JPH09127040A - Method and apparatus for measurement of concentration of oils and fats - Google Patents

Method and apparatus for measurement of concentration of oils and fats

Info

Publication number
JPH09127040A
JPH09127040A JP7305032A JP30503295A JPH09127040A JP H09127040 A JPH09127040 A JP H09127040A JP 7305032 A JP7305032 A JP 7305032A JP 30503295 A JP30503295 A JP 30503295A JP H09127040 A JPH09127040 A JP H09127040A
Authority
JP
Japan
Prior art keywords
sensor
concentration
measured
lipid membrane
fats
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7305032A
Other languages
Japanese (ja)
Other versions
JP3628087B2 (en
Inventor
Yoshinobu Naitou
悦伸 内藤
Norihiro Maeda
紀寛 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP30503295A priority Critical patent/JP3628087B2/en
Publication of JPH09127040A publication Critical patent/JPH09127040A/en
Application granted granted Critical
Publication of JP3628087B2 publication Critical patent/JP3628087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the concentration of oils and fats in real time and simply by a method wherein mineral oils or animal or vegetable oils contained in an object to be measured are emulsified, a sensor which uses a lipid membrane is immersed and their electric characteristic is measured. SOLUTION: A lipid membrane sensor is immersed for about 10 hours in a reference solution in which a surface-active agent is added to pure water, a surface-active agent of the same kind is added, to be the same concentration, to a sampled object to be measured, and the surface-active agent is stirred so as to be emulsified. The lipid membrane sensor is put into, and taken out from, a reference solution for cleaning about 10 times, it is immersed in a reference solution for measurement for about 20 seconds, and a sensor potential is measured. This operation is repeated a plurality of times, the sensor is taken out from the reference solution after the change in the sensor potential has become a prescribed range, and it is cleaned by a sample solution for cleaning. The sensor is immersed in a sample solution for measurement, and the sensor potential is measured after about 20 seconds. The above operation is repeated a prescribed number of times, and the concentration of oils or fats is computed by a multivariable analytical operation, a pattern recognition operation or the like on the basis of the potential of a multichannel sensor. Thereby, the concentration can be measured simply and in real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、脂質膜を用いた
センサを利用して、河川の水や工業用水に含まれる金属
イオン及び有機物質の濃度を測定できるようにする技術
すなわち水質監視等に利用できる技術に係り、特に、有
機物質の中でも鉱物油及び動植物油脂類(以後、油脂類
等という)の濃度を測定する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the concentration of metal ions and organic substances contained in river water and industrial water by utilizing a sensor using a lipid membrane, that is, to a water quality monitoring and the like. TECHNICAL FIELD The present invention relates to a technology that can be used, and particularly to a technology that measures the concentration of mineral oil and animal and vegetable oils and fats (hereinafter referred to as oils and fats) among organic substances.

【0002】[0002]

【従来の技術】従来は、例えば工業用水に含まれる油脂
類等の定量を行う場合、工業用水の試験方法を規定した
「JIS K 0101」の「26.ヘキサン抽出物
質」の項目にある「26.2抽出法」に因っていた。こ
の方法は、試料をpH4以下の塩酸酸性にして、ヘキサ
ン(n−ヘキサン)で抽出を行った後、80℃でヘキサ
ンを揮散させて、残留する物質の質量を測定してヘキサ
ン抽出物質を定量するというものであり、主として揮散
しにくい油脂類等の定量を目的としている。
2. Description of the Related Art Conventionally, for example, when quantifying fats and oils contained in industrial water, "26. Hexane extract substance" in "26. Hexane extraction substance" of "JIS K 0101" which defines a test method for industrial water. .2 extraction method ”. In this method, the sample is acidified with hydrochloric acid of pH 4 or less, extracted with hexane (n-hexane), then hexane is stripped at 80 ° C., and the mass of the remaining substance is measured to quantify the hexane extracted substance. The purpose is to quantify oils and fats that are difficult to volatilize.

【0003】[0003]

【発明が解決しようとする課題】前述のヘキサン抽出法
は、油脂類等のほかヘキサンに抽出された揮散しにくい
ものは、定量値に含まれてしまう、また、測定に手間と
時間が掛かる、等の問題があった。いろいろな測定が、
リアルタイム化、エレクトロニクス化の方向に進んでい
る中で、水に混入した油脂類等の測定については、ま
だ、それに相応しいセンサ、測定方法は見つけられてい
ない。この発明の目的は、短時間すなわち実用上リアル
タイムで、かつ、簡単に工業用水等に含まれる油脂類等
の濃度測定を行う方法及び装置を提供することである。
In the above-mentioned hexane extraction method, in addition to fats and oils, those which are difficult to volatilize extracted in hexane are included in the quantitative value, and the measurement takes time and labor, There was a problem such as. Various measurements
With the progress toward real-time and electronics, no suitable sensor or measurement method has been found for measuring oils and fats mixed in water. An object of the present invention is to provide a method and apparatus for measuring the concentration of fats and oils contained in industrial water easily in a short time, that is, in real time in practice.

【0004】[0004]

【課題を解決するための手段】前述の課題を解決するた
め、まず第1に、従来行われている分析化学的方法に因
らず、脂質膜を用いたセンサ(以後、脂質膜センサとい
う)を利用することとし、そして第2に、脂質膜センサ
での測定を可能とするため、測定対象に前処理を施すこ
ととした。すなわち、第1の発明は、前記測定対象に含
まれる油脂類等を、測定対象中に分散させる前処理の段
階と、該前処理によってエマルジョン(emulsion :乳濁
液、乳状液、液体の小粒がその液体を溶解しない他の液
体中に分散してできた系)となった被測定溶液に脂質膜
センサを浸してその電気特性(電位、インピーダンス、
等)を測定する段階とを含んでいる。また、第2の発明
は、測定対象をエマルジョン化する攪拌手段と、攪拌さ
れてエマルジョンとなった被測定溶液を測定するための
脂質膜センサと、該脂質膜センサの出力信号を受けて油
脂類等の濃度に関する情報を含んだ信号を出力する信号
処理手段とを備えている。
In order to solve the above-mentioned problems, firstly, a sensor using a lipid membrane (hereinafter referred to as a lipid membrane sensor) irrespective of the conventional analytical chemistry method. Secondly, in order to enable measurement with a lipid membrane sensor, it was decided to pretreat the measurement target. That is, the first invention is a step of pretreatment in which fats and oils and the like contained in the measurement target are dispersed in the measurement target, and an emulsion (emulsion: emulsion, emulsion, liquid small particles) is generated by the pretreatment. The lipid membrane sensor is immersed in a solution to be measured that has become a system in which the liquid is dispersed in another liquid that does not dissolve, and its electrical characteristics (potential, impedance,
Etc.) is measured. A second aspect of the invention is a stirring means for emulsifying a measurement target, a lipid membrane sensor for measuring a solution to be measured which is stirred to form an emulsion, and an oil or fat by receiving an output signal of the lipid membrane sensor. And a signal processing means for outputting a signal containing information on the concentration of the light.

【0005】ここで、脂質膜センサとそれを用いた測定
系及び測定方法について説明する。本願発明者等は脂質
膜センサが味覚センサとして有用であることに着目し、
1989年以来いくつもの発明を完成させてきた(特願
平1−190819号、特願平2−176584号、特
願平3−020450号、特願平4−194947号、
特願平5−252546号、特願平7−94359号、
等)。
Here, a lipid membrane sensor, a measuring system and a measuring method using the same will be described. The inventors of the present application have noticed that the lipid membrane sensor is useful as a taste sensor,
A number of inventions have been completed since 1989 (Japanese Patent Application No. 1-190819, Japanese Patent Application No. 2-176584, Japanese Patent Application No. 3-020450, Japanese Patent Application No. 4-194949,
Japanese Patent Application No. 5-252546, Japanese Patent Application No. 7-94359,
etc).

