JPH09126413A - Processing method of combustion gas in re-burning combustion method - Google Patents

Processing method of combustion gas in re-burning combustion method

Info

Publication number
JPH09126413A
JPH09126413A JP28133995A JP28133995A JPH09126413A JP H09126413 A JPH09126413 A JP H09126413A JP 28133995 A JP28133995 A JP 28133995A JP 28133995 A JP28133995 A JP 28133995A JP H09126413 A JPH09126413 A JP H09126413A
Authority
JP
Japan
Prior art keywords
combustion
combustion gas
reaction
zone
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28133995A
Other languages
Japanese (ja)
Inventor
Atsuko Inoue
敦子 井上
Koji Hase
耕志 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP28133995A priority Critical patent/JPH09126413A/en
Publication of JPH09126413A publication Critical patent/JPH09126413A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a combustion gas processing method securing low NOX combustion in re-burning combustion. SOLUTION: A re-burning combustion method is adapted such that a hydrocarbon fuel is blown to combustion gas produced in a primary combustion zone and the combustion gas is combustion-processed under excessive fuel conditions, and thereafter it is passed through a burn-out zone on a rearstream side. In the method, the combustion gas so combustion-processed under excess fuel conditions is once kept in a temperature range of from 700 deg.C to 800 deg.C, and thereafter non-combustion components are combusted under the environment at the temperature of 1,000 deg.C or higher. HCN produced in the re-burning zone is reduced to N2 after passage through N2 O, and hence the rate of reduction of NOX is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリバーニング燃焼法
における燃焼ガスの処理方法に関し、特に、バーンアウ
トゾーンにおけるNOx 還元率を向上させることによ
り、低NOx 燃焼を実現可能としたリバーニング燃焼法
における燃焼ガスの処理方法に関する。
The present invention relates to relates to the treatment method of the combustion gases in the reburning combustion method, in particular by improving the NO x reduction ratio in the burn-out zone, reburning combustion which enables realizing a low NO x combustion Method for treating combustion gas in the method.

【0002】[0002]

【従来の技術】廃棄物焼却炉等の比較的大型の燃焼炉に
おけるNOx (窒素酸化物)低減対策としてリバーリン
グ(炉内脱硝)燃焼法が提案されている。これは、図1
1に示すように、空気比1以上である主燃焼ゾーンで生
成した燃焼ガスに、リバーニングゾーンにおいて過剰の
炭化水素燃料を吹き込み、燃料過剰条件下(還元雰囲気
下:空気比<1)で燃焼処理することによりNOx を還
元し、その後流において空気比が1以上となるように空
気を供給して未燃分を完全燃焼させるようにした燃焼法
であり、低NOx 燃焼法として有効とされる。
2. Description of the Related Art A reversing (in-furnace denitration) combustion method has been proposed as a NO x (nitrogen oxide) reduction measure in a relatively large combustion furnace such as a waste incinerator. This is shown in FIG.
1, excess hydrocarbon fuel is blown into the combustion gas generated in the main combustion zone with an air ratio of 1 or more in the reburning zone, and burned under excessive fuel conditions (reducing atmosphere: air ratio <1). This is a combustion method in which NO x is reduced by treatment and unburned components are completely burned by supplying air so that the air ratio becomes 1 or more in the subsequent flow. It is effective as a low NO x combustion method. To be done.

【0003】[0003]

【発明が解決しようとする課題】従来、リバーリング燃
焼法において、リバーニングゾーンにおけるNOx の還
元反応については多くの研究がなされ、それに基づい
て、低NOx 燃焼を行なうための燃焼ガスの処理方法に
ついてすでにいくつかの提案がされているが(三菱重工
技報、昭和55年第17巻第6号、資源・エネルギー利
用技術小特集号、等)、N2 への還元過程におけるHC
N等の中間生成物について詳細な研究を行なった例は少
なく、燃焼の後段ゾーンであるバーンアウトゾーンでの
燃焼ガスの挙動は必ずしも明確には把握されていない。
そのために、バーンアウトゾーンでの燃焼を低NOx
するための燃焼ガスの処理方法については格別の提案が
なされていない。
Conventionally, in the reverting combustion method, many studies have been conducted on the NO x reduction reaction in the reburning zone, and based on that, the treatment of combustion gas for low NO x combustion is performed. Although some proposals have already been made regarding the method (Mitsubishi Heavy Industries Technical Report, Vol. 17, No. 17, 1979, No. 6, Resources and Energy Utilization Technology Special Issue, etc.), HC in the reduction process to N 2
There are few examples of detailed studies on intermediate products such as N, and the behavior of combustion gas in the burnout zone, which is the latter stage zone of combustion, is not always clearly understood.
Therefore, no particular proposal has been made regarding a method of treating combustion gas for reducing NO x in the burnout zone.

