JP2011007725A - Method and apparatus for measuring residual agricultural chemical - Google Patents

Method and apparatus for measuring residual agricultural chemical Download PDF

Info

Publication number
JP2011007725A
JP2011007725A JP2009153550A JP2009153550A JP2011007725A JP 2011007725 A JP2011007725 A JP 2011007725A JP 2009153550 A JP2009153550 A JP 2009153550A JP 2009153550 A JP2009153550 A JP 2009153550A JP 2011007725 A JP2011007725 A JP 2011007725A
Authority
JP
Japan
Prior art keywords
lipid
membrane sensor
lipid membrane
surfactant
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009153550A
Other languages
Japanese (ja)
Other versions
JP5250845B2 (en
Inventor
Kiyoshi Toko
潔 都甲
Masaaki Habara
正秋 羽原
Kaoru Umino
薫 海野
Hidekazu Ikezaki
秀和 池崎
Etsunobu Naito
悦伸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Intelligent Sensor Technology Inc
Original Assignee
Kyushu University NUC
Intelligent Sensor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Intelligent Sensor Technology Inc filed Critical Kyushu University NUC
Priority to JP2009153550A priority Critical patent/JP5250845B2/en
Publication of JP2011007725A publication Critical patent/JP2011007725A/en
Application granted granted Critical
Publication of JP5250845B2 publication Critical patent/JP5250845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To highly sensitively detect most agricultural chemicals by a simple constitution.SOLUTION: A lipid film sensor formed by mixing prescribed ratios of lipid, a plasticizer, and a polymer agent is immersed in a plurality of sample liquids in which different concentrations of a surfactant used in an agricultural chemical as an auxiliary agent is dissolved to measure its membrane potential (S1-S7). On the basis of its result, an estimate equation for estimating the concentration of agricultural chemical having the surfactant as an auxiliary agent is determined to the response of the lipid film sensor (S8, S9). The lipid film sensor is immersed in a liquid to be inspected in which deposits in the surface of a body to be inspected are dissolved to measure its membrane potential. The concentration of remaining agricultural chemical of the body to be inspected is estimated on the basis of both of the response of the lipid film sensor obtained to the liquid to be inspected and the estimate expression.

Description

本発明は、農産物に付着している残留農薬を高感度に検出するための技術に関する。   The present invention relates to a technique for highly sensitively detecting residual agricultural chemicals adhering to agricultural products.

近年、農産物の残留農薬への関心が高まってきている。特に、平成18年5月29日から改正食品衛生法が施行され、全ての食品に残留農薬基準値が設定され、残留農薬基準値がない農薬については一律0.01ppmの基準値が設定されることになった。   In recent years, interest in agricultural chemical residues is increasing. In particular, the revised Food Sanitation Law was enforced on May 29, 2006, and the standard value of residual pesticides was set for all foods, and a standard value of 0.01 ppm was set for pesticides with no standard value for residual pesticides. is what happened.

従来、農薬の一般的な分析方法としては、高速クラマトグラフィー質量分析計(HPLC−MS)や、ガスクロマトグラフィー質量分析計(GC−MS)などの分析装置を用いていたが、この装置による分析には熟練と時間が必要であり、多種多量の農産物をまんべんなく検査するには不向きであった。   Conventionally, as a general analysis method for pesticides, an analysis device such as a high-speed chromatographic mass spectrometer (HPLC-MS) or a gas chromatography mass spectrometer (GC-MS) has been used. It requires skill and time, and is not suitable for testing a large amount of agricultural products.

そこで、より簡易的な方法で効率良く残留農薬の有無を検出し、その検査で残留農薬有りと判定されたものに対して上記の分析装置による詳細な分析を行うことが望ましい。   Therefore, it is desirable to detect the presence or absence of residual pesticides efficiently by a simpler method, and to perform detailed analysis using the above-described analyzer on those determined to have residual pesticides in the inspection.

簡易的に残留農薬を検出する方法として、従来からコリンエステラーゼ阻害物質の有無を検出する方法、酵素免疫反応を用いた方法等が知られている。   As methods for simply detecting residual agricultural chemicals, methods for detecting the presence or absence of a cholinesterase inhibitor, methods using enzyme immunoreaction, and the like have been known.

しかし、コリンエステラーゼ阻害物質の有無を検出する方法では、コリンエステラーゼ阻害を有する有機リン、塩素系、カーバメイト系の農薬に対して効果はあるが、これらの農薬は現在農薬として登録されている数の約20パーセントであり、しかも検出感度は、0.1〜数ppm程度と低い。   However, the method for detecting the presence or absence of a cholinesterase inhibitory substance is effective against organic phosphorus, chlorine and carbamate pesticides having cholinesterase inhibition, but these pesticides are about 20 of the number currently registered as pesticides. The detection sensitivity is as low as about 0.1 to several ppm.

また、酵素免疫反応を用いた方法では、検出感度は数ppb〜数10ppbと高いが、検出できる農薬は検査用抗体が開発されているものに限られ、現状では30種類程度の農薬にしか使用できない。   In the method using enzyme immunoreaction, the detection sensitivity is as high as several ppb to several tens ppb, but the pesticides that can be detected are limited to those for which test antibodies have been developed, and currently only used for about 30 types of pesticides. Can not.

また、農薬を対象としたものではないが、農薬と同様に人体に悪影響を与えるシアン化合物等の毒性物質を検出するために、脂質膜センサを用いることも本出願人らにより提案されており(特許文献1)、発明者らは、この技術を用いて農薬検出が可能か否かの実験も試みた。   In addition, although not intended for agricultural chemicals, the applicants have also proposed using a lipid membrane sensor to detect toxic substances such as cyanide, which have an adverse effect on the human body in the same way as agricultural chemicals ( Patent Document 1), the inventors also tried an experiment to determine whether or not pesticide detection is possible using this technique.

特開平10−267878号公報Japanese Patent Laid-Open No. 10-267878

ところが、後述するように農薬の各種原体に対し、脂質膜センサはほとんど応答しないことが判明し、この事実から脂質膜センサによる農薬検出は困難であると思われていた。   However, as described later, it was found that lipid membrane sensors hardly responded to various pesticides, and it was considered difficult to detect pesticides using lipid membrane sensors.

本発明は、上記事情に鑑みてなされたものであり、登録されている農薬の大半に対して高感度に検出できる残留農薬測定方法および装置を提供することを目的としている。   This invention is made | formed in view of the said situation, and it aims at providing the residual agrochemical measurement method and apparatus which can detect with high sensitivity with respect to the majority of the registered agrochemical.

なお、本願発明は、上記したように農薬の各種原体に対して脂質膜センサはほとんど応答しないことを逆に利用し、農薬に原体とともに一定の割合で含まれる界面活性剤の脂質膜センサに対する応答から原体の濃度を推定するという発想に基づくものである。   In addition, the present invention uses the fact that the lipid membrane sensor hardly responds to various pesticides as described above, and the surfactant lipid membrane sensor contained in the pesticide in a certain ratio together with the active ingredient. This is based on the idea of estimating the concentration of the drug substance from the response to.