【0006】その中で、特開平3−54446号公報に
おいては、疎水性の部分と、親水性の部分とをもつ分子
で成る脂質性物質を、高分子のマトリックス内に定着さ
せ、その表面に脂質性分子の親水性部分が整列するよう
な構造をもつ脂質性分子膜(脂質膜)が、アジ(計測可
能な味または味の違い(比較または対比的な味)のセン
サすなわち、人間の味覚に代わりうる味覚センサとなる
ことを示した。
[0006] Among them, in Japanese Patent Laid-Open No. 3-54446, a lipid substance composed of a molecule having a hydrophobic portion and a hydrophilic portion is fixed in a matrix of a polymer and the surface thereof is fixed. A lipid molecular membrane (lipid membrane) having a structure in which hydrophilic portions of lipid molecules are aligned is a sensor for horse mackerel (measurable taste or difference in taste (comparative or contrasting taste), that is, human taste. It was shown to be a taste sensor that can be used instead of.

【0007】前記脂質性分子膜の膜式図を、化学物の設
計法で使われている表現方法で表わしたものが図5であ
る。脂質性分子のうち円で示した球状部は親水基aすな
わち親水性部位aであり、それから原子配列が長く延び
る炭化水素の鎖構造b(例えばアルキル基)がある。図
ではいずれの場合も2本の鎖が延びて一つの分子を表わ
しており、全体で分子群を構成している。この炭化水素
の鎖の部分は、疎水性部位bである。このような脂質性
分子群31が、膜部材32の表面のマトリックス33(表面の
構造、平面的なひろがりをもったミクロな構造)の中
に、一部はマトリックス内部に溶け込ませた形(例えば
図5の31′)で収容されている。その収容のされ方は、
親水性部位が表面に配列するようなものとなっている。
FIG. 5 is a diagram showing the membrane formula of the lipidic molecular membrane by the expression method used in the method of designing chemical substances. The globular part shown by a circle in the lipid molecule is a hydrophilic group a, that is, a hydrophilic part a, and there is a hydrocarbon chain structure b (for example, an alkyl group) whose atomic arrangement extends long from it. In each case, two chains are extended to represent one molecule in each case, and the whole constitutes a molecule group. This part of the hydrocarbon chain is the hydrophobic site b. Such a lipid molecule group 31 is partly dissolved in the matrix 33 (surface structure, microscopic structure having a planar spread) on the surface of the membrane member 32 (eg It is accommodated at 31 ') in FIG. The manner of its containment is
The hydrophilic sites are arranged on the surface.

【0008】この脂質性分子膜を用いて、マルチチャン
ネルの味覚センサとしたものが図6(a),(b) である。本
図ではマルチチャンネルのアレイ電極のうち三つの感応
部が示されている。図示の例では、基材に 0.5mmφの孔
を貫通して、それに銀の丸棒を差し込み電極とした。脂
質性分子膜は緩衝層を介して電極に接触するように基材
に張りつけている。
FIGS. 6 (a) and 6 (b) show a multi-channel taste sensor using this lipidic molecular film. In this figure, three sensitive parts of the multi-channel array electrode are shown. In the illustrated example, a 0.5 mmφ hole was penetrated through the base material, and a silver rod was inserted into the hole to form an electrode. The lipidic molecular film is attached to the substrate so as to contact the electrode via the buffer layer.

【0009】前記マルチチャンネルの味覚センサを用い
たアジの測定系を図7に示す。呈味物質の水溶液を作
り、それを被測定溶液11とし、ビーカーのような容器12
に入れる。被測定溶液中に、前に述べたような、アクリ
ル板(基材)上に脂質膜と電極とを配置して作った味覚
センサアレイ13を入れた。使用前に、塩化カリウム 1m
mole/l 水溶液で電極電位を安定化した。図中、14−
1,……14−8は各々の脂質膜を黒点で示したものであ
る。
FIG. 7 shows a horse mackerel measuring system using the multi-channel taste sensor. Prepare an aqueous solution of the taste substance, use it as the solution to be measured 11, and place it in a container 12 such as a beaker.
Put in. The taste sensor array 13 formed by arranging a lipid membrane and electrodes on an acrylic plate (substrate) as described above was placed in the solution to be measured. Before use, potassium chloride 1m
The electrode potential was stabilized with a mole / l aqueous solution. 14- in the figure
1,..., 14-8 indicate the respective lipid membranes by black dots.

【0010】測定の基準となる電位を発生する電極とし
て参照電極15を用意し、それを被測定溶液に入れる。味
覚センサアレイ13と参照電極15とは所定の距離を隔てて
設置する。参照電極15の表面には、緩衝層16として、塩
化カリウム 100m mole/l を寒天で固化したもので覆っ
てあるから、結局、電極系は銀2|塩化銀4|脂質膜3
(14)|被測定溶液12|緩衝層(塩化カリウム 100m mole
/l )16|塩化銀4|銀2という構成となっている。
A reference electrode 15 is prepared as an electrode for generating an electric potential serving as a standard for measurement, and the reference electrode 15 is put into a solution to be measured. The taste sensor array 13 and the reference electrode 15 are installed at a predetermined distance. The surface of the reference electrode 15 is covered with 100 m mole / l of potassium chloride solidified with agar as the buffer layer 16, so that the electrode system is eventually silver 2 | silver chloride 4 | lipid film 3
(14) | Measured solution 12 | Buffer layer (potassium chloride 100m mole
/ L) 16 | silver chloride 4 | silver 2

【0011】脂質膜からの電気信号は、図では8チャン
ネルの信号となり、リード線17−1,……,17−8によ
ってそれぞれバッファ増幅器19−1,……,19−8に導
かれる。バッファ増幅器19の各出力は、アナログスイッ
チ(8チャンネル)20で選択されてA/D変換器21に加
えられる。参照電極15からの電気信号もリード線18を介
してA/D変換器21に加えられ、膜からの電位との差を
ディジタル信号に変換する。このディジタル信号はマイ
クロコンピュータ22で適当に処理され、またX−Yレコ
ーダ23で表示される。この例では、8チャンネルの味覚
センサが用いられ、各チャンネルは、人間の味覚を再現
できるような多くの味覚情報を得るために、それぞれ味
に対して異なる応答特性を持つ表1に示す脂質性分子膜
で構成されている。
The electric signal from the lipid membrane becomes an 8-channel signal in the figure, and is guided to the buffer amplifiers 19-1, ..., 19-8 by the lead wires 17-1, ..., 17-8, respectively. Each output of the buffer amplifier 19 is selected by an analog switch (8 channels) 20 and applied to an A / D converter 21. The electric signal from the reference electrode 15 is also applied to the A / D converter 21 via the lead wire 18, and converts the difference from the potential from the membrane into a digital signal. This digital signal is appropriately processed by the microcomputer 22 and displayed by the XY recorder 23. In this example, an 8-channel taste sensor is used, and each channel has different response characteristics to taste in order to obtain a large amount of taste information capable of reproducing the taste of human being. It is composed of a molecular film.