【0004】本発明の目的は、リバーニング燃焼法にお
ける燃焼の後段ゾーンであるバーンアウトゾーンでの燃
焼ガスの挙動を明らかにし、それに基づき、より高いN
x還元率を達成して低NOx 燃焼を可能とした燃焼ガ
スの処理方法を提案することにある。
The object of the present invention is to clarify the behavior of the combustion gas in the burnout zone, which is the latter zone of combustion in the reburning combustion method, and on the basis of it, higher N
The object of the present invention is to propose a method for treating combustion gas that achieves an O x reduction rate and enables low NO x combustion.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、NOx 還元反応における中間生成物の
測定及び反応経過を中心にしてリバーリング燃焼法につ
いての実験を行なうことにより、燃料過剰条件下で燃焼
した燃焼ガスを一旦所定の温度範囲に保持し、しかる
後、バーンアウトさせた場合に、バーンアウトゾーンで
のNOx 還元は確実に促進されかつ他の有害物質も排出
されないことを確認した。
In order to solve the above-mentioned problems, the present inventors carry out experiments on the revering combustion method focusing on the measurement of intermediate products in the NO x reduction reaction and the reaction progress. As a result, when the combustion gas burned under excessive fuel conditions is once held in a predetermined temperature range and then burned out, NO x reduction in the burnout zone is surely promoted and other harmful substances are also reduced. It was confirmed that it was not discharged.

【0006】本発明は上記の実験結果に基づくものであ
り、基本的に、主燃焼ゾーンで生成した燃焼ガスに対し
て炭化水素燃料を吹き込み、該燃焼ガスを燃料過剰条件
下で燃焼処理した後、後流側のバーンアウトゾーンを通
過させるようにしたリバーニング燃焼法において、前記
燃料過剰条件下で燃焼処理した燃焼ガスを一旦700℃
〜800℃の温度範囲に維持した後、1000℃以上の
環境下で未燃分の燃焼を行うようにして燃焼ガスを処理
することを特徴とする。
The present invention is based on the above experimental results. Basically, a hydrocarbon fuel is blown into the combustion gas produced in the main combustion zone, and the combustion gas is burned under excess fuel conditions. In the reburning combustion method in which the burnout zone on the wake side is passed, the combustion gas burned under the above-mentioned excess fuel condition is once heated to 700 ° C.
After being maintained in a temperature range of up to 800 ° C., the combustion gas is treated so as to burn unburned components under an environment of 1000 ° C. or higher.

【0007】[0007]

【発明の実施の形態】以下、上記の発明をなすにいたっ
た実験結果を説明しつつ本発明による燃焼ガスの処理方
法を詳細に説明する。図1に示すような管型流通反応装
置を用いて燃焼実験を行なった。実験において、燃焼排
ガスを模擬した試料ガス中のNOx を様々な条件下で還
元させ、そのときのNOx 、HCN、N2 O等の濃度を
測定した。同一条件下での反応計算も合わせて行なっ
た。リバーニング燃料はメタンを用い、空気、N2 、C
2 、NOから模擬排ガスを調製し、これを所定量のC
4 に加えて試料ガスとして用いた。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the method for treating combustion gas according to the present invention will be described in detail, while explaining the experimental results that lead to the above invention. Combustion experiments were conducted using a tubular flow reactor as shown in FIG. In the experiment, NO x in the sample gas simulating the combustion exhaust gas was reduced under various conditions, and the concentrations of NO x , HCN, N 2 O, etc. at that time were measured. Reaction calculations under the same conditions were also performed. Methane is used as the reversing fuel, and air, N 2 , C
A simulated exhaust gas was prepared from O 2 and NO, and a predetermined amount of C was prepared.
In addition to H 4 , it was used as a sample gas.