前記目的を達成するために、本発明の残留農薬測定方法は、
農薬に助剤として使用されている界面活性剤が異なる濃度で溶けている複数のサンプル液に、脂質と可塑剤と高分子剤とを所定割合で混合して形成した脂質膜センサを浸漬して、その膜電位を測定する段階(S1〜S7)と、
前記測定結果に基づいて、前記脂質膜センサの応答に対して前記界面活性剤を助剤とする農薬の濃度を推定するための推定式を求める段階(S8、S9)と、
被検査体の表面の付着物を溶け込ました検査対象液に対して、前記脂質膜センサを浸漬して、その膜電位を測定する段階(S11〜S15)と、
前記検査対象液に対して得られた前記脂質膜センサの応答と前記推定式から前記被検査体の残留農薬の濃度を推定する段階(S16)とを含んでいる。
In order to achieve the above object, the pesticide residue measuring method of the present invention comprises:
Immerse a lipid membrane sensor formed by mixing lipids, plasticizers, and polymer agents in a predetermined ratio in multiple sample solutions in which surfactants used as auxiliary agents for agricultural chemicals are dissolved at different concentrations. Measuring the membrane potential (S1 to S7);
Based on the measurement result, obtaining an estimation formula for estimating the concentration of the agrochemical using the surfactant as an auxiliary to the response of the lipid membrane sensor (S8, S9);
Steps (S11 to S15) of immersing the lipid membrane sensor and measuring its membrane potential with respect to the liquid to be inspected in which the deposit on the surface of the test object is dissolved,
A step (S16) of estimating the concentration of the residual pesticide in the object to be inspected from the response of the lipid membrane sensor obtained with respect to the liquid to be examined and the estimation formula.

また、本発明の残留農薬測定装置は、
脂質と可塑剤と高分子剤とを所定割合で混合して形成した脂質膜センサ(25)と、
農薬に助剤として使用されている界面活性剤が異なる濃度で溶けている複数のサンプル液に前記脂質膜センサを浸漬したときの前記脂質膜センサの膜電位に基づいて、前記脂質膜センサの応答に対して前記界面活性剤を助剤とする農薬の濃度を推定するための推定式を求めるとともに、被検査体の表面の付着物を溶け込ました検査対象液に対して前記脂質膜センサが浸漬されたときの応答と前記推定式とから前記被検査体の残留農薬の推定濃度を算出する演算手段(37)とを備えている。
Moreover, the residual pesticide measuring apparatus of the present invention is
A lipid membrane sensor (25) formed by mixing a lipid, a plasticizer, and a polymer agent at a predetermined ratio;
Response of the lipid membrane sensor based on the membrane potential of the lipid membrane sensor when the lipid membrane sensor is immersed in a plurality of sample solutions in which surfactants used as auxiliary agents for agricultural chemicals are dissolved at different concentrations In addition, an estimation formula for estimating the concentration of the agrochemical using the surfactant as an auxiliary agent is obtained, and the lipid membrane sensor is immersed in a liquid to be inspected in which deposits on the surface of the test object are dissolved. Computing means (37) for calculating the estimated concentration of the residual pesticide of the subject to be inspected from the response at the time and the estimation formula.

また、本発明の請求項3の残留農薬測定装置は、請求項2記載の残留農薬測定装置において、
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、可塑剤として2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質としてテトラドデシルアンモニウムブロミド(TDAB)が0.1〜0.8mgの範囲で含まれていることを特徴とする。
Moreover, the residual pesticide measuring apparatus according to claim 3 of the present invention is the residual pesticide measuring apparatus according to claim 2,
The surfactant is anionic,
In the lipid membrane sensor, 800 mg of polyvinyl chloride (PVC) as a polymer agent, 1 ml of 2-nitrooctyl ether (NPOE) as a plasticizer, and tetradodecyl ammonium bromide (TDAB) as a lipid are 0.1 to 0. It is contained in the range of 8 mg.

また、本発明の請求項4の残留農薬測定装置は、請求項2記載の残留農薬測定装置において、
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、脂質としてテトラドデシルアンモニウムブロミド(TDAB)0.1mg、可塑剤としてジオクチルフェニルフォスフォネイト(DOPP)が0.75〜1mlgの範囲で含まれていることを特徴とする。
Moreover, the residual pesticide measuring apparatus according to claim 4 of the present invention is the residual pesticide measuring apparatus according to claim 2,
The surfactant is anionic,
The lipid membrane sensor is in the range of 800 mg of polyvinyl chloride (PVC) as a polymer agent, 0.1 mg of tetradodecyl ammonium bromide (TDAB) as a lipid, and 0.75 to 1 mlg of dioctylphenyl phosphonate (DOPP) as a plasticizer. It is characterized by being included.

また、本発明の請求項5の残留農薬測定装置は、請求項2記載の残留農薬測定装置において、
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、可塑剤として2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質としてトリドデシルメチルアンモニウムクロリド(TDAC)が0.1〜0.3mgの範囲で含まれていることを特徴とする。
Moreover, the residual pesticide measuring apparatus according to claim 5 of the present invention is the residual pesticide measuring apparatus according to claim 2,
The surfactant is anionic,
The lipid membrane sensor is composed of 800 mg of polyvinyl chloride (PVC) as a polymer agent, 1 ml of 2-nitrooctyl ether (NPOE) as a plasticizer, and 0.1 to 0 tridodecylmethylammonium chloride (TDAC) as a lipid. It is contained in the range of 3 mg.

また、本発明の請求項6の残留農薬測定装置は、請求項2記載の残留農薬測定装置において、
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、可塑剤として2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質としてジドデシルジメチルアンモニウムブロミド(DDAB)が0.1〜0.4mgの範囲で含まれていることを特徴とする。
Moreover, the residual agricultural chemical measuring apparatus according to claim 6 of the present invention is the residual agricultural chemical measuring apparatus according to claim 2,
The surfactant is anionic,
The lipid membrane sensor is composed of 800 mg of polyvinyl chloride (PVC) as a polymer agent, 1 ml of 2-nitrooctyl ether (NPOE) as a plasticizer and 0.1 to 0 of didodecyldimethylammonium bromide (DDAB) as a lipid. It is contained in the range of 4 mg.

上記したように本発明では、農薬に助剤として含まれている界面活性剤の濃度と脂質膜センサの膜電位に基づいて、脂質膜センサの膜電位から残留農薬の濃度を推定するための式を求め、被検査体のサンプル液に対する脂質膜センサの膜電位と推定式から、被検査体の残留農薬の濃度を推定している。   As described above, in the present invention, the formula for estimating the concentration of residual pesticide from the membrane potential of the lipid membrane sensor based on the concentration of the surfactant contained as an auxiliary agent in the agricultural chemical and the membrane potential of the lipid membrane sensor. From the membrane potential of the lipid membrane sensor with respect to the sample liquid of the test subject and the estimation formula, the concentration of the residual pesticide in the test subject is estimated.

これは、本出願人らが、残留農薬の濃度と助剤として含まれている界面活性剤の濃度とがほぼ比例しており、また被検査体に使用されている農薬の種類から、農薬と界面活性剤との割合もほぼ特定でき、さらに、農薬に対する脂質膜センサが、農薬の原体には応答せず、主に界面活性剤に応答している点を見出したことによるものである。   This is because the concentration of residual agricultural chemicals and the concentration of surfactant contained as an auxiliary agent are approximately proportional to each other, and from the types of agricultural chemicals used for the test subject, This is because the ratio of the surfactant to the surfactant can be almost specified, and the lipid membrane sensor for the pesticide has not responded to the active ingredient of the pesticide, but mainly responds to the surfactant.

したがって、上記のように界面活性剤の濃度に対する脂質膜センサの応答を求め、その関係から得られた推定式を用いることで、残留農薬の濃度を的確に推定することができ、簡易でかつ高感度な検出が可能となった。   Therefore, by obtaining the response of the lipid membrane sensor to the surfactant concentration as described above, and using the estimation formula obtained from the relationship, the concentration of the residual pesticide can be accurately estimated. Sensitive detection is possible.

なお、界面活性剤がアニオン性の場合で、脂質膜センサは、高分子剤ポリ塩化ビニル(PVC)800mg、可塑剤2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質テトラドデシルアンモニウムブロミド(TDAB)が0.1〜0.8mgの範囲で含まれたものが、特に高感度で安定に検出が可能である。   In the case where the surfactant is anionic, the lipid membrane sensor is composed of lipid tetradodecyl ammonium bromide (TDAB) with respect to 800 mg of the polymer agent polyvinyl chloride (PVC) and 1 ml of the plasticizer 2-nitrooctyl ether (NPOE). ) In a range of 0.1 to 0.8 mg can be detected with particularly high sensitivity and stability.

