JPH09127002A - High-sensitivity sodium monitoring apparatus - Google Patents

High-sensitivity sodium monitoring apparatus

Info

Publication number
JPH09127002A
JPH09127002A JP28692595A JP28692595A JPH09127002A JP H09127002 A JPH09127002 A JP H09127002A JP 28692595 A JP28692595 A JP 28692595A JP 28692595 A JP28692595 A JP 28692595A JP H09127002 A JPH09127002 A JP H09127002A
Authority
JP
Japan
Prior art keywords
sample
sodium
laser
excited
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28692595A
Other languages
Japanese (ja)
Other versions
JP3305174B2 (en
Inventor
Nariyuki Tomonaga
成之 朝長
Jun Izumi
順 泉
Takashi Morimoto
敬 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28692595A priority Critical patent/JP3305174B2/en
Publication of JPH09127002A publication Critical patent/JPH09127002A/en
Application granted granted Critical
Publication of JP3305174B2 publication Critical patent/JP3305174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high-sensitivity sodium monitoring apparatus by which sodium in secondary cooling water or the like can be monitored in real time and stably for many hours by using a tunable soild-state laser as a light source, exciting a sample inside an atomization part, and processing excited atomic fluorescence with a detection part. SOLUTION: A light source part 10 which is provided with variable wavelength elements 13-1, 13-2 composed of a titanium sapphire crystal, with a YAG laser 11 which irradiates the elements with exciting light and with BBO crystals 14-1, 14-2 which waveform-convert an oscillation laser beam by a nonlinear effect is used. Then, a sample 21 is excited inside an atomization part 20, atomic fluorescence is processed by a detection part 30, and the concentration of sodium inside the sample 21 is measured with high accuracy. At this time, the sample 21 is atomized by a nebulizer 22, it is introduced into a microwave plasma inside a Beenakker cavity 23 accompanying He gas as an assistant gas, the sample 21 is atomized so as to be excited by a laser beam 15, and fluorescence is emitted. The fluorescence is detected 30 and monitored 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力、発電プラン
トの給水,復水等の水質管理、発電プラントの二次冷却
水等の水質管理等に適用される高感度ナトリウムモニタ
リング装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-sensitivity sodium monitoring device applied to water quality control of thermal power, water supply of power generation plant, condensate, etc., and water quality control of secondary cooling water of power generation plant.

【0002】[0002]

【従来の技術】従来火力プラントの水質管理について
は、最も腐食事故の発生する確率の低い条件に最適化さ
せた水質基準が採用され、この中で火力発電では、近年
復水中の不純物を超純水近くまで除去している。この復
水中の共存不純物としては、ナトリウム,塩素イオン等
が対象となり、これらに対し、10ppt程度の計測下
限界が要求されている。
2. Description of the Related Art Conventionally, for water quality management of thermal power plants, water quality standards optimized for the condition with the lowest probability of corrosion accidents are adopted. Removes to near water. As coexisting impurities in the condensate, sodium, chloride ions, etc. are targeted, and a lower limit of measurement of about 10 ppt is required for these.

【0003】従来においては、これらの分析法としてイ
オンクロマトグラフや試料を濃縮した後に原子吸光法、
ICP等により測定しているが、溶媒の展開及び試料の
濃縮にも時間を要し、リアルタイムの測定ができない、
という問題がある。
Conventionally, as these analytical methods, an ion absorption method after concentrating an ion chromatograph or a sample,
Although it is measured by ICP, etc., it takes time to develop the solvent and concentrate the sample, and real-time measurement is not possible.
There is a problem.

【0004】そこで、従来においては、レーザ誘起蛍光
法(LIF)によるナトリウム計測の火力プラントへの
水処理の導入が検討されている。該レーザ誘起蛍光法
は、検出感度の点ではイオンクロマトグラフよりも優れ
ていたが、ナトリウムの原子線589nmの波長に対応
するレーザとしてアルゴンイオンレーザ誘起色素レー
ザ、YAGレーザの連続発振時間が2000時間程度で
あり、また、色素は劣化するので、これに対する継続的
な補充が必要となる、いう問題がある。
Therefore, conventionally, the introduction of water treatment into a thermal power plant for measuring sodium by the laser-induced fluorescence method (LIF) has been studied. The laser-induced fluorescence method was superior to the ion chromatograph in terms of detection sensitivity, but a continuous oscillation time of an argon ion laser-induced dye laser or YAG laser as a laser corresponding to the wavelength of the sodium atomic beam 589 nm was 2000 hours. However, there is a problem in that the dye deteriorates, and continuous replenishment of the dye is required.

