JPH09127052A - Quantitative determination method for secondary brightener in plating liquid - Google Patents

Quantitative determination method for secondary brightener in plating liquid

Info

Publication number
JPH09127052A
JPH09127052A JP7280453A JP28045395A JPH09127052A JP H09127052 A JPH09127052 A JP H09127052A JP 7280453 A JP7280453 A JP 7280453A JP 28045395 A JP28045395 A JP 28045395A JP H09127052 A JPH09127052 A JP H09127052A
Authority
JP
Japan
Prior art keywords
electrode
plating solution
ratio
concentration
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7280453A
Other languages
Japanese (ja)
Inventor
Takeshi Nishikawa
武 西川
Keishi Ito
継志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP7280453A priority Critical patent/JPH09127052A/en
Publication of JPH09127052A publication Critical patent/JPH09127052A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a quantitative determination method in which the concentration of a secondary brightener in plating liquid can be determined easily and precisely by applying a constant voltage in a state that a rotating electrode is at a standstill and in a state that the electrode is turned, measuring the precipitation speeds, and finding the ratio of the precipitation speeds in both states. SOLUTION: An Ni plating liquid which contains a secondary brightener as a test liquid 2 is put into a testing tank 1, and the ratio of a precipitation speed in a state that a rotating electrode 3 is at a standstill to a precipitation speed in a state that the electrode 3 is turned is found. The contact frequency of the secondary brightener with the electrode 3 is higher during its rotation than at its standstill, the precipitation obstruction action of the secondary brightener acts on the turning electrode 3 more according to its concentration, and the precipitation speed is lowered. Since the ratio of its reduction is proportional to the concentration of the secondary brightener, the concentration of the secondary brightener can be found on the basis of the ratio of the precipitation speed at the standstill of the electrode to that in its rotation. When the secondary brightener in a proper quantity is replenished on the basis of a concentration value determined in this manner, a good plating treatment can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はメッキ液中の2次光
沢剤の定量方法に係り、特に、従来定量分析が不可能で
あった金属メッキ液中の2次光沢剤濃度を簡易な試験装
置による電気化学的測定手段で容易かつ正確に定量する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying a secondary brightening agent in a plating solution, and more particularly to a simple tester for the concentration of the secondary brightening agent in a metal plating solution, which has hitherto been impossible to carry out a quantitative analysis. The method of easily and accurately quantifying by an electrochemical measuring means.

【0002】[0002]

【従来の技術】一般にニッケル等の金属メッキ液には、
下記のような主成分及び添加剤が含有されており、各
々、下記役割を担っている。
2. Description of the Related Art Generally, metal plating liquids such as nickel are
The following main components and additives are contained, and each plays the following role.

【0003】[0003]

【表1】 [Table 1]

【0004】ところで、メッキ処理に当っては、メッキ
槽内のメッキ浴に、メッキ処理で失なわれた成分に相当
する成分を適宜補給することで、メッキ浴組成を常に均
一に維持して処理が行われる。
By the way, in the plating process, the plating bath composition in the plating bath is appropriately supplemented with a component corresponding to the component lost in the plating process so that the plating bath composition is always kept uniform. Is done.

【0005】従って、メッキ浴に対して不足成分の適切
な補給を行うために、メッキ浴中の構成成分の濃度を正
確に求めることが必要となる。
Therefore, it is necessary to accurately determine the concentrations of the constituent components in the plating bath in order to appropriately replenish the deficiency component to the plating bath.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記メ
ッキ液構成成分のうち、主成分及び1次光沢剤について
は、そのメッキ液中の濃度を、化学分析や機器分析によ
って求めることができるが、その他の成分については適
当な分析方法が提案されておらず、一般には、メッキ処
理で得られたメッキ表面の外観で目視により判断されて
いるのが現状である。
However, among the above components of the plating solution, the main component and the primary brightening agent can be obtained by chemical analysis or instrumental analysis of their concentrations in the plating solution. No suitable analysis method has been proposed for the component (1), and in general, the appearance of the plating surface obtained by the plating treatment is visually judged.