【0012】[0012]

【表1】 [Table 1]

【0013】また、特開平4−64053号公報におい
ては、脂質性分子を用いた味覚センサによるアジの検
出、測定を再現性よく行うために、基準液として被測定
サンプル液と同一または類似のアジを呈するものを用い
ることとし、味覚センサを基準液に十分に浸漬すること
とし、味覚センサに測定ごとに同様な刺激を加えるよう
にし、測定時刻を表面電位の安定後であって膜内電位が
緩慢に変化する時に選ぶこととして、味覚センサによる
測定値の再現性を良くし、測定値のばらつきも小さくで
き、アジの識別力が増加する方法を開示した。
Further, in JP-A-4-64053, in order to detect and measure horse mackerel with a taste sensor using a lipid molecule with good reproducibility, the same or similar azide as the sample solution to be measured is used as a reference solution. It is assumed that the taste sensor is sufficiently immersed in the reference liquid, a similar stimulus is applied to the taste sensor for each measurement, and the measurement time is after stabilization of the surface potential and the transmembrane potential is As a method of selecting when slowly changing, a method of improving the reproducibility of the measurement value by the taste sensor, reducing the variation of the measurement value, and increasing the discriminating power of the horse mackerel has been disclosed.

【0014】脂質膜センサを利用して油脂類等の濃度測
定を行おうとした場合、サンプル液はエマルジョンであ
ることが望ましい。要求される前記エマルジョン化の程
度は、もちろん測定の目的、精度等によって異なる。例
えば、油脂類等がその量に関係なく含まれているか否か
が判定できればよいだけの測定であれば、サンプル全体
が満遍なく均質となっている必要はなく、脂質膜センサ
を浸漬する部分だけエマルジョンであれば足りる。一
方、油脂類等の含まれる割合を推定しようとすればサン
プル全体が均質でなければ測定精度は悪くなる。本発明
はいずれの場合にも適用できるものであり、エマルジョ
ンといっても実際はサンプル全体が均質でなければなら
ないという意味ではなく、少なくとも測定対象の局部が
エマルジョンであればよいことを意味する。
When the concentration of oils and fats is to be measured using the lipid membrane sensor, the sample liquid is preferably an emulsion. The required degree of emulsification depends, of course, on the purpose of measurement, accuracy and the like. For example, if it is only necessary to determine whether or not oils and fats are contained regardless of the amount, it is not necessary that the entire sample be even and homogeneous, and only the portion where the lipid membrane sensor is immersed is emulsion. That's enough. On the other hand, if an attempt is made to estimate the proportion of oils and fats contained, the accuracy of measurement will deteriorate unless the entire sample is homogeneous. The present invention can be applied to any case, and actually an emulsion does not mean that the whole sample has to be homogeneous, but means that at least a local object to be measured may be an emulsion.

【0015】前述のようにサンプル液はエマルジョンで
あることが望ましいが、油脂類等の多くはそのままの状
態ではエマルジョンとはなりにくい。このため河川の水
や工業用水の油脂類等が含まれる割合すなわち濃度を測
定する場合、何らかの処理をしてエマルジョン化するこ
とが必要となる。油脂類等を水に溶解させるためには、
衣類の洗濯や食器洗い等で知られているように、界面活
性剤を加える方法がある。しかし、油脂類等の分子の周
りに界面活性剤の分子が配位すると、周りの界面活性剤
の分子に脂質膜センサが応答してしまい、界面活性剤の
濃度特性は得られても油脂類等の濃度特性が得られない
結果になることが予想された。また、界面活性剤が脂質
膜センサの膜表面に吸着すること、あるいは膜内の脂質
を溶出させてしまうことなどが考えられ、センサの寿命
にも悪影響を与えることが予想された。
As described above, it is desirable that the sample liquid be an emulsion, but most of the oils and fats and the like are unlikely to become an emulsion as they are. For this reason, when measuring the ratio of oils and fats contained in river water or industrial water, that is, the concentration, it is necessary to perform some treatment to form an emulsion. In order to dissolve fats and oils in water,
There is a method of adding a surfactant as is known in laundry washing and dish washing. However, when a molecule of a surfactant is coordinated around a molecule such as an oil or fat, the lipid membrane sensor responds to the molecule of the surrounding surfactant, and even if the concentration characteristics of the surfactant are obtained, It was expected that the results would not obtain the concentration characteristics such as. Further, it is considered that the surfactant is adsorbed on the membrane surface of the lipid membrane sensor, or the lipid in the membrane is eluted, and it is expected that the lifetime of the sensor is adversely affected.

【0016】前述のような予想ではあったが、発明者等
は次のような考えをもった。古来、水と油とは、犬と猿
との仲と並べて、互いに融和しにくいものの比喩とされ
てきている。しかし、例えば超音波振動下ではある時
間、互いに溶け合うことが知られているし、食品、例え
ばサラダのドレッシングのように、水と油の混じり具合
が味覚に微妙な変化をもたらしていること、また、マヨ
ネーズ作りの成功、不成功の場合のように、卵黄とサラ
ダオイルとがうまく混合したり、しなかったりすること
等は日常経験するところである。油と油の混合、油と脂
肪の混合も多様なものとされる。温度の変化をパラメー
タとするとその多様性は一層複雑なものとなる。そこ
で、本願発明者等は脂質膜センサと水に含まれる油脂類
等との相互作用について後に述べるような実験を行い、
界面活性剤で処理することにより、油脂類が混入した水
の油脂類の濃度が測定できることを発見した。また、油
脂類等の種類や工業用水等への混入の量によっては、界
面活性剤を用いなくても、例えば超音波等で攪拌するこ
とで測定ができる場合もある。本願発明は、前記発見に
基づくものである。
Although the above predictions were made, the inventors have the following ideas. Since ancient times, water and oil have been regarded as metaphors for things that are difficult to integrate with each other, along with the relationship between dogs and monkeys. However, it is known that, for example, under ultrasonic vibration, they will dissolve in each other for a certain period of time, and as with foods, such as salad dressings, the mixture of water and oil causes subtle changes in taste. It is a daily experience that egg yolk and salad oil are mixed well or not, as in the case of successful or unsuccessful mayonnaise making. Mixing oils and oils and oils and fats is also diverse. The variation becomes more complicated when the temperature change is used as a parameter. Therefore, the inventors of the present application conducted an experiment as described later on the interaction between the lipid membrane sensor and fats and oils contained in water,
It was discovered that the concentration of oils and fats in water mixed with oils and fats can be measured by treating with a surfactant. Further, depending on the type of fats and oils and the amount mixed in industrial water, it may be possible to perform the measurement by stirring with ultrasonic waves without using a surfactant. The present invention is based on the above findings.

【0017】[0017]

【発明の実施の形態】油脂類等の混入の仕方によって
は、検出できない場合もあるので、確実に検出・測定す
るために前処理を行う。特に、濃度測定では前処理をす
る必要がある。前処理は測定対象に油脂類等を溶かし込
めばよいのであるから、いろいろな方法があろうが、主
なものは攪拌及び乳化剤として界面活性剤を添加しての
攪拌であろう。ここでは、実施の形態として、界面活性
剤を添加して攪拌するものと超音波を加えて攪拌するも
のとを挙げる。
BEST MODE FOR CARRYING OUT THE INVENTION Depending on the way in which oils and fats are mixed, detection may not be possible, so pretreatment is performed in order to reliably detect and measure. In particular, it is necessary to perform pretreatment in the concentration measurement. Since the pretreatment may be carried out by dissolving fats and oils in the object to be measured, there may be various methods, but the main ones are stirring and stirring with the addition of a surfactant as an emulsifier. Here, as an embodiment, a method of adding a surfactant and stirring and a method of adding ultrasonic waves and stirring will be described.