【0008】試料ガスの流量はマスフローコントローラ
1で制御し、完全混合してから反応管2a、2bに導入
した。各反応管2a、2bは電気炉3a、3b(100
0℃に設定)により加熱した。図において、上流側の電
気炉3aはリバーニングゾーンに、下流側の電気炉3b
はバーンアウトゾーンに相当し、その間に二次空気導入
口4を設けた。そして、下流側の反応管2bを出た燃焼
排ガスの成分を各種の分析機器を用いて測定した。反応
計算はSENKINの温度時間変化を予め与えるモードを用
い、反応スキームにはKilpinenによって提唱されたもの
を採用した。なお、以下の説明において、電気炉3aの
みを加熱し、燃料過剰条件下でNOx を反応させた場合
を一段反応、2つの電気炉3a、3bを加熱し、二次空
気導入口4から二次空気を加えて未燃分を完全燃焼させ
た場合を二段反応と呼ぶこととする。また、α=(導入
酸素量)/(必要酸素量)(α1 :一段反応、α2 :二
段反応)と定義し、実験においてはそれを空気比に代わ
る関数として用いた。
The flow rate of the sample gas was controlled by the mass flow controller 1 so that it was completely mixed and then introduced into the reaction tubes 2a and 2b. The reaction tubes 2a and 2b are connected to the electric furnaces 3a and 3b (100
Set to 0 ° C.). In the figure, the upstream electric furnace 3a is in the reburning zone, and the downstream electric furnace 3b is
Corresponds to the burnout zone, and the secondary air inlet 4 was provided between them. Then, the components of the combustion exhaust gas discharged from the reaction tube 2b on the downstream side were measured using various analyzers. For the reaction calculation, the mode in which the temperature-time change of SENKIN was given beforehand was used, and the reaction scheme proposed by Kilpinen was adopted. In the following description, when only the electric furnace 3a is heated and NO x is reacted under an excessive fuel condition, a one-step reaction is performed, the two electric furnaces 3a and 3b are heated, and the secondary air inlet 4 The case where the secondary air is added to completely burn the unburned components is called a two-step reaction. In addition, α = (introduced oxygen amount) / (required oxygen amount) (α 1 : one-step reaction, α 2 : two-step reaction) was defined and used as a function in place of the air ratio in the experiment.

【0009】図2は、基本条件としてα1 を変化させた
ときの、NOx とHCNとの濃度の関係を実験値(ex
p)及び計算値(calc)について示している。燃料
過剰条件下でのNOx の還元反応に与えるα1 の影響が
よく示されると共に、NOx濃度が減少するとHCN濃
度が増加しており、全窒素化合物濃度(NOx +HC
N)はα1 ≦0.65ではNOx 初濃度の70%程度と
なること、一段反応中では大部分のNOx はHCNまで
しか還元していないことが分かる。
FIG. 2 shows the experimental value (ex) of the relationship between the concentrations of NO x and HCN when α 1 is changed as a basic condition.
p) and the calculated value (calc). The effect of α 1 on the reduction reaction of NO x under the fuel excess condition is well shown, and the HCN concentration increases as the NO x concentration decreases, and the total nitrogen compound concentration (NO x + HC
It can be seen that N) is about 70% of the initial concentration of NO x when α 1 ≦ 0.65, and most of the NO x is reduced to HCN during the one-step reaction.

【0010】そこで、バーンアウトゾーンでのHCNの
挙動を把握すべく、二段反応の実験を行なった。実験は
二次空気導入口4から二次空気を加えてα2 =1.05
に固定して行なった。図3は、基本条件においてα1
変化させたときの二段反応でのNOx 濃度実験値を、一
段反応後のNOx 濃度、NOx +HCN濃度と共に示し
ている。この実験では、二段反応後では、HCN、
2 、COは検出限界以下となり、かつ、0.4≦α1
≦0.7の範囲で、一段反応ではNOx とHCNとが併
せて80ppm程度存在していたものが、二段反応では
NOx のみで60ppm以下となり、全体でのNOx
元率は40%以上と高い還元率を示すことが分かった。
このことは、酸化雰囲気中でも含窒素化合物(HCN
等)のN2 への還元反応が進むこと示していると共に、
2つの電気炉3a、3bの間に設けた二次空気導入口4
からの二次空気の供給がなんらかの影響を与えているも
のと考えた。
Therefore, in order to understand the behavior of HCN in the burnout zone, a two-stage reaction experiment was conducted. In the experiment, secondary air was added from the secondary air inlet 4 and α 2 = 1.05
It was fixed to and performed. FIG. 3 shows the experimental values of NO x concentration in the two-step reaction when α 1 was changed under the basic conditions, together with the NO x concentration and NO x + HCN concentration after the one-step reaction. In this experiment, HCN,
H 2 and CO are below the detection limit, and 0.4 ≦ α 1
In the range of ≦ 0.7, about 80 ppm of NO x and HCN were present together in the first-step reaction, but in the two-step reaction, NO x alone was 60 ppm or less, and the overall NO x reduction rate was 40%. It was found that the reduction ratio was high as above.
This means that nitrogen-containing compounds (HCN
Etc.), the reduction reaction to N 2 proceeds,
Secondary air inlet 4 provided between the two electric furnaces 3a, 3b
I thought that the secondary air supply from the plant had some effect.