【0007】特に、2次光沢剤は、被メッキ表面の凹凸
に応じて均一なメッキ表面を形成するレベリング作用を
担う重要な成分であるが、従来、化学分析や機器分析で
精度良く定量することができず、ハルセル板を用いてメ
ッキを行い、形成されたメッキ膜の光沢の具合やレベリ
ング効果の状況から濃度を推定している。
[0007] In particular, the secondary brightener is an important component responsible for the leveling function of forming a uniform plating surface according to the unevenness of the surface to be plated, but conventionally, it has to be accurately quantified by chemical analysis or instrumental analysis. However, the plating is performed using a Hull cell plate, and the concentration is estimated from the glossiness of the formed plating film and the leveling effect.

【0008】本発明は上記従来の問題点を解決し、金属
メッキ液中の2次光沢剤濃度を容易かつ正確に定量する
方法を提供することを目的とする。
It is an object of the present invention to solve the above conventional problems and provide a method for easily and accurately quantifying the concentration of the secondary brightening agent in the metal plating solution.

【0009】[0009]

【課題を解決するための手段】本発明のメッキ液中の2
次光沢剤の定量方法は、固定電極と回転電極とが試験槽
中に配置され、両電極間に電圧を印加する電源を有した
試験装置を用いてメッキ液中の2次光沢剤を定量する方
法であって、メッキ液を該試験槽中に入れ、回転電極を
静止させた状態で所定電圧を印加して析出速度を測定す
ると共に、回転電極を回転させた状態で所定電圧を印加
して析出速度を測定し、回転電極の静止時と回転時とに
おける析出速度の比を求め、この比からメッキ液中の2
次光沢剤濃度を求めることを特徴とする。
2 in the plating solution of the present invention
The method for quantifying the secondary brightener is to quantify the secondary brightener in the plating solution using a test device in which a fixed electrode and a rotating electrode are arranged in a test tank and a power source for applying a voltage between both electrodes is used. In the method, a plating solution is placed in the test tank, a predetermined voltage is applied to the rotary electrode in a stationary state to measure a deposition rate, and a predetermined voltage is applied to the rotary electrode in a rotated state. The deposition rate was measured, and the ratio of the deposition rate when the rotating electrode was stationary and when it was rotating was calculated.
It is characterized in that the next brightener concentration is obtained.

【0010】2次光沢剤のレベリング効果の作用機構
は、微視的には被メッキ表面の凹部での金属析出速度を
速くし、逆に凸部での金属析出速度を遅くすることに基
くものであり、これにより、凹部のメッキ膜厚さを厚
く、凸部のメッキ膜厚さを薄くして凸凹のない平滑なメ
ッキ膜面を形成する。
The action mechanism of the leveling effect of the secondary brightening agent is microscopically based on the fact that the metal deposition rate at the concave portion of the surface to be plated is increased and, conversely, the metal deposition rate at the convex portion is decreased. As a result, the plating film thickness of the concave portion is increased and the plating film thickness of the convex portion is decreased to form a smooth plating film surface having no irregularities.

【0011】即ち、2次光沢剤は被メッキ表面の突出し
た凸部への接触頻度が高く、凹部への接触頻度が少ない
ことで、上記析出速度の調整を行うものであり、2次光
沢剤自体の直接的な作用は、接触面への析出を阻害する
ことにある。
That is, the secondary brightening agent adjusts the above-mentioned deposition rate because the secondary brightening agent has a high contact frequency with the projecting protrusions on the plated surface and a low contact frequency with the recessed portions. Its direct function is to prevent deposition on the contact surface.