【0018】図1は第1の発明である油脂濃度測定方法
の第一の実施の形態のフローチャートである。図1に基
づいて第1の発明である油脂濃度測定方法の第一の実施
の形態を説明する。 (1) 準備段階 基準液(基準溶液)の準備 測定対象に加える界面活性剤と同種の界面活性剤を、純
水に被測定溶液と同濃度となるように加えた水溶液(基
準溶液)を用意する。ここで、基準溶液は純水に、脂質
膜センサの出力を安定させるため、例えば10mmol
/lのKClを加えただけのものでもよい。この場合
は、被測定溶液にも同じく10mmol/lのKClを
加える。 基準液に脂質膜センサをほぼ10時間浸漬する。
FIG. 1 is a flow chart of a first embodiment of the oil and fat concentration measuring method according to the first invention. A first embodiment of the oil and fat concentration measuring method according to the first invention will be described with reference to FIG. (1) Preparation stage Preparation of reference solution (reference solution) Prepare an aqueous solution (reference solution) in which a surfactant of the same type as the surfactant to be added to the measurement target is added to pure water at the same concentration as the solution to be measured. I do. Here, the reference solution is, for example, 10 mmol in pure water in order to stabilize the output of the lipid membrane sensor.
It is also possible to just add / l of KCl. In this case, 10 mmol / l KCl is also added to the solution to be measured. Immerse the lipid membrane sensor in the standard solution for approximately 10 hours.

【0019】(2) 測定 2−1.前処理 採取した河川の水や工業用水等の測定対象に界面活性剤
を加える。界面活性剤には、陰イオン界面活性剤(高級
アルコール硫酸エステル類、脂肪酸硫酸エステル類及び
スルホン酸形陰イオン界面活性剤など)、非イオン界面
活性剤、セッケン、等がある。加える量は、例えば、溶
液に界面活性剤を入れ撹拌後静置しても油脂類が分離し
なくなる量である。測定によっては、予め決めた所定の
量を加える場合もある。 2−2.脂質膜センサによる測定 基準液(洗浄用)へ脂質膜センサの出し入れを10
回行う。基準液(洗浄用)で洗浄するといってもよい
し、基準液に断続的に浸漬するといってもよいし、脂質
膜センサの脂質膜の表面に刺激を与えるということもで
きる。 基準液で測定用として用意したものに浸漬し、約2
0秒後に脂質膜センサの電位を測定し、測定値をV0 と
する。 手順、を2回以上繰り返し、測定ごとに今回の
測定値V0 と前回の測定値V0 の差が所定の値以下かど
うかを判断し、所定の値以下(つまりV0 が安定した
ら)であれば手順へ進む。 脂質膜センサを基準液(測定用)から出して、サン
プル液(洗浄用)で洗浄する。(前記と同様に10回
出し入れをする。) サンプル液(測定用)に脂質膜センサを浸漬し、約
20秒後に脂質膜センサの電位Vs を測定する。 測定の手順に戻り手順〜を繰り返す。所定の
回数繰り返したら手順を終わる。
(2) Measurement 2-1. Pretreatment Add a surfactant to the sample to be measured such as collected river water or industrial water. Surfactants include anionic surfactants (such as higher alcohol sulfates, fatty acid sulfates, and sulfonic acid type anionic surfactants), nonionic surfactants, and soaps. The amount to be added is, for example, an amount at which the fats and oils are not separated even when the surfactant is added to the solution and left standing after stirring. Depending on the measurement, a predetermined amount may be added. 2-2. Measurement with lipid membrane sensor Put the lipid membrane sensor in and out of the reference solution (for washing) 10
Do it twice. It may be said that the surface is washed with a reference solution (for cleaning), it may be said that it is immersed in the reference solution intermittently, or that the surface of the lipid membrane of the lipid membrane sensor is stimulated. Immerse in the reference solution prepared for measurement, and
After 0 seconds, the potential of the lipid membrane sensor is measured and the measured value is V0. The procedure is repeated twice or more, and for each measurement, it is determined whether the difference between the current measured value V0 and the previous measured value V0 is equal to or smaller than a predetermined value. If the difference is equal to or smaller than the predetermined value (that is, if V0 is stable), the procedure is performed. Proceed to. The lipid membrane sensor is taken out of the reference liquid (for measurement) and washed with the sample liquid (for washing). (Take in and out 10 times in the same manner as above.) The lipid membrane sensor is immersed in the sample solution (for measurement), and after about 20 seconds, the potential Vs of the lipid membrane sensor is measured. Return to the measurement procedure and repeat the procedure. The procedure is completed after repeating a predetermined number of times.

【0020】油脂濃度を算出する方法は以下の3つが考
えられる。 (1)エマルジョン化されたサンプルのセンサの電位か
ら設定範囲を越えたかどうかを判定して、異常検知を行
う。マルチチャネルのセンサの方が情報も多く判定の精
度が向上する。油脂濃度を算出する訳ではないが、利用
価値は十分ある。
The following three methods can be considered for calculating the fat and oil concentration. (1) It is determined whether the potential of the sensor of the emulsified sample exceeds the set range, and the abnormality is detected. The multi-channel sensor has more information and the determination accuracy is improved. It does not calculate the concentration of fats and oils, but it has a great utility value.

【0021】(2)エマルジョン化されたサンプルのマ
ルチチャネルのセンサの電位から多変量解析やパターン
認識をもちいて油脂濃度を算出する方法。センサが感度
を持つ物質で油脂以外に変動する物質に対しても、油脂
と同様にセンサ感度を事前に測っておく。これらの感度
よりセンサの動作モデル式を作り、その式より逆変換式
(つまりそれら物質の濃度を算出する式)を求めておく
(ただし、必要なのは、油脂濃度算出する式のみであ
る)。サンプルのセンサ出力をこの式に入れて、油脂濃
度を推定する。校正は、上記各物質に対するセンサ感度
を求め、逆変換の式を変更する。
(2) A method for calculating the oil and fat concentration by using multivariate analysis and pattern recognition from the potentials of the multichannel sensor of the emulsified sample. Similar to oils and fats, the sensor sensitivity is measured in advance for substances that the sensor is sensitive to and that change other than oils and fats. An operation model formula of the sensor is created from these sensitivities, and an inverse conversion formula (that is, a formula for calculating the concentrations of those substances) is obtained from the formula (however, only the formula for calculating the fat and oil concentration is necessary). The sensor output of the sample is put into this equation to estimate the fat concentration. In the calibration, the sensitivity of the sensor for each of the above substances is obtained, and the formula of the inverse conversion is changed.

【0022】(3)エマルジョン化していないサンプル
とエマルジョン化されたサンプルの両方のセンサ電位の
差より油脂濃度を算出する方法。エマルジョン化したサ
ンプルのセンサ電位(Vse)とエマルジョン化しない
サンプルのセンサ電位(Vs)の差(Vse−Vs)
は、エマルジョン化により溶けた油脂量の影響とエマル
ジョン処理の影響(例えば、エマルジョン化に洗剤を用
いれば、洗剤に対するセンサ感度)より成り立ってい
る。サンプルがある範囲に絞れば、エマルジョン処理の
影響は一定とみなされるので、上記電位の差はエマルジ
ョン化により溶けた油脂量を反映している。
(3) A method of calculating the oil / fat concentration from the difference in sensor potential between both the non-emulsified sample and the emulsified sample. Difference (Vse-Vs) between the sensor potential (Vse) of the emulsified sample and the sensor potential (Vs) of the sample not emulsified
Is composed of the influence of the amount of oil and fat dissolved by the emulsification and the influence of the emulsion treatment (for example, if a detergent is used for emulsification, the sensor sensitivity to the detergent). If the sample is narrowed down to a certain range, the effect of the emulsion treatment is considered to be constant, so the potential difference reflects the amount of oil and fat dissolved by the emulsification.