【0005】このため、上記継続的な補充の繁雑さを考
えるとモニタ用光源には適さないことから、ナトリウム
共鳴線である589nmの波長を発振する半導体レーザ
や固体レーザの開発が求められていた。
Therefore, considering the complexity of the above-mentioned continuous replenishment, it is not suitable as a monitor light source. Therefore, development of a semiconductor laser or a solid-state laser that oscillates a wavelength of 589 nm which is a sodium resonance line has been demanded. .

【0006】[0006]

【発明が解決しようとする課題】しかしがら、半導体レ
ーザにおいては、上記要望は未だ開発されず、固体レー
ザにおいても上記ナトリウム共鳴線である589nmの
波長を発振する素子は無かった。
However, in the semiconductor laser, the above-mentioned demand has not yet been developed, and even in the solid-state laser, there was no element that oscillates the wavelength of 589 nm which is the sodium resonance line.

【0007】本発明は、上記問題に鑑み、長時間に亙っ
て安定して二次冷却水等のナトリウムをリアルタイムで
モニタできる高感度ナトリウムモニタリング装置を提供
することを目的とする。
In view of the above problems, it is an object of the present invention to provide a highly sensitive sodium monitoring device capable of stably monitoring sodium in secondary cooling water or the like in real time over a long period of time.

【0008】[0008]

【課題を解決するための手段】前記目的を達成する本発
明の高感度ナトリウムモニタリング装置の構成は、レー
ザ誘起蛍光法を用いた高感度ナトリウム分析装置におい
て、光源に波長可変固体レーザを用いたことを特徴とす
る。
The structure of the high-sensitivity sodium monitoring apparatus of the present invention that achieves the above-mentioned object is that a wavelength tunable solid-state laser is used as a light source in a high-sensitivity sodium analyzer using a laser-induced fluorescence method Is characterized by.

【0009】上記高感度ナトリウムモニタリング装置に
おいて、上記光源が、チタンサファイア結晶からなる波
長可変素子と、この波長可変素子に励起光を照射するY
AGレーザと、発振したレーザ光を非線形効果によって
波長変換するBBO結晶とを備えたものであり、原子化
部内で試料を励起させ、該励起した原子蛍光を検出部に
おいて処理して、上記試料内のナトリウム濃度を高精度
で測定してなることを特徴とする。
In the high-sensitivity sodium monitoring apparatus, the light source is a wavelength tunable element made of titanium sapphire crystal and Y for irradiating the wavelength tunable element with excitation light.
An AG laser and a BBO crystal for wavelength-converting the oscillated laser light by a non-linear effect are provided, the sample is excited in the atomization section, the excited atomic fluorescence is processed in the detection section, and It is characterized in that the sodium concentration of is measured with high accuracy.

【0010】本発明の内容を以下に説明する。The contents of the present invention will be described below.

【0011】本発明はナトリウム共鳴線である589n
mの波長を固体素子のみで発振すべく、チタンサファイ
アレーザを二台使用している。このチタンサファイアレ
ーザは700〜950nmの波長域を発振し、SHG
(Seconnd Harmonic Generat
ion:第二高周波発生)は350〜475nmを発振
する。
The present invention is the sodium resonance line 589n
Two titanium sapphire lasers are used to oscillate the wavelength of m only by the solid state element. This titanium sapphire laser oscillates in the wavelength range of 700 to 950 nm, and SHG
(Second Harmonic Generat
ion: second high frequency generation) oscillates 350 to 475 nm.

【0012】ここで、第二高周波発生(SHG)は、発
生した光或いは発生に用いる非線形光学素子を示すもの
で、非線形光学効果を用いて入射波長に対し1/2波長
の光を発生するものである。
Here, the second high-frequency generator (SHG) refers to generated light or a non-linear optical element used for the generation, and uses the non-linear optical effect to generate light having a half wavelength with respect to the incident wavelength. Is.