また、脂質膜センサとして、脂質TDAB0.1mgのとき、可塑剤DOPPが0.75〜1mlgの範囲で含まれるものも、界面活性剤に対して有効な感度を有していることが確認された。   In addition, when the lipid TDAB was 0.1 mg as a lipid membrane sensor, the one containing the plasticizer DOPP in the range of 0.75 to 1 mlg was confirmed to have effective sensitivity to the surfactant. .

また、脂質膜センサとして、可塑剤NPOE1mlに対して、脂質トリドデシルメチルアンモニウムクロリド(TDAC)が0.1〜0.3mgの範囲で含まれるものも、界面活性剤に対して有効な感度を有していることが確認された。   A lipid membrane sensor containing 0.1 to 0.3 mg of lipid tridodecylmethylammonium chloride (TDAC) with respect to 1 ml of the plasticizer NPOE has an effective sensitivity to the surfactant. It was confirmed that

また、脂質膜センサとして、可塑剤NPOE1mlに対して、脂質ジドデシルジメチルアンモニウムブロミド(DDAB)が0.1〜0.4mgの範囲で含まれるものも、界面活性剤に対して有効な感度を有していることが確認された。   A lipid membrane sensor that contains lipid didodecyldimethylammonium bromide (DDAB) in the range of 0.1 to 0.4 mg per 1 ml of the plasticizer NPOE has an effective sensitivity to the surfactant. It was confirmed that

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 市販の農薬の組成を示す図Diagram showing the composition of commercially available pesticides 実施形態の処理手順を示すフローチャートThe flowchart which shows the process sequence of embodiment 原体グリホサートのみのサンブル液に対する応答を示す図Diagram showing the response of the active ingredient glyphosate only to the sample fluid 原体グリホサートとSDSとを含むサンブル液に対する応答を示す図The figure which shows the response with respect to the sample liquid containing an active ingredient glyphosate and SDS 原体クロルフェナピルのみのサンブル液に対する応答を示す図Figure showing the response of the active ingredient chlorfenapyr alone to the sample solution 原体クロルフェナピルとSDSとを含むサンブル液に対する応答を示す図The figure which shows the response with respect to the sample liquid containing the active ingredient chlorfenapyr and SDS 原体イマザリルのみのサンブル液に対する応答を示す図Diagram showing the response of the active ingredient imazalil alone to the sample solution 原体イマザリルとSDSとを含むサンブル液に対する応答を示す図The figure which shows the response with respect to the samble liquid containing an active ingredient imazalil and SDS 界面活性剤SDSに対する脂質膜センサの相対応答値を示す図The figure which shows the relative response value of the lipid membrane sensor with respect to surfactant SDS 界面活性剤SDSに対する脂質膜センサのCPA応答値を示す図The figure which shows the CPA response value of the lipid membrane sensor with respect to surfactant SDS 界面活性剤SDSの濃度と脂質膜センサの応答特性の一例を示す図The figure which shows an example of the density | concentration of surfactant SDS, and the response characteristic of a lipid membrane sensor 実施形態の検査処理の手順を示すフローチャートThe flowchart which shows the procedure of the inspection process of embodiment 可塑剤の含有量を変化させた脂質膜センサの相対応答値を示す図The figure which shows the relative response value of the lipid membrane sensor which changed content of the plasticizer 別の脂質を用いたときの原体グリホサートのみのサンブル液に対する応答を示す図Diagram showing the response of the original glyphosate alone to the sample fluid when using different lipids 別の脂質を用いたときの原体グリホサートとSDSとを含むサンブル液に対する応答を示す図The figure which shows the response with respect to the samble liquid containing an active ingredient glyphosate and SDS when another lipid is used. 別の脂質を用いたときの原体クロルフェナピルのみのサンブル液に対する応答を示す図Diagram showing the response of the original chlorfenapyr alone to the sample fluid when using different lipids 別の脂質を用いたときの原体クロルフェナピルとSDSとを含むサンブル液に対する応答を示す図The figure which shows the response with respect to the sample liquid containing the active ingredient chlorfenapyr and SDS when another lipid is used. 別の脂質を用いたときの原体イマザリルのみのサンブル液に対する応答を示す図Diagram showing the response to the original imazalil-only samble solution using different lipids 別の脂質を用いたときの原体イマザリルとSDSとを含むサンブル液に対する応答を示す図The figure which shows the response with respect to the sample liquid containing the active ingredient imazalil and SDS when another lipid is used 別の脂質を用いた脂質膜センサの相対応答値を示す図The figure which shows the relative response value of the lipid membrane sensor using another lipid 別の脂質を用いた脂質膜センサの相対応答値を示す図The figure which shows the relative response value of the lipid membrane sensor using another lipid

以下、図面に基づいて本発明の実施形態を説明する。
図1は、実施形態の残留農薬測定装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of a residual agricultural chemical measuring apparatus 20 according to the embodiment.

図1において、残留農薬測定装置20は、基準液、サンプル液および検査対象液を入れるための容器21と、プローブ22と、プローブ22の電位差を検出する電圧検出器35と、電圧検出器35の出力をディジタル値に変換するA/D変換器36と、A/D変換器36の出力に対する記憶、演算および比較判定などの処理を行う演算装置37と、演算装置37の処理結果を出力する出力装置38によって構成されている。   In FIG. 1, the residual pesticide measuring apparatus 20 includes a container 21 for containing a reference solution, a sample solution, and a test target solution, a probe 22, a voltage detector 35 that detects a potential difference between the probes 22, and a voltage detector 35. An A / D converter 36 that converts the output into a digital value, an arithmetic unit 37 that performs processing such as storage, calculation, and comparison determination on the output of the A / D converter 36, and an output that outputs a processing result of the arithmetic unit 37 It is comprised by the apparatus 38.

プローブ22は、容器21に入れた液体に漬けて使用するものであり、測定の基準電位を出力するための基準電極23と脂質膜センサ25とを有している。   The probe 22 is used by being immersed in a liquid placed in a container 21 and has a reference electrode 23 and a lipid membrane sensor 25 for outputting a reference potential for measurement.

基準電極23の表面は、液体内の脂質に反応しないように、塩化カリウム100m mole/1を寒天で固定した緩衝層24で覆われており、リード線22aが接続されている。   The surface of the reference electrode 23 is covered with a buffer layer 24 in which 100 mMole of potassium chloride is fixed with agar so as not to react with lipid in the liquid, and a lead wire 22a is connected thereto.

また、脂質膜センサ25は、アクリル等の基材26の表面に一面側を露呈させた状態で固定されており、脂質膜センサ25の反対面には、基準電極23の緩衝層24と同等の緩衝層27を介して電極28が設けられ、この電極28にはリード線22bが接続されている。   The lipid membrane sensor 25 is fixed in a state where one surface side is exposed on the surface of a base material 26 such as acrylic, and the opposite surface of the lipid membrane sensor 25 is equivalent to the buffer layer 24 of the reference electrode 23. An electrode 28 is provided via the buffer layer 27, and a lead wire 22 b is connected to the electrode 28.

脂質膜センサ25は、無極性で疎水性を有する部分と有極性で親水性を要する部分とを有する脂質が、その親水性部分を表面側に向けた状態で膜をなすように一体化されたものであり、液に漬けたときに膜の電位が液中の成分に応じて変化する。   The lipid membrane sensor 25 is integrated so that a lipid having a non-polar and hydrophobic portion and a polar and hydrophilic portion forms a membrane with the hydrophilic portion facing the surface side. Therefore, when immersed in a liquid, the potential of the membrane changes according to the components in the liquid.

この脂質膜センサ25は、ベースとなる高分子、可塑剤および脂質を所定の割合で混合して作製されたものである。   The lipid membrane sensor 25 is prepared by mixing a base polymer, a plasticizer, and a lipid in a predetermined ratio.