【0012】本発明では、上記2次光沢剤の特性を利用
して、回転電極を静止させた状態での析出速度と回転電
極を回転させた状態での析出速度との比を求める。即
ち、回転電極に対する2次光沢剤の接触頻度は回転中の
方が静止中よりも高い。従って、静止中の回転電極より
も回転中の回転電極には2次光沢剤の析出阻害作用がそ
の濃度に応じて多く働き、析出速度が低いものとなる。
In the present invention, the ratio of the deposition rate when the rotary electrode is stationary and the deposition rate when the rotary electrode is rotated is determined by utilizing the characteristics of the secondary brightener. That is, the contact frequency of the secondary brightener with the rotating electrode is higher during rotation than during rest. Therefore, the rotating electrode in rotation is more effective in inhibiting the deposition of the secondary brightening agent than the stationary rotating electrode, depending on its concentration, and the deposition rate is low.

【0013】この静止中の回転電極の析出速度に対する
回転中の回転電極の析出速度の低減割合は、2次光沢剤
濃度に比例することから、回転電極の静止時と回転時と
における析出速度の比から、2次光沢剤濃度を求めるこ
とができる。
Since the reduction rate of the deposition rate of the rotating rotary electrode relative to the deposition rate of the stationary rotating electrode is proportional to the concentration of the secondary brightener, the deposition rate of the rotating electrode at rest and during rotation is The secondary brightener concentration can be determined from the ratio.

【0014】本発明の方法においては、具体的には、ま
ず回転電極上に金属が析出するように電圧を等速で印加
し、次いで電圧を反転させて回転電極上の析出金属を液
中に溶解させるように電圧を等速で印加し、この電圧反
転後の通電気量Aを求め、回転電極静止時の該電気量A
0 と、回転数nにて回転させたときの該電気量An との
比An /A0 を算出し、この比An /A0 に基づいてメ
ッキ液中の2次光沢剤濃度を求めるのが好適である。
In the method of the present invention, specifically, first, a voltage is applied at a constant speed so that the metal is deposited on the rotary electrode, and then the voltage is reversed to deposit the metal deposited on the rotary electrode in the liquid. A voltage is applied at a constant speed so as to dissolve, and the amount of electricity A after this voltage reversal is obtained.
0 and calculates the ratio A n / A 0 of the electric quantity A n when rotating at a rotation speed n, a secondary brightening agent concentration in the plating solution on the basis of the ratio A n / A 0 It is preferable to ask.

【0015】なお、「等速」とは電圧の単位時間当りの
変化のことであり、本発明では約20mV/sec程度
が適当である。
The term "constant speed" means a change in voltage per unit time, and in the present invention, about 20 mV / sec is suitable.

【0016】また、予め、2次光沢剤濃度既知のメッキ
液を用いて試験することにより2次光沢剤濃度と前記比
n /A0 との対応関係を示す検量線を求めておき、2
次光沢剤濃度未知のメッキ液について測定された比An
/A0 を該検量線にあてはめて2次光沢剤濃度を求める
ことにより、効率的な定量を行える。
Further, a calibration curve showing the correspondence relationship between the secondary brightener concentration and the ratio A n / A 0 is obtained in advance by conducting a test using a plating solution having a known secondary brightener concentration.
Next the ratio A n measured for plating solutions of unknown brightener concentration
By applying / A 0 to the calibration curve to obtain the secondary brightener concentration, efficient quantification can be performed.

【0017】[0017]

【発明の実施の形態】以下に図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0018】図1は本発明の実施に好適な試験装置を示
す構成図であり、図2は図1の試験装置に用いられてい
る回転電極を示し、図2(a)は正面図、図2(b)は
底面図である。
FIG. 1 is a block diagram showing a test apparatus suitable for carrying out the present invention, FIG. 2 shows a rotary electrode used in the test apparatus of FIG. 1, and FIG. 2 (b) is a bottom view.

【0019】本実施例の試験装置は、試験槽1中の試験
液2内に先端が浸漬するように、回転電極3が上方から
吊下され、一方、白金電極線からなる固定電極4は、試
験槽1の側部から挿入され、試験槽1の底面部分に配置
されている。5は両電極間に電圧を印加する電源であ
り、回転電極3及び固定電極4に接続されている。6は
照合電極(SCE)、7は記録計である。
In the test apparatus of this embodiment, the rotary electrode 3 is suspended from above so that the tip is immersed in the test solution 2 in the test tank 1, while the fixed electrode 4 made of a platinum electrode wire is It is inserted from the side part of the test tank 1 and arranged on the bottom surface portion of the test tank 1. A power source 5 applies a voltage between both electrodes, and is connected to the rotating electrode 3 and the fixed electrode 4. Reference numeral 6 is a reference electrode (SCE), and 7 is a recorder.