【0011】そこで、二段反応での含窒素化合物のN2
への還元の態様を知るべくさらに実験を行なった。前記
のように、一段反応中では大部分のNOx はHCNまで
しか還元していないこと、図4に示すように、酸化雰囲
気下でのHCNの反応過程はNCOからN2 Oを経てN
2 に還元する反応とNOへの酸化反応とがあり、このN
COを消費する反応の分岐の割合によって最終的なNO
x 濃度が決定されると考えられること、さらには、HC
NがNCOからN2 Oを経てN2 に還元する反応におい
て、N2 O濃度が特定の温度範囲においてピーク値を持
つことが報告されていること(PB94-145646, December
23, 1993. P. Glarborg et. al.Reburning Rich-Lean
Kinetics.)、から、実験は、一段反応の条件を基本条件
でα1 =0.55、及び、0.65の二つの態様につい
て、前記のように、二次空気導入口4から二次空気を加
えてα2 =1.05に固定して、かつ、二段反応の設定
温度(最高温度)を変化させて行い、その生成物濃度測
定を行なった。また、反応計算も行なった。
Therefore, the nitrogen-containing compound N 2 in the two-step reaction is used.
Further experiments were conducted to find out the mode of reduction to As described above, most of the NO x is reduced to HCN only in the one-step reaction, and as shown in FIG. 4, the reaction process of HCN in an oxidizing atmosphere is from NCO to N 2 O to N
There is a reduction reaction to 2 and an oxidation reaction to NO.
Depending on the branching rate of the reaction that consumes CO, the final NO
x concentration is considered to be determined, and further, HC
In the reaction N is reduced to N 2 through the N 2 O from NCO, that N 2 O concentration has been reported to have a peak value at a certain temperature range (PB94-145646, December
23, 1993. P. Glarborg et. Al. Reburning Rich-Lean
Kinetics.) From the secondary air inlet 4 to the secondary air as described above for the two modes of α 1 = 0.55 and 0.65 under the basic conditions of the one-step reaction. Was added and fixed to α 2 = 1.05, and the set temperature (maximum temperature) of the two-step reaction was changed, and the product concentration was measured. The reaction calculation was also performed.

【0012】図5はα1 =0.55での生成物濃度の実
験値を、図6はその反応計算結果を示しており、図7は
α1 =0.65での生成物濃度の実験値を、図8はその
反応計算結果を示している。図5及び図7から分かるよ
うに、いずれの場合も、COの反応が進むとHCNが減
少し、代わりにNOx 、N2 Oが生成している。そし
て、設定温度が650℃程度以上においては、含窒素化
合物濃度(NOx +HCN+N2 O)は反応前に比べて
減少しており、設定温度1000℃では約20ppm程
度小さくなっている。また、N2 Oの濃度は700℃〜
800℃の温度条件で最大となり、1000℃ではほぼ
消失している。図6、図8に示すように、反応計算結果
も化合物濃度について実測値と一致し、N2 Oの生成、
分解の温度範囲も一致した。
FIG. 5 shows the experimental value of the product concentration at α 1 = 0.55, FIG. 6 shows the calculation result of the reaction, and FIG. 7 shows the experimental value of the product concentration at α 1 = 0.65. The values are shown in FIG. 8 and the reaction calculation results are shown. As can be seen from FIGS. 5 and 7, HCN decreases as the CO reaction proceeds, and NO x and N 2 O are produced instead, as the CO reaction proceeds. When the set temperature is about 650 ° C. or higher, the concentration of the nitrogen-containing compound (NO x + HCN + N 2 O) is lower than that before the reaction, and it is about 20 ppm lower at the set temperature of 1000 ° C. The concentration of N 2 O is 700 ° C
It becomes maximum under the temperature condition of 800 ° C, and almost disappears at 1000 ° C. As shown in FIGS. 6 and 8, the reaction calculation results also agree with the measured values for the compound concentration, and the formation of N 2 O,
The decomposition temperature range was also consistent.