ここでは、高分子としてポリ塩化ビニル(PVC)800mg、可塑剤としてプラスの電荷を持つ2−ニトロオクチルエーテル(NPOE)1ml、脂質としてテトラドデシルアンモニウムブロミド(TDAB)を所定量混合したものを、THF10ccに溶解し、平底の容器(例えば85mmφのシャーレ)に移し、それを均一な加熱された板上で約30度Cに2時間保って、THFを揮散させることで厚さ約200μmの脂質膜を得ている。なお、脂質TDABの割合については後述するが、農薬の助剤としての界面活性剤に対して応答性を持つような割合に設定している。   Here, a mixture of 800 mg of polyvinyl chloride (PVC) as a polymer, 1 ml of 2-nitrooctyl ether (NPOE) having a positive charge as a plasticizer, and a predetermined amount of tetradodecyl ammonium bromide (TDAB) as a lipid is mixed with 10 cc of THF. It is dissolved in a flat-bottomed container (for example, a petri dish of 85 mmφ), and kept at about 30 ° C. for 2 hours on a uniform heated plate to volatilize THF to form a lipid membrane having a thickness of about 200 μm. It has gained. In addition, although the ratio of lipid TDAB is mentioned later, it sets to the ratio which has responsiveness with respect to surfactant as an adjuvant of an agricultural chemical.

なお、このプローブ22を液体に漬ける際には、測定条件が変わらないように、基準電極23と脂質膜センサ25の間隔を一定にするが、支持材29によって基準電極23と基材26とを一定の間隔で支持してもよい。   When the probe 22 is immersed in a liquid, the distance between the reference electrode 23 and the lipid membrane sensor 25 is kept constant so that the measurement conditions do not change. You may support by a fixed space | interval.

このプローブ22のリード線22a、22bは、電圧検出器35に接続されている。
電圧検出器35は、例えば差動増幅器によって構成され、基準電極23の電位と脂質膜センサ25の電位の差(電圧)を検出してA/D変換器36に出力する。
Lead wires 22 a and 22 b of the probe 22 are connected to a voltage detector 35.
The voltage detector 35 is configured by, for example, a differential amplifier, detects a difference (voltage) between the potential of the reference electrode 23 and the potential of the lipid membrane sensor 25 and outputs the difference to the A / D converter 36.

A/D変換器36は電圧検出器35の出力電圧をディジタル値に変換して演算装置37に出力する。   The A / D converter 36 converts the output voltage of the voltage detector 35 into a digital value and outputs it to the arithmetic unit 37.

演算装置37は、マイクロコンピュータによって構成され、図示しない操作部等からの記憶指令を受けるとA/D変換器36の出力値をメモリ37aに記憶し、演算指令を受けるとメモリ37aの記憶値およびA/D変換器36の出力値に基づいて、残留農薬の濃度測定に必要な演算処理を行い、その結果を出力装置(例えば表示器)38に出力する。   The arithmetic unit 37 is constituted by a microcomputer, and stores an output value of the A / D converter 36 in the memory 37a when receiving a storage command from an operation unit (not shown), and stores the stored value in the memory 37a when receiving the arithmetic command. Based on the output value of the A / D converter 36, arithmetic processing necessary for measuring the concentration of residual agricultural chemicals is performed, and the result is output to an output device (for example, a display) 38.

次に、この残留農薬測定装置20を用いた残留農薬測定方法の原理について説明する。 始めに、現在市販されている農薬の組成を図2に示す。この図から明らかなように、一般的な農薬は、農薬活性を示す有効成分としての原体と、その原体を保持し、施用上のハンドリングに簡便さをもたらす添加剤としての担体と、界面活性剤とで構成されている。   Next, the principle of the residual pesticide measuring method using this residual pesticide measuring apparatus 20 will be described. First, FIG. 2 shows the composition of agricultural chemicals currently on the market. As is apparent from this figure, general pesticides consist of an active ingredient as an active ingredient exhibiting agrochemical activity, a carrier as an additive that retains the active ingredient and provides ease of handling in application, and an interface. It consists of an activator.

この中で、多くの農薬にはアニオン性の界面活性剤が用いられている。そして、種々の実験から、農薬原体の成分は上記したプローブ22を用いた測定では実質的な感度が得られないことが確認された。   Among these, anionic surfactants are used for many agricultural chemicals. From various experiments, it was confirmed that the components of the agrochemical substance were not substantially sensitive by the measurement using the probe 22 described above.

そこで本願発明者らは、さらに実験を重ね、これらほとんどの農薬に助剤として用いられている界面活性剤に対して前記プローブ22を用いた測定で有効な感度が得られることを見出した。   Therefore, the inventors of the present application have further experimented and found that effective sensitivity can be obtained by measurement using the probe 22 for the surfactant used as an auxiliary agent for most of these agricultural chemicals.

つまり、本測定方法は、農作物の残留農薬の原体の濃度を直接測定するものではなく、農薬に原体とともに含有されている界面活性剤の濃度を測定し、その測定結果から農薬濃度を推定するというものである。   In other words, this measurement method does not directly measure the concentration of the pesticide residue in agricultural products, but measures the concentration of the surfactant contained in the pesticide along with the active ingredient, and estimates the pesticide concentration from the measurement result. It is to do.

以下のその方法について具体的に説明する。
始めに、基準液、洗浄液の他に、アニアン性の界面活性剤として広く用いられているSDS(ソジウム ドデシル スルフェイト Sodium Dodecyl Sulfate)の濃度が、それぞれ10ppb、30ppb、50ppb、100ppbのサンプル液を用意した。
The method will be specifically described below.
First, in addition to the reference solution and the cleaning solution, sample solutions having concentrations of 10 ppb, 30 ppb, 50 ppb, and 100 ppb of SDS (Sodium Dodecyl Sulfate) widely used as an anionic surfactant are prepared. did.

また、脂質膜センサが農薬の原体に応答せず、界面活性剤に顕著な応答性を示すことを確認するための測定に用いるサンプルとして、代表的な3種の原体グリホサート、クロルフェナピル、イマザリルを用い、その3種の原体のみのサンプル液およびこれらの各原体とSDSとを含むサンプル液を用意した。   In addition, as a sample used for measurement to confirm that the lipid membrane sensor does not respond to the active ingredient of the agrochemical and shows remarkable responsiveness to the surfactant, three typical active ingredients glyphosate, chlorfenapyr, and imazalil Were used to prepare a sample solution containing only the three original materials and a sample solution containing each of these original materials and SDS.

ここで基準液は、30mM塩化カリウム+0.3mM酒石酸で、酒石酸0.045gと塩化カリウム2.24gを純水に溶解して全量を1リットルにしたものである。また、プラス膜用の洗浄液は、10mM水酸化カリウム+100mM塩化カリウム+30vol%エタノールの溶液であり、塩化カリウム7.46gを約500mlの純水に溶解し、純度95%以上のエタノール300mlを添加、攪拌し、さらに。1M水酸化カリウム溶液を10ml加え、純水で全量を1リットルにしたものである。その他の洗浄液は基準液と同等である。   Here, the standard solution is 30 mM potassium chloride + 0.3 mM tartaric acid, in which 0.045 g of tartaric acid and 2.24 g of potassium chloride are dissolved in pure water to make the total amount to 1 liter. The cleaning solution for the plus membrane is a solution of 10 mM potassium hydroxide + 100 mM potassium chloride + 30 vol% ethanol. 7.46 g of potassium chloride is dissolved in about 500 ml of pure water, and 300 ml of ethanol with a purity of 95% or more is added and stirred. And further. 10 ml of 1M potassium hydroxide solution was added, and the total volume was made up to 1 liter with pure water. Other cleaning solutions are equivalent to the reference solution.