【0023】エマルジョン処理の影響は、油脂を全く含
まないサンプルs0 において、エマルジョン処理を行っ
たサンプルの電位(Vs0 e)とエマルジョン処理を行
っていないサンプルの電位(Vs0 )の差(Vs0 e−
Vs0 )より求められる。上記サンプルのエマルジョン
化処理を施したものと施さないものとの差から油脂を含
まないサンプルs0 のエマルジョン化処理を施したもの
と施さないものとの差を引けば、油脂の濃度の影響のみ
が算出できる。油脂濃度をCとすると、下記の式ができ
る。 C=K((Vse−Vs)−(Vs0 e−Vs0 )) ………(1) ここで、Kは定数である。また、油脂濃度の単位に合わ
せるために、油脂濃度でl単位の油脂を、油脂を全く含
まないサンプルに添加したサンプルslの測定値を式1
に入れて定数Kを決定する。 K=L/((Vsle−Vsl)−(Vs0 e−Vs0 )) ………(2) つまり、式1、式2を計算することで油脂濃度が算出で
きる。式1は1次式であるが、単調増加関数であれば良
い。センサと濃度の関係より2次式や指数関数も有り得
る。また、上記の測定方法の中で、基準液を直接サンプ
ルに置き換えて(特別の基準液を用意せずに)、そのサ
ンプルの電位とエマルジョン化したサンプルの電位を測
っても良い。
The effect of the emulsion treatment is that in the sample s0 containing no fat and oil, the difference (Vs0 e-) between the potential (Vs0 e) of the sample subjected to the emulsion treatment and the potential (Vs0) of the sample not subjected to the emulsion treatment.
Vs0). By subtracting the difference between the emulsified and non-emulsified samples of the above sample s0, the difference between the emulsified and non-emulsified samples s0 is only the effect of the oil concentration. Can be calculated. When the fat and oil concentration is C, the following formula is created. C = K ((Vse-Vs)-(Vs0 e-Vs0)) ... (1) Here, K is a constant. Further, in order to match the unit of the fat and oil concentration, 1 unit of fat and oil in fat and oil concentration was added to a sample containing no fat and oil, and the measured value of the sample sl was calculated by Equation 1
To determine the constant K. K = L / ((Vsle-Vsl)-(Vs0e-Vs0)) (2) That is, the fat concentration can be calculated by calculating the formulas 1 and 2. Equation 1 is a linear equation, but any monotonically increasing function may be used. There may be a quadratic expression or an exponential function depending on the relationship between the sensor and the concentration. Further, in the above measuring method, the potential of the sample and the potential of the emulsified sample may be measured by directly replacing the reference liquid with the sample (without preparing a special reference liquid).

【0024】界面活性剤を使用すると、溶液に溶解する
油脂類等の量が、単に攪拌するだけより多くなること、
また、エマルジョン状態が安定するので測定に有利であ
る。このことは、別な見方をすれば、攪拌に要する時間
が少なくて済むということである。
When a surfactant is used, the amount of oils and fats and the like dissolved in the solution becomes larger than that obtained by simply stirring,
Further, the emulsion state is stable, which is advantageous for measurement. From another point of view, this means that the time required for stirring is reduced.

【0025】図2は第1の発明である油脂濃度測定方法
の第二の実施の形態のフローチャートである。第二の実
施の形態では、前処理で超音波による攪拌を行う。第一
の実施の形態とは前処理の方法が異なり、他は同じであ
るので、前処理の段階についてだけ説明する。印加する
超音波の強さ、印加する時間、等は測定対象により異な
り、一概にはいえない。油脂類等が分離していないかど
うかは目視で確認するほかなく、また、この方法の場合
は、超音波の印加を止めてから時間がたつにつれて徐々
に油脂類等の分離が進む。
FIG. 2 is a flow chart of a second embodiment of the oil and fat concentration measuring method according to the first invention. In the second embodiment, stirring by ultrasonic waves is performed in the pretreatment. Since the preprocessing method is different from that of the first embodiment, and the other is the same, only the preprocessing stage will be described. The intensity of the ultrasonic wave to be applied, the application time, and the like differ depending on the object to be measured, and cannot be said unconditionally. Whether or not the oils and fats and the like have been separated must be visually confirmed, and in the case of this method, the separation of the oils and fats and the like gradually progresses as time passes after the application of ultrasonic waves is stopped.

【0026】図3は第2の発明である油脂濃度測定装置
の第一の実施の形態の構成図である。図3に基づいて第
2の発明の第一の実施の形態を説明する。第一の実施の
形態の装置は、脂質膜センサ41、信号処理手段42、
界面活性剤供給手段43、撹拌手段44及制御手段45
からなる。脂質膜センサ41より膜の電気特性を出力
し、その出力を信号処理手段42で受ける。信号処理手
段42では、脂質膜センサ41の出力を安定に取り出す
ために、インピーダンス変換等の処理を行い、かつ上記
油脂濃度の計算を行う。被測定溶液11は、界面活性剤
供給手段43と撹拌手段44によりエマルジョン化処理
がなされる。制御手段45は、脂質膜センサ41、信号
処理手段42、界面活性剤供給手段43及び撹拌手段4
4を制御する。例えば、脂質膜センサ41や信号処理手
段42を制御して、前記測定方法に記載の手順になるよ
うにする。また、界面活性剤供給手段43や撹拌手段4
4を制御してエマルジョン化処理の有無や程度を制御す
る。図3では、サンプルをバッチ式で測定する装置を表
しているが、当然オンラインの場合はフロー式も考えら
れる。この場合、エマルジョン化処理は脂質膜センサ4
1を浸漬するところ(セル)とは別のところ(セル)で
行われ、エマルジョン化されたサンプルはフローで脂質
膜センサ41のところ(セル)へ送られて測定される。
FIG. 3 is a block diagram of the first embodiment of the oil and fat concentration measuring device of the second invention. A first embodiment of the second invention will be described with reference to FIG. The apparatus according to the first embodiment includes a lipid membrane sensor 41, a signal processing means 42,
Surfactant supply means 43, stirring means 44 and control means 45
Consists of The electrical characteristics of the membrane are output from the lipid membrane sensor 41, and the output is received by the signal processing means 42. The signal processing means 42 performs processing such as impedance conversion and calculates the oil and fat concentration in order to stably take out the output of the lipid membrane sensor 41. The solution 11 to be measured is emulsified by the surfactant supply means 43 and the stirring means 44. The control unit 45 includes the lipid membrane sensor 41, the signal processing unit 42, the surfactant supply unit 43, and the stirring unit 4.
4 is controlled. For example, the lipid membrane sensor 41 and the signal processing means 42 are controlled so that the procedure described in the measuring method is performed. In addition, the surfactant supply means 43 and the stirring means 4
4 is controlled to control the presence or absence and the degree of emulsification treatment. Although FIG. 3 shows an apparatus for measuring a sample in a batch system, a flow system is naturally conceivable when online. In this case, the emulsification process is performed by the lipid membrane sensor 4.
It is carried out at a place (cell) other than the place (cell) where 1 is immersed, and the emulsified sample is sent to the lipid membrane sensor 41 (cell) by flow and measured.

