising fine pores formed in the removal trace.
【請求項2】 該支持体が多孔質粒子である請求項1の
物質。
2. The material of claim 1, wherein the support is a porous particle.
【請求項3】 支持体上にタンパク質を含有する水不溶
性重合体膜を形成する工程と、該水不溶性重合体膜から
それに含まれるタンパク質を溶出除去させる工程からな
ることを特徴とするタンパク質分子識別機能を有する物
質の製造方法。
3. A protein molecule identification comprising a step of forming a water-insoluble polymer film containing a protein on a support and a step of eluting and removing a protein contained therein from the water-insoluble polymer film. A method for producing a substance having a function.
【請求項4】 請求項1又は2の物質からなる人工抗
体。
4. An artificial antibody comprising the substance according to claim 1 or 2.
JP28497495A 1995-11-01 1995-11-01 Substance with protein molecule discriminating function Pending JPH09127116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28497495A JPH09127116A (en) 1995-11-01 1995-11-01 Substance with protein molecule discriminating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28497495A JPH09127116A (en) 1995-11-01 1995-11-01 Substance with protein molecule discriminating function

Publications (1)

Publication Number Publication Date
JPH09127116A true JPH09127116A (en) 1997-05-16

Family

ID=17685498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28497495A Pending JPH09127116A (en) 1995-11-01 1995-11-01 Substance with protein molecule discriminating function

Country Status (1)

Country Link
JP (1) JPH09127116A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067899A1 (en) * 1999-05-06 2000-11-16 Idemitsu Petrochemical Co., Ltd. Adsorbents made of styrene polymers
JP2001212456A (en) * 2000-02-07 2001-08-07 Toyo Ink Mfg Co Ltd High molecular material having charactristic capable of selctively capturing objective substance, separation method, material for separation, and selective solid phase extraction method
JP2003509550A (en) * 1999-09-17 2003-03-11 エムアイピー・テクノロジーズ・エービー Novel molecularly imprinted polymer grafted on solid support
WO2005040799A1 (en) * 2003-10-29 2005-05-06 Hidechika Okada Artificial antibody comprising complementary peptide
JP4558097B2 (en) * 2007-08-30 2010-10-06 学校法人慶應義塾 Molecular identification material and method for producing the same
JP2017083293A (en) * 2015-10-28 2017-05-18 日立化成株式会社 Separation material and manufacturing method thereof
JP2017122596A (en) * 2016-01-05 2017-07-13 日立化成株式会社 Separation material and manufacturing method thereof, and column

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013447A1 (en) * 1991-02-01 1992-08-20 California Institute Of Technology Template polymerization using metal chelates and fluid imprint matrices
WO1994011403A1 (en) * 1992-11-11 1994-05-26 Klaus Mosbach Artificial antibodies, method of producing the same and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992013447A1 (en) * 1991-02-01 1992-08-20 California Institute Of Technology Template polymerization using metal chelates and fluid imprint matrices
WO1994011403A1 (en) * 1992-11-11 1994-05-26 Klaus Mosbach Artificial antibodies, method of producing the same and use thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000067899A1 (en) * 1999-05-06 2000-11-16 Idemitsu Petrochemical Co., Ltd. Adsorbents made of styrene polymers
US6815396B1 (en) 1999-05-06 2004-11-09 Idemitsu Petrochemical Co., Ltd. Adsorbents made of styrene polymers
JP2003509550A (en) * 1999-09-17 2003-03-11 エムアイピー・テクノロジーズ・エービー Novel molecularly imprinted polymer grafted on solid support
JP2001212456A (en) * 2000-02-07 2001-08-07 Toyo Ink Mfg Co Ltd High molecular material having charactristic capable of selctively capturing objective substance, separation method, material for separation, and selective solid phase extraction method
WO2005040799A1 (en) * 2003-10-29 2005-05-06 Hidechika Okada Artificial antibody comprising complementary peptide
JP4558097B2 (en) * 2007-08-30 2010-10-06 学校法人慶應義塾 Molecular identification material and method for producing the same
JPWO2009028661A1 (en) * 2007-08-30 2010-12-02 学校法人慶應義塾 Molecular identification material and method for producing the same
EP2198952A4 (en) * 2007-08-30 2011-04-27 Univ Keio Molecule recognizing material and process for producing the molecule recognizing material
JP2017083293A (en) * 2015-10-28 2017-05-18 日立化成株式会社 Separation material and manufacturing method thereof
JP2017122596A (en) * 2016-01-05 2017-07-13 日立化成株式会社 Separation material and manufacturing method thereof, and column

Similar Documents

Publication Publication Date Title
US4421896A (en) Method of coupling a protein to a polymer particle containing hydrazide groups in a polymer latex and the products formed therefrom
Khumsap et al. Epitope-imprinted polymers: applications in protein recognition and separation
Burow et al. Molecular imprinting: synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase
EP1237936B1 (en) Molecularly imprinted polymers produced by template polymerisation
US5976527A (en) High surface area support having bound latex particles containing oxirane groups for immobilization of substances
JPH06501394A (en) Physiologically active substances covalently immobilized on azlactone-functional polymer carrier and their production method
JPS6310668A (en) Dry material capable of being converted to aqueous gel containing dispersible polymer particles by hydration
JPH0144725B2 (en)
JP2003525320A (en) Molecular imprinting compositions and methods for binding and analyzing polymers
JP6063962B2 (en) Production of molecularly imprinted polymer by crosslinking
JPS6048524B2 (en) Biologically active substance reagent and its manufacturing method
EP0669942A1 (en) Artificial antibodies, method of producing the same and use thereof
JPH09127116A (en) Substance with protein molecule discriminating function
JPS6356501A (en) Cellulose gel having biochemical affinity and production thereof
JP2002502892A (en) A mechanism for producing carrier polymer materials in the form of porous pearl polymers
JP3441530B2 (en) Temperature-responsive separation material and method of manufacturing the same
JP4793816B2 (en) Method for producing macromolecular identification polymer
JP3441496B2 (en) Affinity separation material
JP3062745B1 (en) Material capable of selectively adsorbing and desorbing protein and method for producing the same
JP2946036B2 (en) Substance having protein molecule identification function and method for producing the same
JP3543107B2 (en) Protein identification method
Ciardelli et al. The relevance of the transfer of molecular information between natural and synthetic materials in the realisation of biomedical devices with enhanced properties
JP2003321492A (en) Heat-responsible polymer gel having protein molecule- identifying function
CN114768774B (en) Acetylated molecularly imprinted polymer for constructing microfluidic chip integrated platform
JP2739232B2 (en) Method of using cellulose gel having biological affinity