また、プロープ22に用いる脂質膜センサ25として、脂質TDABの含有量が異なるものを用意して、その応答の違いを確認した。   Moreover, the lipid membrane sensor 25 used for the probe 22 was prepared with different lipid TDAB contents, and the difference in response was confirmed.

実際の測定は、図3のフローチャートにしたがって行う。
即ち、始めに基準液にプローブ22を浸けて、基準電極23に対する脂質膜センサ25の膜電位V1を測定し、これを記憶する(S1)。
Actual measurement is performed according to the flowchart of FIG.
That is, first, the probe 22 is immersed in the reference solution, and the membrane potential V1 of the lipid membrane sensor 25 with respect to the reference electrode 23 is measured and stored (S1).

次に、プローブ22をサンプル液に浸けて、基準電極23に対する脂質膜センサ25の膜電位V2を測定し、サンプル液についての相対応答値Vaとして(V2−V1)を算出してこれを記憶する(S2)。   Next, the probe 22 is immersed in the sample solution, the membrane potential V2 of the lipid membrane sensor 25 with respect to the reference electrode 23 is measured, and (V2-V1) is calculated and stored as the relative response value Va for the sample solution. (S2).

次に、プローブ22を洗浄液に浸けてセンサ表面を軽く洗浄し(センサ表面への吸着成分は残す)、続いて基準液(最初の基準液と同一組成)に浸けて、基準電極23に対する脂質膜センサ25の膜電位V3を測定し、サンプル液についてのCPA応答値(吸着成分による応答値)Vcpaとして(V3−V1)を算出してこれを記憶する(S3、S4)。   Next, the probe 22 is immersed in a cleaning solution to gently clean the sensor surface (leaving components adsorbed on the sensor surface), and then immersed in a reference solution (same composition as the first reference solution) to form a lipid membrane for the reference electrode 23. The membrane potential V3 of the sensor 25 is measured, and (V3-V1) is calculated and stored as the CPA response value (response value due to the adsorbed component) Vcpa for the sample liquid (S3, S4).

最後に、プローブ22を洗浄液に浸けてセンサ表面を洗浄し、その表面に吸着した成分も洗い流す(S5)。
上記処理S1〜S5を、濃度の異なるサンプル液について繰り返す(S6、S7)。
Finally, the probe 22 is immersed in a cleaning solution to clean the sensor surface, and components adsorbed on the surface are washed away (S5).
The above processes S1 to S5 are repeated for sample solutions having different concentrations (S6, S7).

このようにして得られた結果のうち、前記農薬の原体のみのサンプル液の応答と、原体とSDSを含むサンプル液の応答を図4〜図9に示す。   Among the results obtained in this manner, the response of the sample solution containing only the agrochemical raw material and the response of the sample solution containing the active material and SDS are shown in FIGS.

図4、図6、図8は、3種の原体のみの応答(相対応答値)を示したものであり、原体の濃度およびセンサの脂質の含有量の変化に対してほぼ一定で感度が無いことが判る。   4, 6, and 8 show responses (relative response values) of only three kinds of drug substances, which are almost constant and sensitive to changes in the drug substance concentration and the lipid content of the sensor. It turns out that there is no.

一方、図5、図7、図9は、上記3種の原体に同量のSDSを加えたサンプル液の応答(相対応答値)を示したものであり、原体のみの応答と明らかに異なり、SDSの濃度に応じて応答が大きくなっており、その変化の度合いが、センサの脂質の含有量によって異なっていることが判る。   On the other hand, FIG. 5, FIG. 7 and FIG. 9 show the response (relative response value) of the sample solution obtained by adding the same amount of SDS to the above three kinds of original materials, which is clearly the response of the original material alone. In contrast, the response increases with the concentration of SDS, and it can be seen that the degree of change varies depending on the lipid content of the sensor.

上記のことから、上記プローブ22は、農薬の中の原体には応答せず、界面活性剤のSDSに対して顕著な応答性を有し、その応答特性は脂質の含有量によって変化することがわかる。   From the above, the probe 22 does not respond to the active ingredient in pesticides, has a remarkable response to the SDS of the surfactant, and its response characteristics vary depending on the lipid content. I understand.

したがって、プローブ22の脂質含有量を適度な値に設定した上で、界面活性剤に対する濃度と応答の関係を予め求めておけば、濃度未知の農薬のについての測定結果からその濃度を推定することができる。   Therefore, if the lipid content of the probe 22 is set to an appropriate value and the relationship between the concentration and the response to the surfactant is obtained in advance, the concentration can be estimated from the measurement result of the pesticide whose concentration is unknown. Can do.

次に、SDSのみでその濃度が異なるサンプル液に対する測定結果を、図10、図11に示す。   Next, the measurement result with respect to the sample liquid from which the density | concentration differs only by SDS is shown in FIG. 10, FIG.

図10は、脂質膜センサ25の脂質TDABの含有量を変えたときの相対応答値Vaの変化を示し、図11はCPA応答値Vcpaの変化を示している。   FIG. 10 shows changes in the relative response value Va when the lipid TDAB content of the lipid membrane sensor 25 is changed, and FIG. 11 shows changes in the CPA response value Vcpa.

これらの結果から、脂質TDABの含有量が0.01mg〜0.8mgの範囲の脂質膜センサは、界面活性剤SDSのサンプル液に対して、その濃度に対応した出力が得られていることがわかる。   From these results, the lipid membrane sensor having a lipid TDAB content in the range of 0.01 mg to 0.8 mg has an output corresponding to the concentration of the surfactant SDS sample solution. Recognize.

ただし、実験を繰り返した結果、脂質TDABの含有量が0.1mgより少ない範囲では再現性が乏しくなる傾向がみられ、アニアン性の界面活性剤SDSに対しては、脂質TDABの含有量が0.1mg〜1mgの範囲で10ppb以上の感度が安定に得られる。特に、脂質TDABの含有量が0.1mgのときは相対応答値もCPA応答値も高感度が得られている。   However, as a result of repeating the experiment, reproducibility tends to be poor when the content of lipid TDAB is less than 0.1 mg, and the content of lipid TDAB is 0 for an anionic surfactant SDS. A sensitivity of 10 ppb or more can be stably obtained in the range of 1 mg to 1 mg. In particular, when the lipid TDAB content is 0.1 mg, both the relative response value and the CPA response value are highly sensitive.

このようにアニアン性の界面活性剤SDSに対して高感度を示す脂質膜センサ25を用いて得られた結果(特性的には相対応答値Vaの方が望ましいので以下の説明では、相対応答値Vaを用いる)から、例えば図12のような、界面活性剤の濃度qと脂質膜センサ25の応答値Vaとの関係が得られる。したがって、例えば脂質TDABの含有量が0.1mgの脂質膜センサ25を用いた測定結果が得られた段階で、演算装置37に対して演算指令を行うことで、上記関係を近似する式(直線式または曲線式)の係数が求められ、記憶される(S8)。   The results obtained by using the lipid membrane sensor 25 showing high sensitivity to the anionic surfactant SDS in this way (the relative response value Va is desirable in terms of characteristics. From Va), for example, the relationship between the surfactant concentration q and the response value Va of the lipid membrane sensor 25 is obtained as shown in FIG. Therefore, for example, when a measurement result using the lipid membrane sensor 25 having a lipid TDAB content of 0.1 mg is obtained, an arithmetic command is issued to the arithmetic device 37 to approximate the above relationship (straight line). The coefficient of the equation or curve equation is obtained and stored (S8).

そして、実際の被検査体に使用されていると予想される農薬の原体の含有率α(既知とする)と、その農薬の界面活性剤の含有率β(既知とする)と、上記係数とから、農薬(原体)の濃度を推定する式が決定される(S9)。   Then, the content ratio α (known) of the raw material of the agricultural chemical expected to be used in the actual test object, the content ratio β (known) of the surfactant of the agricultural chemical, and the above coefficient From this, the formula for estimating the concentration of the pesticide (raw material) is determined (S9).