【0020】回転電極3は、図2に示す如く、ステンレ
ス棒3Aの先端に白金電極3Bが取り付けられ、アクリ
ル樹脂3Cで被覆された構造となっている。この白金電
極3Bとしては直径5mmで高さ2mmの円盤形状のも
のを用いた。
As shown in FIG. 2, the rotary electrode 3 has a structure in which a platinum electrode 3B is attached to the tip of a stainless rod 3A and is covered with an acrylic resin 3C. As the platinum electrode 3B, a disk-shaped electrode having a diameter of 5 mm and a height of 2 mm was used.

【0021】また、固定電極4としての白金電極線とし
ては直径2mm、長さ100cmのものを用いた。
The platinum electrode wire used as the fixed electrode 4 had a diameter of 2 mm and a length of 100 cm.

【0022】この試験装置の試験槽1内に試験液2とし
て2次光沢剤を含むNiメッキ液を投入し、回転電極3
を静止させた状態(0rpm)又は回転させた状態(本
実施例では3000rpm)でまず−0.1V(対SC
E)から−1.3V(対SCE)まで20mV/sec
の等速にてカソード側へ分極すると、回転電極3の表面
にNiが析出する。次に、アノード側へ20mV/se
cの等速にて分極してゆくと、−0.3〜+1.2V
(対SCE)にかけて、回転電極3に析出したNiの溶
解が起こる。このとき、−0.8〜−1.3V(対SC
E)の範囲では、回転電極3においてNiの析出と水素
の発生が起こり、逆に−0.3〜+1.2V(対SC
E)では、Niの溶解が起こることから、−0.8〜−
1.3V(対SCE)の範囲で析出したNi量は、この
−0.3〜+1.2V(対SCE)の範囲で溶解したN
i量に等しくなる。
A Ni plating solution containing a secondary brightening agent was charged as a test solution 2 into the test tank 1 of this test apparatus, and the rotating electrode 3
In a stationary state (0 rpm) or a rotating state (3000 rpm in this embodiment), first, -0.1 V (vs. SC) is applied.
20) mV / sec from E) to -1.3V (vs. SCE)
When polarized to the cathode side at a constant velocity, Ni is deposited on the surface of the rotating electrode 3. Next, 20 mV / se to the anode side
When polarized at a constant speed of c, -0.3 to + 1.2V
During (to SCE), the Ni deposited on the rotating electrode 3 is dissolved. At this time, -0.8 to -1.3V (vs. SC
In the range of E), precipitation of Ni and generation of hydrogen occur in the rotating electrode 3, and conversely, -0.3 to +1.2 V (vs. SC).
In E), since dissolution of Ni occurs, −0.8 to −
The amount of Ni deposited in the range of 1.3 V (vs. SCE) is the amount of N dissolved in the range of -0.3 to +1.2 V (vs. SCE).
i equals the amount.

【0023】回転電極3に、−0.1〜−1.3V(対
SCE)までカソード側に分極した後、電圧を反転させ
てアノード側へ分極したときの、電位と電流密度との関
係は図3に示す通りである。図3において、実線は回転
電極の静止時を示し、破線は回転電極の回転時を示す。
When the rotating electrode 3 is polarized on the cathode side to −0.1 to −1.3 V (against SCE), the voltage is inverted and then polarized on the anode side. As shown in FIG. In FIG. 3, the solid line indicates when the rotating electrode is stationary, and the broken line indicates when the rotating electrode is rotating.