【0013】本発明のように、二台の発振器を用いた和
周波あるいは差周波によって、広い波長域の発振が可能
になり、あらゆる元素の分析に適用される。また、固体
素子を使用したナトリウム共鳴線589nmの発振が可
能になり、長時間安定した光源として使用することがき
る。
As in the present invention, a sum frequency or a difference frequency using two oscillators makes it possible to oscillate in a wide wavelength range and is applicable to analysis of all elements. Further, it becomes possible to oscillate a sodium resonance line of 589 nm using a solid state element, and it can be used as a stable light source for a long time.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明するが、本発明はこれに限定されるものではな
い。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiments of the present invention will be described in detail below, but the present invention is not limited thereto.

【0015】図1に本発明の分析装置の概略図を示す。
本実施の形態では、冷却水中の共存不純物として、ナト
リウムをリアルタイムで計測する場合について、説明す
る。
FIG. 1 shows a schematic diagram of the analyzer of the present invention.
In the present embodiment, a case will be described where sodium is measured in real time as a coexisting impurity in cooling water.

【0016】同図に示すように、本ナトリウムモニタ装
置は、光源部10と、原子化部20と、検出部30及び
モニタ部40とから構成されている。
As shown in the figure, the present sodium monitoring device comprises a light source section 10, an atomization section 20, a detection section 30 and a monitor section 40.

【0017】上記光源部10は、YAGレーザ11と、
該レーザ11からの光(532nm)を分枝するビーム
スプリッタ12と二台のチタンサファイアレーザ発振器
13−1,13−2と、上記チタンサファイアレーザ発
振器の一方の発振器側13−2にBBO結晶14−1を
設けると共に、合波した後に、さらに位相整合するため
のBBO結晶14−2を設けている。上記チタンサファ
イアレーザ発振器の内、一方の発振器13−1からは8
62.6nmが発振し、他方の発振器13−2からは7
00nmが発振する。この700nmの波長はさらにB
BO結晶14−1によって2倍波の350nmに変換
し、発振器13−1から発振した862.6nmの光と
混合する。この混合した光はさらに設けられたBBO結
晶14−2に入射し、位相整合をろり差周波589nm
を発生する。この位相整合されたレーザ光15は原子化
部20に導入される。
The light source unit 10 includes a YAG laser 11 and
A beam splitter 12 for branching light (532 nm) from the laser 11, two titanium sapphire laser oscillators 13-1 and 13-2, and a BBO crystal 14 on one oscillator side 13-2 of the titanium sapphire laser oscillator. -1 is provided, and after being multiplexed, a BBO crystal 14-2 for further phase matching is provided. Of the titanium sapphire laser oscillators, one oscillator 13-1 to 8
62.6 nm oscillates, and 7 from the other oscillator 13-2.
00 nm oscillates. The wavelength of 700 nm is B
The BO crystal 14-1 converts the second harmonic to 350 nm and mixes it with the 862.6 nm light emitted from the oscillator 13-1. This mixed light is incident on the BBO crystal 14-2 further provided, and is phase-matched to obtain a difference frequency of 589 nm.
Occurs. The phase-matched laser light 15 is introduced into the atomization section 20.

【0018】ここで、差周波及び和周波とは、二つの異
なる波長のレーザ光を非線形光学素子に入射し、非線形
光学効果によって二波長の周波数(ω1 ,ω 2)の和
(ω1+ω 2)、或いは差(ω1 −ω 2)の波長を発生
させたとき、それぞれの光を和周波或いは差周波とい
う。
Here, the difference frequency and the sum frequency are the sum (ω 1 + ω) of the frequencies (ω 1 , ω 2 ) of the two wavelengths due to the non-linear optical effect when laser lights of two different wavelengths are incident on the non-linear optical element. 2 ) Or, when the wavelength of difference (ω 1 −ω 2 ) is generated, each light is called sum frequency or difference frequency.

【0019】また、上記BBO結晶とは、非線形光学結
晶の一つであり、化学式は、β−BaB2 4 で表され
る。本発明ではこのBBO結晶からなる素子を使用して
上記SHGや和周波、差周波を発生し、波長を変換して
いる。
The BBO crystal is one of non-linear optical crystals, and its chemical formula is represented by β-BaB 2 O 4 . In the present invention, the element composed of this BBO crystal is used to generate the SHG, the sum frequency, and the difference frequency to convert the wavelength.