例えば、界面活性剤の濃度qと脂質膜センサ25の応答値Vaとの関係が、直線式
Va=A・q
で表されるとき、被検査体の残留農薬の原体の推定濃度をγとすると、
β/α=q/γ
となるから、その推定濃度γと応答値Vaとの関係は、
Va=A・(β/α)γ
となる。
For example, the relationship between the surfactant concentration q and the response value Va of the lipid membrane sensor 25 is expressed by the linear equation Va = A · q.
When the estimated concentration of the pesticide residue in the test subject is γ,
β / α = q / γ
Therefore, the relationship between the estimated concentration γ and the response value Va is
Va = A · (β / α) γ
It becomes.

したがって、残留農薬の推定濃度γは、
γ=Va/[A・(β/α)] ……(1)
の演算によって求めることができる。
Therefore, the estimated concentration γ of residual pesticide is
γ = Va / [A · (β / α)] (1)
Can be obtained by the following calculation.

ここで、係数AはSDSサンプル液に対する実験で得られた値で既知、また、(β/α)は、実際の被検査体に使用されていると予想される農薬の原体の含有率αと界面活性剤の含有率βとの比で既知であり、これを演算装置37に手動入力させるか、予め演算装置37の内部のデータベースに農薬毎に登録しておいて、予想される農薬を指定操作させることで、上記推定式の算出が可能となる。   Here, the coefficient A is known from the value obtained by the experiment on the SDS sample solution, and (β / α) is the content ratio α of the pesticide active ingredient that is expected to be used in the actual test object. And the content ratio β of the surfactant are known, and this is manually input to the calculation device 37 or registered in advance in the database inside the calculation device 37 for each pesticide, By performing the designation operation, the above estimation formula can be calculated.

このようにして、残留農薬の濃度推定式が得られた後に、図13の検査処理に移行する。この検査処理では、農作物などの被検査体の表面の付着物を溶け込ました検査対象液(被検査体の重量と同一重量の液となるように設定する)を予め用意する。   Thus, after the concentration estimation formula of the residual agricultural chemical is obtained, the process proceeds to the inspection process of FIG. In this inspection process, a liquid to be inspected (which is set so as to be a liquid having the same weight as the weight of the object to be inspected) in which deposits on the surface of the object to be inspected, such as agricultural crops, are prepared.

そして、前記同様に、プローブ22を基準液に浸けて、基準電極23に対する脂質膜センサ25の膜電位1を求めて記憶した後、検査対象液にプローブ22を浸けて、相対応答値Vaを求め、軽く洗浄してから基準液に浸けてCPA応答値Vcpaを求め、最後に洗浄液に浸けて洗浄する(S11〜S15)。   Then, as described above, the probe 22 is immersed in the reference solution, and the membrane potential 1 of the lipid membrane sensor 25 with respect to the reference electrode 23 is obtained and stored, and then the probe 22 is immersed in the inspection target solution to obtain the relative response value Va. After washing lightly, the sample is immersed in a reference solution to obtain a CPA response value Vcpa, and finally immersed in a cleaning solution for cleaning (S11 to S15).

そして、得られた応答値(この場合相対応答値とする)Vaを、前記推定式(1)に代入して残留農薬の推定濃度γを求める(S16)。   Then, the obtained response value (in this case, the relative response value) Va is substituted into the estimation formula (1) to obtain the estimated concentration γ of the residual pesticide (S16).

そして、求めた濃度γを予め設定されたしきい値Rと比較し、推定濃度γがしきい値Rより大きい場合には、その濃度γとともに不合格(NG)表示を行い、推定濃度γがしきい値R以下の場合には、その濃度γとともに合格(OK)表示を行う(S17〜19)。   Then, the obtained density γ is compared with a preset threshold value R. When the estimated density γ is larger than the threshold value R, a failure (NG) display is performed together with the density γ, and the estimated density γ is When the value is equal to or less than the threshold value R, a pass (OK) display is performed together with the concentration γ (S17 to 19).

なお、上記処理では相対応答値とCPA応答値を求めていたが、これまでの実験の結果では、相対応答値Vaのほうが安定した特性を示しているので、上記応答値を相対応答値のみに限定してもよい。   In the above processing, the relative response value and the CPA response value are obtained. However, in the results of the experiments so far, the relative response value Va shows a more stable characteristic. Therefore, the response value is changed to only the relative response value. It may be limited.

また、前記図4〜図11の特性は、高分子PCV800mg、可塑剤NPOE1mlに対して脂質TDABの含有量を可変した脂質膜センサの感度特性であったが、脂質TDABの含有量を0.1mgとし、可塑剤ジオクチルフェニルフォスフォネイト(DOPP)の含有量を可変した脂質膜センサの界面活性剤SDSに対する感度特性を前記同様の手順で測定して、図14の結果が得られている。   The characteristics shown in FIGS. 4 to 11 were sensitivity characteristics of a lipid membrane sensor in which the content of lipid TDAB was varied with respect to 800 mg of polymer PCV and 1 ml of plasticizer NPOE, but the content of lipid TDAB was 0.1 mg. Then, the sensitivity characteristic of the lipid membrane sensor with variable content of the plasticizer dioctylphenyl phosphonate (DOPP) to the surfactant SDS was measured by the same procedure as described above, and the result of FIG. 14 was obtained.

図14において、可塑剤DOPPの含有量が0.75〜1mlまでの範囲で界面活性剤SDSの濃度に対応した相対応答値Vaが得られていることがわかる。   In FIG. 14, it can be seen that a relative response value Va corresponding to the concentration of the surfactant SDS is obtained when the content of the plasticizer DOPP is in the range of 0.75 to 1 ml.

したがって、高分子PCV800mg、脂質TDAB0.1mgに対して、可塑剤DOPPが0.75〜1mlまでの範囲で形成した脂質膜センサも残留農薬の測定に有効である。   Therefore, a lipid membrane sensor formed with the plasticizer DOPP in the range of 0.75 to 1 ml with respect to the polymer PCV 800 mg and the lipid TDAB 0.1 mg is also effective for the measurement of residual agricultural chemicals.

上記実施例は、プローブ22の脂質としてTDABを用いた例であったが、脂質としてトリドデシルメチルアンモニウムクロリド(TDAC)を用いた場合でも同様の結果を得ることができた。   In the above example, TDAB was used as the lipid of the probe 22, but similar results could be obtained even when tridodecylmethylammonium chloride (TDAC) was used as the lipid.

図15〜図20は、脂質TDACを用いた場合の3種の原体のみの各サンプル液および原体とSDSのサンプル液に対する応答(相対応答値)を示すものであり、図15、図17、図19に示しているように、原体のみのサンプル液に対しては感度を持たないことがわかる。   FIGS. 15 to 20 show the responses (relative response values) of each of the three kinds of drug substances and the drug substance and SDS to the sample liquid when lipid TDAC is used. As shown in FIG. 19, it can be seen that there is no sensitivity to the sample solution of only the original substance.

これに対し、図16、図18、図20に示しているように、SDSを原体と同量含むサンプル液に対しては前記同様に顕著な応答性が確認でき、脂質TDACを用いたプローブ22においても、前記同様の農薬の濃度推定が可能である。   On the other hand, as shown in FIGS. 16, 18, and 20, a remarkable responsiveness can be confirmed in the same manner as described above with respect to a sample solution containing the same amount of SDS as the original substance, and a probe using lipid TDAC. 22 can estimate the concentration of the agricultural chemical as described above.

なお、図15〜図20において、実験の都合上、横軸として脂質TDACの含有量をミリモル(mM)の単位で示しているが、他のグラフで示したmg単位とするには、0.01mMを0.057mgに対応させればよい。   In FIG. 15 to FIG. 20, for the convenience of the experiment, the content of lipid TDAC is shown in units of millimolar (mM) on the horizontal axis. What is necessary is just to make 01 mM correspond to 0.057 mg.