【0027】測定対象の状態が、油脂類等の混入に関し
て状態の変化があるだけで、他の物質に関して混入量に
違いがなければ、脂質膜センサ41は1チャンネル(c
h)でも足りるし、信号処理手段42は脂質膜センサの
出力を受けてそのまま外部に出力することで済む場合も
ある。他の物質に関しても状態が変化するのであれば、
複数の応答の異なる脂質膜センサを用いて、油脂類等の
混入に関する情報のみを抽出する必要がある。
The lipid membrane sensor 41 has one channel (c) if there is no difference in the state of the object to be measured with respect to the mixing of oils and fats and the like and there is no difference in the amount of mixing with other substances.
h) is also sufficient, and the signal processing means 42 may be sufficient to receive the output of the lipid membrane sensor and output it as it is to the outside. If the state changes for other substances,
It is necessary to use a plurality of lipid membrane sensors with different responses to extract only the information regarding the mixing of oils and fats.

【0028】図4は第2の発明である油脂濃度測定装置
の第二の実施の形態の構成図である。第2の発明の第一
の実施の形態とは、界面活性剤供給手段43がない点で
異なる。測定対象のエマルジョン化を例えば超音波によ
る攪拌のみで行う例である。
FIG. 4 is a block diagram of the second embodiment of the oil and fat concentration measuring device of the second invention. The difference from the first embodiment of the second invention is that the surfactant supply means 43 is not provided. In this example, the object to be measured is emulsified only by stirring with ultrasonic waves.

【0029】[0029]

【実施例】実施例として、発明者等の行った実験につい
て説明する。この実験は、発明の実施の形態の欄で説明
した第1の発明の第一の実施の形態に含まれるものであ
る。 (1) 準備段階 使用した脂質膜センサは7チャンネル(ch)で、
各chの脂質の種類は、表2に示す。
EXAMPLES As examples, experiments conducted by the inventors will be described. This experiment is included in the first embodiment of the first invention described in the section of the embodiment of the invention. (1) Preparation stage The lipid membrane sensor used is 7 channels (ch),
The type of lipid of each ch is shown in Table 2.

【0030】[0030]

【表2】 [Table 2]

【0031】 測定対象用に河川の水を採取して使用
し、混入する油脂類等として鉱物油を使用した。 界面活性剤は直鎖アルキルベンゼンスルホン酸ナト
リウムを使用した。 純水に10mmol/lのKClを加え、これを基
準液とした。 測定対象は、前記基準液と同じ液に鉱物油をそれぞ
れ0.1ppm,1.0ppm,10.0ppm添加し
た3種類の液である。 測定系は課題を解決するための手段の欄で説明した
測定系とほぼ同じである。 基準液に脂質膜センサをほぼ10時間浸漬する。
River water was sampled and used as a measurement target, and mineral oil was used as mixed fats and oils. As the surfactant, sodium linear alkylbenzene sulfonate was used. 10 mmol / l KCl was added to pure water, and this was used as a standard solution. The objects of measurement are three kinds of liquids in which mineral oil was added to the same liquid as the reference liquid at 0.1 ppm, 1.0 ppm, and 10.0 ppm, respectively. The measurement system is almost the same as the measurement system described in the section of means for solving the problem. Immerse the lipid membrane sensor in the standard solution for approximately 10 hours.

【0032】(2) 測定 2−1.前処理 前記3種類の液を2グループ用意し、一方のグループの
3種類の液それぞれには直鎖アルキルベンゼンスルホン
酸ナトリウムを1ppm、他方のグループの3種類の液
それぞれには10ppm加えてよく攪拌した。こうして
得られた計6種類の液をサンプル液とした。
(2) Measurement 2-1. Pretreatment Two groups of the above-mentioned three kinds of liquids were prepared, 1 ppm of sodium linear alkylbenzenesulfonate was added to each of the three kinds of liquids of one group, and 10 ppm was added to each of the three kinds of liquids of the other group, followed by thorough stirring. . A total of 6 kinds of liquids thus obtained were used as sample liquids.

【0033】2−2.脂質膜センサによる測定 基準液(洗浄用)へ脂質膜センサの出し入れを10
回行う。基準液(洗浄用)で洗浄するといってもよい
し、基準液に断続的に浸漬するといってもよいし、脂質
膜センサの脂質膜の表面に刺激を与えるということもで
きる。 基準液で測定用として用意したものに浸漬し、約2
0秒後に脂質膜センサの電位を測定し、測定値をV0 と
する。 手順、を2回以上繰り返し、測定ごとに今回の
測定値V0 と前回の測定値V0 の差が所定の値以下かど
うかを判断し、所定の値以下(つまりV0 が安定した
ら)であれば手順へ進む。 脂質膜センサを基準液(測定用)から出して、サン
プル液(洗浄用)で洗浄する。(前記と同様に10回
出し入れをする。) サンプル液(測定用)に脂質膜センサを浸漬し、約
20秒後に脂質膜センサの電位Vs を測定する。 測定の手順に戻り手順〜を繰り返す。3回繰
り返して手順を終わる。
2-2. Measurement with lipid membrane sensor Put the lipid membrane sensor in and out of the reference solution (for washing) 10
Do it twice. It may be said that the surface is washed with a reference solution (for cleaning), it may be said that it is immersed in the reference solution intermittently, or that the surface of the lipid membrane of the lipid membrane sensor is stimulated. Immerse in the reference solution prepared for measurement, and
After 0 seconds, the potential of the lipid membrane sensor is measured and the measured value is V0. The procedure is repeated twice or more, and for each measurement, it is determined whether the difference between the current measured value V0 and the previous measured value V0 is equal to or smaller than a predetermined value. If the difference is equal to or smaller than the predetermined value (that is, if V0 is stable), the procedure is performed. Proceed to. The lipid membrane sensor is taken out of the reference liquid (for measurement) and washed with the sample liquid (for washing). (Take in and out 10 times in the same manner as above.) The lipid membrane sensor is immersed in the sample solution (for measurement), and after about 20 seconds, the potential Vs of the lipid membrane sensor is measured. Return to the measurement procedure and repeat the procedure. Repeat 3 times to complete the procedure.