【0024】図3の−0.3〜+1.2V(対SCE)
の範囲における電流密度の変化は、回転電極3に析出し
たNiの溶解状況を示し、これは、回転電極3への析出
量、即ち、析出速度に比例するものとなる。回転電極3
が回転している場合には、前述の如く、2次光沢剤によ
る析出阻害で析出速度が小さいため、電流密度曲線の山
が小さい。これに対して、回転電極3が静止している場
合には、2次光沢剤の析出阻害の作用が少ないため、析
出速度が比較的大きく、電流密度曲線の山が大きい。
-0.3 to +1.2 V in FIG. 3 (vs. SCE)
The change in the current density in the range of 1 indicates the state of dissolution of Ni deposited on the rotating electrode 3, which is proportional to the amount of deposition on the rotating electrode 3, that is, the deposition rate. Rotating electrode 3
When the is rotating, the peak of the current density curve is small because the deposition rate is low due to the deposition inhibition by the secondary brightening agent as described above. On the other hand, when the rotating electrode 3 is stationary, the effect of inhibiting the deposition of the secondary brightening agent is small, so that the deposition rate is relatively high and the peak of the current density curve is large.

【0025】従って、この部分の通電気量A(回転数n
(=3000)rpmで回転電極を回転させた時の電気
量をAn (=A3000),回転電極静止時の電気量をA0
とする。)を求め、An /A0 を算出することにより、
回転電極の静止時と回転時とにおける析出速度の比を求
めることができる。
Therefore, the amount of electricity flowing through this portion A (rotational speed n
The amount of electricity when the rotating electrode is rotated at (= 3000) rpm is A n (= A 3000 ), and the amount of electricity when the rotating electrode is stationary is A 0.
And ) And calculating A n / A 0 ,
The ratio of the deposition rate when the rotating electrode is stationary and when it is rotating can be obtained.

【0026】なお、以下において、An /A0 を相対析
出速度比と称す。
In the following, A n / A 0 is referred to as a relative precipitation rate ratio.

【0027】このような試験方法により2次光沢剤濃度
と相対析出速度比An /A0 との関係を求めたところ、
図4に示すように、直線的な比例関係にあった。
The relationship between the secondary brightener concentration and the relative deposition rate ratio A n / A 0 was determined by the above test method.
As shown in FIG. 4, there was a linear proportional relationship.

【0028】従って、予め、2次光沢剤濃度既知のメッ
キ液を用いて試験することにより2次光沢剤濃度と相対
析出速度比An /A0 との対応関係を示す検量線を求め
ておき、2次光沢剤濃度未知のメッキ液について測定さ
れた相対析出速度比An /A0 を該検量線にあてはめる
ことにより、容易に2次光沢剤濃度を求めることができ
る。
Therefore, a calibration curve showing the correspondence relationship between the secondary brightener concentration and the relative deposition rate ratio A n / A 0 is obtained in advance by conducting a test using a plating solution having a known secondary brightener concentration. By applying the relative deposition rate ratio A n / A 0 measured for the plating solution of which the secondary brightener concentration is unknown to the calibration curve, the secondary brightener concentration can be easily obtained.

【0029】なお、本発明において回転電極の回転数は
過度に小さいと、2次光沢剤濃度に対する相対析出速度
比の顕著な変化が表れないことから、回転電極の回転数
は2000〜4000rpm、特に2800〜3200
rpmとするのが好ましい。なお、この回転数が400
0rpmを超えると、電極のまわりが乱流になり、測定
精度がおちるおそれがある。
In the present invention, if the rotation speed of the rotary electrode is too small, the relative deposition rate ratio with respect to the secondary brightener concentration does not significantly change. Therefore, the rotation speed of the rotary electrode is 2000 to 4000 rpm, particularly 2800-3200
It is preferably set to rpm. In addition, this rotation speed is 400
If it exceeds 0 rpm, a turbulent flow will occur around the electrodes, and the measurement accuracy may decline.