図21は、高分子PCV800mg、可塑剤NPOE1mlに対して脂質TDACの含有量を可変した脂質膜センサの界面活性剤SDSに対する感度特性を示している。   FIG. 21 shows the sensitivity characteristics of the lipid membrane sensor with the lipid TDAC content varied with respect to 800 mg of the polymer PCV and 1 ml of the plasticizer NPOE with respect to the surfactant SDS.

この図21の実験結果から、脂質TDACの含有量が、0.1〜0.3mgの範囲で、界面活性剤SDSの濃度に対応した相対応答値Vaが得られていることがわかる。   From the experimental results in FIG. 21, it can be seen that the relative response value Va corresponding to the concentration of the surfactant SDS is obtained when the content of the lipid TDAC is in the range of 0.1 to 0.3 mg.

したがって、高分子PCV800mg、可塑剤NPOE1mlに対して脂質TDACの含有量を0.1〜0.3mgの範囲で形成した脂質膜センサも残留農薬の測定に有効であることがわかる。   Therefore, it can be seen that a lipid membrane sensor formed with a lipid TDAC content in the range of 0.1 to 0.3 mg based on 800 mg of the polymer PCV and 1 ml of the plasticizer NPOE is also effective for the measurement of residual agricultural chemicals.

また、図22は、高分子PCV800mg、可塑剤NPOE1mlに対して脂質ジドデシルジメチルアンモニウムブロミド(DDAB)の含有量を可変した脂質膜センサの界面活性剤SDSに対する感度特性を示している。   FIG. 22 shows the sensitivity characteristics of the lipid membrane sensor with respect to the surfactant SDS in which the content of lipid didodecyldimethylammonium bromide (DDAB) is varied with respect to 800 mg of the polymer PCV and 1 ml of the plasticizer NPOE.

この図22の実験結果から、脂質DDABの含有量が、0.1〜0.4mgの範囲で、界面活性剤SDSの濃度に対応した相対応答値Vaが得られていることがわかる。   From the experimental results shown in FIG. 22, it can be seen that a relative response value Va corresponding to the concentration of the surfactant SDS is obtained when the lipid DDAB content is in the range of 0.1 to 0.4 mg.

したがって、高分子PCV800mg、可塑剤NPOE1mlに対して脂質DDABの含有量を0.1〜0.4mgの範囲で形成した脂質膜センサも残留農薬の測定に有効であることがわかる。   Therefore, it can be understood that a lipid membrane sensor formed with a polymer DD of 800 mg and a plasticizer NPOE in the range of 0.1 to 0.4 mg of lipid DDAB is also effective for the measurement of residual agricultural chemicals.

なお、図示しないが、上記脂質DDABを用いた場合でも原体に対する感度が得られないことが確認されている。これらのことから、脂質を用いたセンサが農薬の代表的な原体に対して応答性がなく、界面活性剤に対して顕著な応答性を示すことが十分推定できる。   Although not shown, it has been confirmed that no sensitivity to the drug substance can be obtained even when the lipid DDAB is used. From these facts, it can be sufficiently estimated that a sensor using lipids is not responsive to a representative active ingredient of an agricultural chemical and exhibits a remarkable responsiveness to a surfactant.

20……残留農薬測定装置、21……容器、22……プローブ、23……基準電極、25……脂質膜センサ、35……電圧検出器、36……A/D変換器、37……演算装置、38……出力装置   20 ... Residual pesticide measuring device, 21 ... Container, 22 ... Probe, 23 ... Reference electrode, 25 ... Lipid membrane sensor, 35 ... Voltage detector, 36 ... A / D converter, 37 ... Arithmetic unit, 38 …… Output device

Claims (6)

農薬に助剤として使用されている界面活性剤が異なる濃度で溶けている複数のサンプル液に、脂質と可塑剤と高分子剤とを所定割合で混合して形成した脂質膜センサを浸漬して、その膜電位を測定する段階(S1〜S7)と、
前記測定結果に基づいて、前記脂質膜センサの応答に対して前記界面活性剤を助剤とする農薬の濃度を推定するための推定式を求める段階(S8、S9)と、
被検査体の表面の付着物を溶け込ました検査対象液に対して、前記脂質膜センサを浸漬して、その膜電位を測定する段階(S11〜S15)と、
前記検査対象液に対して得られた前記脂質膜センサの応答と前記推定式から前記被検査体の残留農薬の濃度を推定する段階(S16)とを含む残留農薬測定方法。
Immerse a lipid membrane sensor formed by mixing lipids, plasticizers, and polymer agents in a predetermined ratio in multiple sample solutions in which surfactants used as auxiliary agents for agricultural chemicals are dissolved at different concentrations. Measuring the membrane potential (S1 to S7);
Based on the measurement result, obtaining an estimation formula for estimating the concentration of the agrochemical using the surfactant as an auxiliary to the response of the lipid membrane sensor (S8, S9);
Steps (S11 to S15) of immersing the lipid membrane sensor and measuring its membrane potential with respect to the liquid to be inspected in which the deposit on the surface of the test object is dissolved,
A method for measuring residual agricultural chemicals, comprising: estimating the concentration of residual agricultural chemicals in the subject to be inspected from the response of the lipid membrane sensor obtained with respect to the liquid to be inspected and the estimation formula (S16).
脂質と可塑剤と高分子剤とを所定割合で混合して形成した脂質膜センサ(25)と、
農薬に助剤として使用されている界面活性剤が異なる濃度で溶けている複数のサンプル液に前記脂質膜センサを浸漬したときの前記脂質膜センサの膜電位に基づいて、前記脂質膜センサの応答に対して前記界面活性剤を助剤とする農薬の濃度を推定するための推定式を求めるとともに、被検査体の表面の付着物を溶け込ました検査対象液に対して前記脂質膜センサが浸漬されたときの応答と前記推定式とから前記被検査体の残留農薬の推定濃度を算出する演算手段(37)とを備えた残留農薬測定装置。
A lipid membrane sensor (25) formed by mixing a lipid, a plasticizer, and a polymer agent at a predetermined ratio;
Response of the lipid membrane sensor based on the membrane potential of the lipid membrane sensor when the lipid membrane sensor is immersed in a plurality of sample solutions in which surfactants used as auxiliary agents for agricultural chemicals are dissolved at different concentrations In addition, an estimation formula for estimating the concentration of the agrochemical using the surfactant as an auxiliary agent is obtained, and the lipid membrane sensor is immersed in a liquid to be inspected in which deposits on the surface of the test object are dissolved. A residual pesticide measuring apparatus comprising a calculation means (37) for calculating an estimated concentration of the residual pesticide of the subject to be inspected from a response when the test is performed and the estimation formula.
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、可塑剤として2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質としてテトラドデシルアンモニウムブロミド(TDAB)が0.1〜0.8mgの範囲で含まれていることを特徴とする請求項2記載の残留農薬測定装置。
The surfactant is anionic,
In the lipid membrane sensor, 800 mg of polyvinyl chloride (PVC) as a polymer agent, 1 ml of 2-nitrooctyl ether (NPOE) as a plasticizer, and tetradodecyl ammonium bromide (TDAB) as a lipid are 0.1 to 0. The residual pesticide measuring apparatus according to claim 2, which is contained in a range of 8 mg.
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、脂質としてテトラドデシルアンモニウムブロミド(TDAB)0.1mg、可塑剤としてジオクチルフェニルフォスフォネイト(DOPP)が0.75〜1mlgの範囲で含まれていることを特徴とする請求項2記載の残留農薬測定装置。
The surfactant is anionic,
The lipid membrane sensor is in the range of 800 mg of polyvinyl chloride (PVC) as a polymer agent, 0.1 mg of tetradodecyl ammonium bromide (TDAB) as a lipid, and 0.75 to 1 mlg of dioctylphenyl phosphonate (DOPP) as a plasticizer. The residual pesticide measuring apparatus according to claim 2, wherein
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、可塑剤として2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質としてトリドデシルメチルアンモニウムクロリド(TDAC)が0.1〜0.3mgの範囲で含まれていることを特徴とする請求項2記載の残留農薬測定装置。
The surfactant is anionic,
The lipid membrane sensor is composed of 800 mg of polyvinyl chloride (PVC) as a polymer agent, 1 ml of 2-nitrooctyl ether (NPOE) as a plasticizer, and 0.1 to 0 tridodecylmethylammonium chloride (TDAC) as a lipid. The residual pesticide measuring apparatus according to claim 2, which is contained in a range of .3 mg.
前記界面活性剤はアニオン性であって、
前記脂質膜センサは、高分子剤としてポリ塩化ビニル(PVC)800mg、可塑剤として2−ニトロオクチルエーテル(NPOE)1mlに対して、脂質としてジドデシルジメチルアンモニウムブロミド(DDAB)が0.1〜0.4mgの範囲で含まれていることを特徴とする請求項2記載の残留農薬測定装置。
The surfactant is anionic,
The lipid membrane sensor is composed of 800 mg of polyvinyl chloride (PVC) as a polymer agent, 1 ml of 2-nitrooctyl ether (NPOE) as a plasticizer and 0.1 to 0 of didodecyldimethylammonium bromide (DDAB) as a lipid. The residual pesticide measuring apparatus according to claim 2, which is contained in a range of .4 mg.
JP2009153550A 2009-06-29 2009-06-29 Pesticide residue measuring method and apparatus Active JP5250845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153550A JP5250845B2 (en) 2009-06-29 2009-06-29 Pesticide residue measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153550A JP5250845B2 (en) 2009-06-29 2009-06-29 Pesticide residue measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2011007725A true JP2011007725A (en) 2011-01-13
JP5250845B2 JP5250845B2 (en) 2013-07-31