【0034】このようにして得られた結果を表3及び表
4に示す。表3は界面活性剤が1ppmの場合の結果、
表4は界面活性剤が10ppmの場合の結果である。
The results thus obtained are shown in Tables 3 and 4. Table 3 shows the results when the surfactant is 1 ppm,
Table 4 shows the results when the surfactant is 10 ppm.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】図8〜14は表3の各chについて、ま
た、図15〜21は表4の各chについて、鉱物油の濃
度とセンサ出力との関係示す図である。横軸は鉱物油の
濃度を対数で示し、単位はppmである。また、縦軸は
脂質膜センサの出力を示し単位はmVである。これらの
図から、界面活性剤の入った溶液中でも鉱物油の濃度に
応じて異なる値を出力する脂質膜センサがあり、濃度の
測定が可能であることが分かる。また、どのch、すな
わちどの脂質膜が鉱物油の濃度に応じた応答をするかと
か、各chの感度の違い、等が分かる。4ch(図11
及び図18参照)を除く各chで濃度特性が得られてい
る。また、2,3,5chでは界面活性剤が1ppmの
ときと10ppmのときとでは鉱物油の濃度に対する出
力パターンが異なり、10ppmのときは出力が単調増
加していない(図9と図16、図10と図17、及び図
12と図19参照)。このことから、本発明の濃度測定
方法を用いて測定対象がある濃度以上になったらアラー
ムを出すというような場合、出力を単調増加(または単
調減少)にするために、測定対象に応じて界面活性剤の
添加量を決める必要がある。
FIGS. 8 to 14 are diagrams showing the relationship between the concentration of mineral oil and the sensor output for each channel in Table 3 and FIGS. 15 to 21 are the channels in Table 4. The horizontal axis represents the concentration of mineral oil in logarithm, and the unit is ppm. The vertical axis represents the output of the lipid membrane sensor and the unit is mV. From these figures, it can be seen that there is a lipid membrane sensor that outputs different values depending on the concentration of mineral oil even in a solution containing a surfactant, and the concentration can be measured. Further, which channel, that is, which lipid membrane responds according to the concentration of the mineral oil, the difference in the sensitivity of each channel, and the like can be known. 4ch (Fig. 11
And FIG. 18)). Also, in the case of 2, 3 and 5 ch, the output pattern with respect to the concentration of mineral oil differs between when the surfactant is 1 ppm and when it is 10 ppm, and when it is 10 ppm, the output does not monotonically increase (Fig. 9 and Fig. 16, Fig. 16). 10 and FIG. 17, and FIG. 12 and FIG. From this, in the case where an alarm is issued when the concentration of the object to be measured exceeds a certain concentration by using the concentration measuring method of the present invention, in order to make the output monotonically increase (or monotonically decrease), the interface is changed depending on the object to be measured. It is necessary to determine the amount of activator added.

【0038】図22は前述の表3,表4の測定値を基に
主成分分析した結果を示す図である。分析には表3,表
4の測定値全てを用いている。この図から、鉱物油の濃
度変化及び界面活性剤の濃度変化がそれぞれ異なる軸方
向で得られていることが分かる。このことから、界面活
性剤の添加によって、鉱物油の濃度測定が妨害されるこ
とはないこと、鉱物油、界面活性剤それぞれの濃度測定
が可能であることが分かる。
FIG. 22 is a diagram showing the result of principal component analysis based on the measured values in Tables 3 and 4 above. All the measured values in Tables 3 and 4 are used for the analysis. From this figure, it can be seen that the change in the mineral oil concentration and the change in the surfactant concentration are obtained in different axial directions. From this, it is understood that the addition of the surfactant does not interfere with the measurement of the concentration of the mineral oil, and the concentration of each of the mineral oil and the surfactant can be measured.

【0039】[0039]

【発明の効果】この発明によれば、従来行われている分
析化学的方法に因らず、脂質膜センサを利用することと
し、脂質膜センサでの測定を可能とするため、測定対象
に前処理を施すこととしたから、短時間すなわち実用上
リアルタイムで、かつ、簡単に工業用水等に含まれる鉱
物油及び動植物油脂類の濃度測定を行うことができる。
EFFECTS OF THE INVENTION According to the present invention, the lipid membrane sensor is used irrespective of the conventional analytical chemistry method, and the measurement can be performed by the lipid membrane sensor. Since the treatment is performed, the concentration of mineral oil and animal and vegetable oils and fats contained in industrial water and the like can be easily measured in a short time, that is, in real time in practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明である油脂濃度測定方法の第一の実
施の形態のフローチャート。
FIG. 1 is a flowchart of a first embodiment of an oil and fat concentration measuring method according to the first invention.

【図2】第1の発明である油脂濃度測定方法の第二の実
施の形態のフローチャート。
FIG. 2 is a flowchart of a second embodiment of the oil and fat concentration measuring method according to the first invention.

【図3】第2の発明である油脂濃度測定装置の第一の実
施の形態の構成図。
FIG. 3 is a configuration diagram of a first embodiment of an oil and fat concentration measuring device according to the second invention.

【図4】第2の発明である油脂濃度測定装置の第二の実
施の形態の構成図。
FIG. 4 is a configuration diagram of a second embodiment of the oil and fat concentration measuring device according to the second invention.

【図5】単分子膜を化学物の設計法で使われている表現
方法で表わした模式図。
FIG. 5 is a schematic diagram showing a monomolecular film by an expression method used in a chemical design method.

【図6】味覚センサの模式図であり、図6(a) は、正面
図、図6(b) は断面図。
FIG. 6 is a schematic view of a taste sensor, FIG. 6 (a) is a front view, and FIG. 6 (b) is a sectional view.

【図7】アジの測定系を示す図。FIG. 7 shows a horse mackerel measurement system.

【図8】界面活性剤1ppmを加えた場合の、油脂の濃
度と脂質膜センサ第1chの出力との関係を示すブラ
フ。
FIG. 8 is a bluff showing the relationship between the concentration of fats and oils and the output of the first channel of the lipid membrane sensor when a surfactant of 1 ppm is added.

【図9】界面活性剤1ppmを加えた場合の、油脂の濃
度と脂質膜センサ第2chの出力との関係を示すブラ
フ。
FIG. 9 is a bluff showing the relationship between the concentration of fats and oils and the output of the second lipid membrane sensor channel when 1 ppm of a surfactant is added.

【図10】界面活性剤1ppmを加えた場合の、油脂の
濃度と脂質膜センサ第3chの出力との関係を示すブラ
フ。
FIG. 10 is a bluff showing the relationship between the concentration of fats and oils and the output of the third lipid membrane sensor channel when 1 ppm of a surfactant is added.

【図11】界面活性剤1ppmを加えた場合の、油脂の
濃度と脂質膜センサ第4chの出力との関係を示すブラ
フ。
FIG. 11 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor 4th channel when 1 ppm of a surfactant is added.

【図12】界面活性剤1ppmを加えた場合の、油脂の
濃度と脂質膜センサ第5chの出力との関係を示すブラ
フ。
FIG. 12 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor channel 5 when 1 ppm of a surfactant is added.

【図13】界面活性剤1ppmを加えた場合の、油脂の
濃度と脂質膜センサ第6chの出力との関係を示すブラ
フ。
FIG. 13 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor 6th channel when a surfactant of 1 ppm is added.

【図14】界面活性剤1ppmを加えた場合の、油脂の
濃度と脂質膜センサ第7chの出力との関係を示すブラ
フ。
FIG. 14 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor channel 7 when a surfactant of 1 ppm is added.

【図15】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第1chの出力との関係を示すブ
ラフ。
FIG. 15 is a bluff showing the relationship between the concentration of fats and oils and the output of the first lipid membrane sensor channel when 10 ppm of a surfactant is added.

【図16】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第2chの出力との関係を示すブ
ラフ。
FIG. 16 is a bluff showing the relationship between the concentration of fats and oils and the output of the second lipid membrane sensor channel when 10 ppm of a surfactant is added.

【図17】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第3chの出力との関係を示すブ
ラフ。
FIG. 17 is a bluff showing the relationship between the concentration of fats and oils and the output of the third lipid membrane sensor channel when 10 ppm of a surfactant is added.

【図18】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第4chの出力との関係を示すブ
ラフ。
FIG. 18 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor 4th channel when 10 ppm of a surfactant is added.

【図19】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第5chの出力との関係を示すブ
ラフ。
FIG. 19 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor channel 5 in the case of adding a surfactant of 10 ppm.

【図20】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第6chの出力との関係を示すブ
ラフ。
FIG. 20 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor 6th channel when 10 ppm of a surfactant is added.