【0020】この原子化部20は、試料21を霧化する
ネブライザ22とビーネッカキャビティ23とから構成
されている。ここで、試料21は上記ネブライザ22に
よって霧化し、アシストガス24であるHeガスに伴っ
てビーネッカキャビティ23内のマイクロ波プラズマへ
導入される。そして、上記ビーネッカキャビティ23内
のプラズマ内において試料は原子化され、その直後に入
射してくるレーザ光15によって励起され、蛍光を発す
る。
The atomizing section 20 is composed of a nebulizer 22 for atomizing a sample 21 and a Beanecker cavity 23. Here, the sample 21 is atomized by the nebulizer 22 and introduced into the microwave plasma in the Beanecker cavity 23 along with He gas that is the assist gas 24. Then, the sample is atomized in the plasma inside the Beanecker cavity 23, and excited by the laser beam 15 which is incident immediately after that, and emits fluorescence.

【0021】励起された蛍光は検出部30で検出され、
モニタ部40で処理され、オンタイムで表示される。
The excited fluorescence is detected by the detection unit 30,
It is processed by the monitor unit 40 and displayed on time.

【0022】すなわち、検出部30の分光器31、光電
子増倍管32によって検出され、信号はボックスカ積分
器33で積算等のデータ処理される。濃度はペンレコー
ダ34或いはモニタ部40のコンピュータ41に処理さ
れてモニタ42によってそれぞれ表示される。なお、図
中符号35は分光器コントローラ、36はフォトダイオ
ード、37はボックスカのトリガを各々図示する。
That is, the signal is detected by the spectroscope 31 and the photomultiplier tube 32 of the detection unit 30, and the signal is subjected to data processing such as integration by the boxcar integrator 33. The density is processed by the pen recorder 34 or the computer 41 of the monitor unit 40 and displayed by the monitor 42, respectively. In the figure, reference numeral 35 is a spectroscope controller, 36 is a photodiode, and 37 is a box trigger.

【0023】[0023]

【発明の効果】以上述べたように、本発明によれば、長
時間安定して発振が可能な固体レーザを光源としたNa
のモリタリング装置をリアルタイムで実現でき、火力、
発電プラントの給水,復水等の水質管理、発電プラント
の二次冷却水等の水質管理に適用して好適なものとな
る。
As described above, according to the present invention, Na is used as a light source which is a solid-state laser capable of stable oscillation for a long time.
Real-time realization of a monitoring device of
It is suitable for application to water quality control such as water supply and condensate of power generation plant, and water quality control of secondary cooling water of power generation plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施の形態の分析装置の概略図で
ある。
FIG. 1 is a schematic diagram of an analyzer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 光源部 11 YAGレーザ 12 ビームスプリッタ 13−1,13−2 チタンサファイアレーザ発振器 14−1,14−2 BBO結晶 15 レーザ光 20 原子化部 21 試料 22 ネブライザ 23 ビーネッカーキャビティ 24 アシストガス 30 検出部 31 分光器 32 光電子増倍管 33 ボックスカー積分器 34 ペンレコーダ 40 モニタ部 41 コンピュータ 42 モニタ 10 Light Source Section 11 YAG Laser 12 Beam Splitter 13-1, 13-2 Titanium Sapphire Laser Oscillator 14-1, 14-2 BBO Crystal 15 Laser Light 20 Atomization Section 21 Sample 22 Nebulizer 23 Beanecker Cavity 24 Assist Gas 30 Detection Section 31 spectroscope 32 photomultiplier tube 33 boxcar integrator 34 pen recorder 40 monitor section 41 computer 42 monitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ誘起蛍光法を用いた高感度ナトリ
ウム分析装置において、光源に波長可変固体レーザを用
いたことを特徴とする高感度ナトリウムモニタリング装
置。
1. A high-sensitivity sodium monitoring apparatus using a tunable solid-state laser as a light source in a high-sensitivity sodium analyzer using a laser-induced fluorescence method.
【請求項2】 請求項1記載の高感度ナトリウムモニタ
リング装置において、 上記光源が、チタンサファイア結晶からなる波長可変素
子と、この波長可変素子に励起光を照射するYAGレー
ザと、発振したレーザ光を非線形効果によって波長変換
するBBO結晶とを備えたものであり、原子化部内で試
料を励起させ、該励起した原子蛍光を検出部において処
理して、上記試料内のナトリウム濃度を高精度で測定し
てなることを特徴とする高感度ナトリウムモニタリング
装置。
2. The high-sensitivity sodium monitoring device according to claim 1, wherein the light source includes a wavelength tunable element made of a titanium sapphire crystal, a YAG laser for irradiating the wavelength tunable element with excitation light, and an oscillated laser beam. A BBO crystal that wavelength-converts by a non-linear effect is provided, the sample is excited in the atomization section, the excited atomic fluorescence is processed in the detection section, and the sodium concentration in the sample is measured with high accuracy. A highly sensitive sodium monitoring device.
JP28692595A 1995-11-06 1995-11-06 High sensitivity sodium monitoring device Expired - Lifetime JP3305174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28692595A JP3305174B2 (en) 1995-11-06 1995-11-06 High sensitivity sodium monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28692595A JP3305174B2 (en) 1995-11-06 1995-11-06 High sensitivity sodium monitoring device