【0030】また、上記実施例では、Niメッキ液につ
いて述べたが、本発明はNiメッキ液に限らず、Pb,
Sn等の他の金属メッキ液中の2次光沢剤の定量にも有
効である。
Further, although the Ni plating solution has been described in the above embodiment, the present invention is not limited to the Ni plating solution, and Pb,
It is also effective for quantifying the secondary brightening agent in other metal plating solutions such as Sn.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明のメッキ液中
の2次光沢剤の定量方法によれば、従来定量分析が不可
能とされていた金属メッキ液中の2次光沢剤の濃度を容
易かつ正確に定量することができる。このため、定量さ
れた2次光沢剤の値に基いて適正量の2次光沢剤を補給
することにより、容易にメッキ浴組成を一体に保つこと
ができ、均質なメッキ浴により良好なメッキ処理を行う
ことができる。
As described above in detail, according to the method of quantifying the secondary brightening agent in the plating solution of the present invention, the concentration of the secondary brightening agent in the metal plating solution, which has been conventionally impossible to quantitatively analyze. Can be quantified easily and accurately. Therefore, by supplying an appropriate amount of secondary brightening agent based on the quantified value of the secondary brightening agent, the plating bath composition can be easily maintained as one unit, and a good plating treatment can be performed with a uniform plating bath. It can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に好適な試験装置の一例を示す構
成図である。
FIG. 1 is a configuration diagram showing an example of a test apparatus suitable for implementing the present invention.

【図2】図2(a)は図1の試験装置の回転電極の正面
図、図2(b)は同底面図である。
2 (a) is a front view of a rotary electrode of the test apparatus of FIG. 1, and FIG. 2 (b) is a bottom view of the same.

【図3】電位と電流密度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between potential and current density.

【図4】2次光沢剤濃度と相対析出速度比との関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between the secondary brightener concentration and the relative deposition rate ratio.

【符号の説明】[Explanation of symbols]

1 試験槽 2 試験液 3 回転電極 4 固定電極 5 電源 6 照合電極 1 test tank 2 test solution 3 rotating electrode 4 fixed electrode 5 power supply 6 reference electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固定電極と回転電極とが試験槽中に配置
され、両電極間に電圧を印加する電源を有した試験装置
を用いてメッキ液中の2次光沢剤を定量する方法であっ
て、 メッキ液を該試験槽中に入れ、回転電極を静止させた状
態で所定電圧を印加して析出速度を測定すると共に、回
転電極を回転させた状態で所定電圧を印加して析出速度
を測定し、 回転電極の静止時と回転時とにおける析出速度の比を求
め、 この比からメッキ液中の2次光沢剤濃度を求めることを
特徴とするメッキ液中の2次光沢剤の定量方法。
1. A method of quantifying a secondary brightening agent in a plating solution using a test device having a fixed electrode and a rotating electrode arranged in a test tank and having a power source for applying a voltage between both electrodes. Then, the plating solution is put into the test tank, a predetermined voltage is applied with the rotary electrode stationary, and the deposition rate is measured, and a predetermined voltage is applied with the rotary electrode rotated to measure the deposition rate. A method for quantifying the secondary brightening agent in the plating solution, which comprises measuring and determining the ratio of the deposition rate when the rotating electrode is stationary and when the rotating electrode is rotating, and then determining the concentration of the secondary brightening agent in the plating solution from this ratio. .
【請求項2】 請求項1において、析出速度を求めるた
めに電極に電圧を印加するに際し、 まず回転電極上に金属が析出するように電圧を等速で印
加し、次いで電圧を反転させて回転電極上の析出金属を
液中に溶解させるように電圧を等速で印加し、 この電圧反転後の通電気量Aを求め、 回転電極静止時の該電気量A0 と、回転数nにて回転さ
せたときの該電気量An との比An /A0 を算出し、こ
の比An /A0 に基づいてメッキ液中の2次光沢剤濃度
を求めることを特徴とするメッキ液中の2次光沢剤の定
量方法。
2. The method according to claim 1, wherein when a voltage is applied to the electrode in order to obtain a deposition rate, the voltage is first applied at a constant speed so that metal is deposited on the rotating electrode, and then the voltage is reversed to rotate. applying a deposited metal on the electrode voltage so as to dissolve in the liquid at a constant speed, it obtains the current air amount a after the voltage reversal, the electric quantity a 0 during rotary electrode stationary, at a rotation speed n A plating solution characterized by calculating a ratio A n / A 0 with respect to the electricity amount A n when rotated, and determining a secondary brightening agent concentration in the plating solution based on the ratio A n / A 0. Method for quantifying secondary brighteners in products.
【請求項3】 請求項1又は2において、予め2次光沢
剤濃度既知のメッキ液を用いて試験することにより2次
光沢剤濃度と前記比An /A0 との対応関係を示す検量
線を求めておき、2次光沢剤濃度未知のメッキ液につい
て測定された比An /A0 を該検量線にあてはめて2次
光沢剤濃度を求めることを特徴とするメッキ液中の2次
光沢剤の定量方法。
3. The calibration curve according to claim 1, which shows a correspondence relationship between the secondary brightener concentration and the ratio A n / A 0 by performing a test using a plating solution having a known secondary brightener concentration in advance. The secondary gloss in the plating solution is obtained by applying the ratio A n / A 0 measured for a plating solution having an unknown secondary brightener concentration to the calibration curve to obtain the secondary brightener concentration. Method for quantifying agents.
JP7280453A 1995-10-27 1995-10-27 Quantitative determination method for secondary brightener in plating liquid Pending JPH09127052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7280453A JPH09127052A (en) 1995-10-27 1995-10-27 Quantitative determination method for secondary brightener in plating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7280453A JPH09127052A (en) 1995-10-27 1995-10-27 Quantitative determination method for secondary brightener in plating liquid