【図21】界面活性剤10ppmを加えた場合の、油脂
の濃度と脂質膜センサ第7chの出力との関係を示すブ
ラフ。
FIG. 21 is a bluff showing the relationship between the concentration of fats and oils and the output of the lipid membrane sensor channel 7 when a surfactant of 10 ppm is added.

【図22】実験により得られた測定値を基に主成分分析
した結果を示す図。
FIG. 22 is a diagram showing the results of principal component analysis based on measured values obtained by experiments.

【符号の説明】[Explanation of symbols]

1 基材 2 電極 3 脂質膜 4 緩衝層 5 リード線 10 膜電位の測定系の基本構成 11 被測定溶液 12 容器 13 味覚センサアレイ 14−1〜14−8 各々の脂質膜(黒点で示す) 15 参照電極 16 緩衝層 17−1〜17−8 リード線 18 リード線 19−1〜19−8 バッファ増幅器 20 アナログスイッチ 21 A/D変換器 22 マイクロコンピュータ 23 X−Yレコーダ 24 接地電位 31,31′ 脂質性分子群 32 膜部材 33 マトリックス 41 脂質膜センサ 42 信号処理手段 43 界面活性剤供給手段 44 攪拌手段 45 制御手段 1 Base Material 2 Electrode 3 Lipid Membrane 4 Buffer Layer 5 Lead Wire 10 Basic Configuration of Membrane Potential Measurement System 11 Solution to be Measured 12 Container 13 Taste Sensor Array 14-1 to 14-8 Each Lipid Membrane (Indicated by Black Point) 15 Reference electrode 16 Buffer layer 17-1 to 17-8 Lead wire 18 Lead wire 19-1 to 19-8 Buffer amplifier 20 Analog switch 21 A / D converter 22 Microcomputer 23 XY recorder 24 Ground potential 31, 31 ' Lipid molecule group 32 Membrane member 33 Matrix 41 Lipid membrane sensor 42 Signal processing means 43 Surfactant supply means 44 Stirring means 45 Control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 脂質膜を用いたセンサを使用して測定対
象である河川水や工業用水等に含まれる鉱物油及び動植
物油脂類の濃度を測定する方法であって、 前記測定対象に含まれる鉱物油及び動植物油脂類を、測
定対象中に分散させる前処理の段階と、該前処理によっ
てエマルジョンとなった被測定溶液に脂質膜を用いたセ
ンサを浸してその電気特性を測定する段階とを含む油脂
濃度測定方法。
1. A method for measuring the concentration of mineral oil and animal and vegetable oils and fats contained in river water, industrial water, etc., which is a measurement target, using a sensor using a lipid membrane, which is included in the measurement target. Mineral oil and animal and vegetable oils and fats are pre-treated to disperse in the object to be measured, and a step of immersing a sensor using a lipid film in a solution to be measured which has become an emulsion by the pre-treatment and measuring its electrical characteristics. Method for measuring fat and oil concentration including.
【請求項2】 測定対象をエマルジョン化する攪拌手段
と、攪拌されてエマルジョンとなった被測定溶液を測定
するための脂質膜を用いたセンサと、該脂質膜を用いた
センサの出力信号を受けて鉱物油及び動植物油脂類の濃
度に関する情報を含んだ信号を出力する信号処理手段と
を備えた油脂濃度測定装置。
2. A stirring means for emulsifying a measurement target, a sensor using a lipid membrane for measuring a solution to be measured which has been stirred to form an emulsion, and an output signal of the sensor using the lipid membrane. And a signal processing means for outputting a signal containing information on the concentrations of mineral oil and animal and vegetable oils and fats.
JP30503295A 1995-10-30 1995-10-30 Oil concentration measurement method and apparatus Expired - Lifetime JP3628087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30503295A JP3628087B2 (en) 1995-10-30 1995-10-30 Oil concentration measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30503295A JP3628087B2 (en) 1995-10-30 1995-10-30 Oil concentration measurement method and apparatus

Publications (2)

Publication Number Publication Date
JPH09127040A true JPH09127040A (en) 1997-05-16
JP3628087B2 JP3628087B2 (en) 2005-03-09

Family

ID=17940281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30503295A Expired - Lifetime JP3628087B2 (en) 1995-10-30 1995-10-30 Oil concentration measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP3628087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007725A (en) * 2009-06-29 2011-01-13 Kyushu Univ Method and apparatus for measuring residual agricultural chemical
KR102511563B1 (en) * 2021-12-07 2023-03-20 (주) 제타푸드랩 Pretreatment Method to Improve Sensing Accuracy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007725A (en) * 2009-06-29 2011-01-13 Kyushu Univ Method and apparatus for measuring residual agricultural chemical
KR102511563B1 (en) * 2021-12-07 2023-03-20 (주) 제타푸드랩 Pretreatment Method to Improve Sensing Accuracy
KR20230085896A (en) * 2021-12-07 2023-06-14 (주) 제타푸드랩 Pretreatment Kit to Improve Sensing Accuracy

Also Published As

Publication number Publication date
JP3628087B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
DE60125544T2 (en) ELECTROCHEMICAL METHOD FOR MEASURING CHEMICAL REACTION RATES
Viollier et al. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey
Winquist et al. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry
Mimendia et al. Use of Sequential Injection Analysis to construct a potentiometric electronic tongue: Application to the multidetermination of heavy metals
Krantz-Rülcker et al. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review
Cinti et al. Microengine-assisted electrochemical measurements at printable sensor strips
Ahmadi et al. Monitoring of Aflatoxin M1 in milk using a novel electrochemical aptasensor based on reduced graphene oxide and gold nanoparticles
De Souza et al. Multiple square wave voltammetry for analytical determination of paraquat in natural water, food, and beverages using microelectrodes
Van Gestel et al. Recommendations of the 3rd international workshop on earthworm ecotoxicology, Aarhus, Denmark, August 2001
De Souza et al. Study of the Electrochemical Behavior and Sensitive Detection of Pesticides Using Microelectrodes Allied to Square‐Wave Voltammetry
Sahoo et al. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level
De Souza et al. The use of a gold disc microelectrode for the determination of copper in human sweat
Gupta et al. Designing of a microelectrode sensor-based label free milk adulteration testing system
Lai et al. Development of a sequential injection analysis device and its application for the determination of Mn (II) in water
Vasconcellos et al. Electroanalytical method for determination of trace metals in struvite using electrochemically treated screen-printed gold electrodes
Deng et al. Active tracking of temporally changing gas-phase odor mixture using an array of cells expressing olfactory receptors
Pemberton et al. An assay for the enzyme N-acetyl-β-D-glucosaminidase (NAGase) based on electrochemical detection using screen-printed carbon electrodes (SPCEs)
JPH09127040A (en) Method and apparatus for measurement of concentration of oils and fats
Attar et al. Determination of copper in whole blood by differential pulse adsorptive stripping voltammetry
Manoj et al. Development of co-immobilised enzymes amperometric biosensor for the determination of triglycerides in coconut milk
US11092585B2 (en) Electrochemical method for detection and quantification of organic compounds in water
Özyurt et al. Bismuth film based electrochemical hydroxymethylfurfural sensor
JP3769095B2 (en) Aji detection method
Escamilla-Mejía et al. Monoenzymatic lipase potentiometric biosensor for the food analysis based on a pH sensitive graphite-epoxy composite as transducer
Szymanski et al. Determination of non-ionic surfactants and their biotransformation by-products adsorbed on alive activated sludge

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term