Family

ID=43564555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153550A Active JP5250845B2 (en) 2009-06-29 2009-06-29 Pesticide residue measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP5250845B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002817A (en) * 2011-06-10 2013-01-07 Kyushu Univ Method for detecting residual agricultural chemical and surface plasmon resonance sensor
JP2019176837A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Method for producing processed cells containing nitrile-hydratase and method for producing amide compound
CN115541648A (en) * 2022-12-05 2022-12-30 埃森农机常州有限公司 Plant protection machine mixes medicine concentration on-line measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3346822T3 (en) 2015-09-11 2021-10-18 Ind Rolli Alimentari S P A Agronomic approach to the production of vegetables and mushrooms

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127040A (en) * 1995-10-30 1997-05-16 Anritsu Corp Method and apparatus for measurement of concentration of oils and fats
JPH10267894A (en) * 1997-03-27 1998-10-09 Anritsu Corp Method for detecting taste
JPH10267878A (en) * 1997-03-25 1998-10-09 Anritsu Corp Concentration detecting method of cyanide ion
JP2000283958A (en) * 1999-03-31 2000-10-13 Anritsu Corp Method and device for detecting poison
JP2001098299A (en) * 1999-09-30 2001-04-10 Anritsu Corp Cleaning fluid for molecular film sensor
JP2006029941A (en) * 2004-07-15 2006-02-02 Toshiba Corp Harmful substance detecting method and device
JP2007217630A (en) * 2006-02-20 2007-08-30 Kyushu Univ Chemical sensor detecting non-ionizable tasting substance in high sensitivity and selectively

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127040A (en) * 1995-10-30 1997-05-16 Anritsu Corp Method and apparatus for measurement of concentration of oils and fats
JPH10267878A (en) * 1997-03-25 1998-10-09 Anritsu Corp Concentration detecting method of cyanide ion
JPH10267894A (en) * 1997-03-27 1998-10-09 Anritsu Corp Method for detecting taste
JP2000283958A (en) * 1999-03-31 2000-10-13 Anritsu Corp Method and device for detecting poison
JP2001098299A (en) * 1999-09-30 2001-04-10 Anritsu Corp Cleaning fluid for molecular film sensor
JP2006029941A (en) * 2004-07-15 2006-02-02 Toshiba Corp Harmful substance detecting method and device
JP2007217630A (en) * 2006-02-20 2007-08-30 Kyushu Univ Chemical sensor detecting non-ionizable tasting substance in high sensitivity and selectively

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002817A (en) * 2011-06-10 2013-01-07 Kyushu Univ Method for detecting residual agricultural chemical and surface plasmon resonance sensor
JP2019176837A (en) * 2018-03-30 2019-10-17 三井化学株式会社 Method for producing processed cells containing nitrile-hydratase and method for producing amide compound
JP7020615B2 (en) 2018-03-30 2022-02-16 三井化学株式会社 A method for producing a cell-treated product containing a nitrile hydratase and a method for producing an amide compound.
CN115541648A (en) * 2022-12-05 2022-12-30 埃森农机常州有限公司 Plant protection machine mixes medicine concentration on-line measuring device
CN115541648B (en) * 2022-12-05 2023-03-10 埃森农机常州有限公司 Plant protection machine mixes medicine concentration on-line measuring device

Also Published As

Publication number Publication date
JP5250845B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
Hammerschmidt et al. Formation of artifact methylmercury during extraction from a sediment reference material
Kim et al. Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing
JP7508611B2 (en) Mixed ionophore ion-selective electrodes for improved detection of urea in blood.
US20100012493A1 (en) Multi-ionophore membrane electrode
JP5250845B2 (en) Pesticide residue measuring method and apparatus
Yang et al. An electrochemical method for high sensitive detection of thiabendazole and its interaction with human serum albumin
Galimova et al. Inversion-chronopotentiometric analysis of mercury in water
CN104198714B (en) A kind of electrochemical immunosensor and preparation and application thereof
Arvand et al. Potentiometric membrane sensor based on 6-(4-nitrophenyl)-2, 4-diphenyl-3, 5-diaza-bicyclo [3.1. 0] hex-2-ene for detection of Sn (II) in real samples
Ullah et al. Method development and validation for the determination of potassium (K2O) in fertilizer samples by flame photometry technique
Samardzic et al. The analysis of anionic surfactants in effluents using a DDA-TPB potentiometric sensor
Liang et al. Potentiometric titration for the high precision determination of active components in six types of chemical disinfectants
Lee et al. Electrochemical detection of explosive compounds in an ionic liquid in mixed environments: influence of oxygen, moisture, and other nitroaromatics on the sensing response
Masadome et al. Effect of plasticizer on the performance of the surfactant-selective electrode based on a poly (vinyl chloride) membrane with no added ion-exchanger
Galović et al. Potentiometric titration of micromolar levels of anionic surfactants in model effluents using a sensitive potentiometric sensor
Chandra et al. Tin (II) Selective PVC Membrane Electrode Based on Salicylaldehyde Thiosemicarbazone as an Ionophore
Wada et al. Preparation and examination of calcium ion-selective electrodes for flow analysis
Helmkamp et al. Residue Analysis, Direct Potentiometric Method for Chloride Ion Applied to Residues of Chlorinated Insecticides
Velling et al. Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater
WO2017119252A1 (en) Ion-sensitive membrane, ion-selective electrode, and ion sensor
Abounassif et al. Dodecanthiol as novel sensing material for potentiometric determination of sodium dodecyl sulphate anionic surfactant
Mostafa PVC matrix membrane sensor for potentiometric determination of dodecylsulfate
Kim et al. On-site water nitrate monitoring system based on automatic sampling and direct measurement with ion-selective electrodes
KR102535280B1 (en) How to Determine the Concentration of a Species Using a Reagent Baseline
Ganjali et al. Highly Selective PVC‐Based Membrane Electrode Based on 2, 6‐Diphenylpyrylium Fluoroborate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5250845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250