Publications (2)

Publication Number Publication Date
JPH09127002A true JPH09127002A (en) 1997-05-16
JP3305174B2 JP3305174B2 (en) 2002-07-22

Family

ID=17710742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28692595A Expired - Lifetime JP3305174B2 (en) 1995-11-06 1995-11-06 High sensitivity sodium monitoring device

Country Status (1)

Country Link
JP (1) JP3305174B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362417C (en) * 2003-08-01 2008-01-16 日本电信电话株式会社 Laser light source
CN105987877A (en) * 2015-02-11 2016-10-05 苏州瑞蓝环保科技有限公司 Optical fiber-coupled laser sum frequency technology-based trace mercury concentration detection method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362417C (en) * 2003-08-01 2008-01-16 日本电信电话株式会社 Laser light source
CN105987877A (en) * 2015-02-11 2016-10-05 苏州瑞蓝环保科技有限公司 Optical fiber-coupled laser sum frequency technology-based trace mercury concentration detection method and device

Also Published As

Publication number Publication date
JP3305174B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
Hänsch et al. Two-photon spectroscopy of Na 3s-4d without Doppler broadening using a cw dye laser
West et al. Photoacoustic spectroscopy
Maus et al. New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation
Hosler et al. Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy
Miklós et al. Peer reviewed: Modulated and pulsed photoacoustics in trace gas analysis
US4284354A (en) Sensitive nonlinear optical spectroscopy
Urabe et al. Observation of Doppler sidebands of a laser-cooled Ca+ ion by using a low-temperature-operated laser diode
Bloss et al. Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO 2, NO and IO by laser-induced fluorescence
JP3305174B2 (en) High sensitivity sodium monitoring device
Akimov et al. Coherent Raman scattering in molecular hydrogen in a dc electric field
JPH10132741A (en) Technique and apparatus for measurement of trace component by using laser
Sappey et al. Laser double-resonance study of OH (X2Πi, v= 12)
DeRose et al. Degenerate four-wave mixing spectroscopy of the (glyoxal) 2 van der Waals complex
JP2005077606A (en) Laser oscillation device and air pollutant monitoring device
JPH04274743A (en) Laser emission analysis method
Lu et al. Suppression of stimulated hyer-Raman scattering in lithium vapor
JPH0399482A (en) Oscillation of wavelength variable vacuum ultraviolet laser by molecule
Takahashi et al. Resonance IR spectroscopy in aqueous solution by combining IR super-resolution with TFD-IR method
Ghaziaskar et al. Stimulated Raman scattering in analytical spectroscopy
JP2002329911A (en) Laser device, amplifier and ultraviolet laser device
JPH05107186A (en) Solid luminescence spectroscopic analyzer
Niimi et al. Application of REMPI to highly rarefied gas flows
Felker et al. Rotational coherence spectroscopy: picosecond techniques applied to high-resolution rotational spectroscopy
JPH07280733A (en) Raman spectrum measuring device
Burakov et al. Intracavity laser spectroscopy: plasma diagnostics and spectral analysis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term