Publications (1)

Publication Number Publication Date
JPH09127052A true JPH09127052A (en) 1997-05-16

Family

ID=17625277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7280453A Pending JPH09127052A (en) 1995-10-27 1995-10-27 Quantitative determination method for secondary brightener in plating liquid

Country Status (1)

Country Link
JP (1) JPH09127052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193383A (en) * 2019-05-30 2020-12-03 長野県 Method for estimating the concentration of additive in nickel electroplating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193383A (en) * 2019-05-30 2020-12-03 長野県 Method for estimating the concentration of additive in nickel electroplating solution

Similar Documents

Publication Publication Date Title
JP4041667B2 (en) Plating bath analysis method
JP6268271B2 (en) Plating method and plating apparatus
JPS62273444A (en) Method of analyzing additive concentration
JP2935947B2 (en) Method for selectively monitoring trace components in plating baths
US6508924B1 (en) Control of breakdown products in electroplating baths
TWI275790B (en) Analysis method
WO2005100967A2 (en) Electrochemical deposition analysis system including high-stability electrode
JP2002506531A (en) Method for measuring additives in electroplating baths
GB1580229A (en) Method and means for determining the immersed surface area of an electrode of an electrochemical bath
TW200403359A (en) Method for determining concentrations of additives in acid copper electrochemical deposition baths
US7384535B2 (en) Bath analysis
JPH09127052A (en) Quantitative determination method for secondary brightener in plating liquid
Kern et al. Design and Characterization of a Rotating Electrochemical Quartz‐Crystal‐Microbalance Electrode
JP2000002598A (en) Apparatus for testing high-speed electroplating internal stress
JP3824011B2 (en) Determination method of alloy phase in plating layer
JPS58120791A (en) Control of metal electrodeposition using electrolyte containing two polarizing agents
JP6011874B2 (en) Method for evaluating inhibitors contained in plating solution
JP6409291B2 (en) Electrolytic copper plating solution analyzer and electrolytic copper plating solution analysis method
JP3778037B2 (en) Determination method of alloy phase in plating layer
JPH0611469A (en) Water content measuring method
JPH07840B2 (en) Method for controlling electroplating additive and apparatus therefor
US6899805B2 (en) Automated chemical management system executing improved electrolyte analysis method
JPH10274661A (en) Device and method for measuring velocity of electrolyte
KR100516124B1 (en) Phase thickness measurement system for galvannealed steel and method thereof
JPH06116699A (en) Method for quantitatively analyzing alloy phase of galvannealed steel sheet