【0013】ここでのN2 への還元は、図4に示したH
CNの反応経路から推測して、N2O→N2 によるもの
と考えられ、上記の実験から、二段反応(すなわち、実
際の燃焼炉におけるバーンアウトゾーン)において、燃
焼ガスに温度履歴をもたせてN2 O濃度を高めるように
操作することにより、結果として高いNOx 還元率がも
たらされることが確認された。しかし、一方において、
2 Oが有害物質であることも知られており、燃焼ガス
の大気への放出以前にN2 Oの分解反応を促進すること
も必要となる。そして、本実験装置での実験では、2つ
の電気炉3a、3bの間に二次空気導入口4を設けたこ
とにより、燃焼ガスに対する所要の温度履歴が得られ、
それにより、図3に示したNOx 還元率が達成されたも
のと考えられる。
The reduction to N 2 here is carried out by using H shown in FIG.
Inferred from the reaction path of CN, it is considered to be due to N 2 O → N 2 , and from the above experiment, in the two-step reaction (that is, the burnout zone in the actual combustion furnace), the combustion gas is given a temperature history. It was confirmed that the operation to increase the N 2 O concentration with the result resulted in a high NO x reduction rate. But on the one hand,
It is also known that N 2 O is a harmful substance, and it is also necessary to accelerate the decomposition reaction of N 2 O before the combustion gas is released into the atmosphere. Then, in the experiment with the present experimental device, by providing the secondary air inlet 4 between the two electric furnaces 3a, 3b, the required temperature history for the combustion gas can be obtained,
It is considered that the NO x reduction rate shown in FIG. 3 was thereby achieved.

【0014】すなわち、N2 Oを経由したHCNのN2
への還元反応には、ほぼ700℃〜800℃でのN2
Oの生成反応ゾーン、及び、1000℃以上でのN2
Oの分解反応ゾーンの2つの温度範囲を設定することが
有効であり、リバーニング燃焼におけるバーンアウトゾ
ーンにおいて、この温度範囲を設定することにより、確
実にNOx の還元率が高くなることが分かった。
[0014] That is, of HCN that has passed through the N 2 O N 2
N 2 at about 700 ° C to 800 ° C for the reduction reaction to
O 2 reaction zone and N 2 above 1000 ° C.
It is effective to set two temperature ranges in the O decomposition reaction zone, and it is found that the NO x reduction rate is surely increased by setting these temperature ranges in the burnout zone in the reburning combustion. It was

【0015】上記の現象を確認すべく、図1に示した実
験装置における二次空気の供給を停止し、代わりに、反
応管2bの均熱部(最高温度が維持されている部位)に
二次空気を直接導入して反応させ、生成成分濃度を測定
した。その結果を図9に示す(なお、α1 =0.5
5)。図示のように、1000℃近傍において、含窒素
化合物濃度TFN(NOx +HCN+N2 O)は反応前
に比べて増加している。これは、反応管2a(リバーニ
ングゾーン)での燃焼ガスが1000℃未満の温度域で
反応することなく、すなわち、N2 Oの生成反応ゾーン
を持つことなく、1000℃でバーンアウトしたことに
よると考えられ、上記及びの温度範囲の設定がリバ
ーニング燃焼における低NOx 燃焼に有効であることが
立証された。
In order to confirm the above phenomenon, the supply of the secondary air in the experimental apparatus shown in FIG. 1 was stopped, and instead, the soaking part (the part where the maximum temperature was maintained) of the reaction tube 2b was replaced. Next, air was directly introduced to cause a reaction, and the concentration of product components was measured. The result is shown in FIG. 9 (where α 1 = 0.5
5). As shown in the figure, in the vicinity of 1000 ° C., the nitrogen-containing compound concentration TFN (NO x + HCN + N 2 O) increased as compared with that before the reaction. This is because the combustion gas in the reaction tube 2a (reburning zone) was burned out at 1000 ° C. without reacting in a temperature range of less than 1000 ° C., that is, without having an N 2 O production reaction zone. Therefore, it has been proved that the setting of the temperature range of and is effective for low NO x combustion in reburning combustion.

【0016】図10は、上記の実験結果から得られた燃
焼ガスの処理方法を実際の燃焼炉に適用する場合を説明
するものであり、被燃焼物(例えば、ごみ)を空気比≧
1で燃焼させる主燃焼ゾーンの後流に、過剰の炭化水素
燃料を吹き込むことにより、主燃焼ゾーンで生成した燃
焼ガスを燃料過剰条件下(還元雰囲気下:空気比<1)
で処理してNOx を還元する(リバーニングゾーン)。
さらに、その後流のバーンアウトゾーンにおいて、例え
ば水管群を配置する等の手段により燃焼ガスの温度を7
00℃〜800℃程度の範囲となるように抜熱する。そ
の後に、空気比が1以上となるように二次空気を供給す
る。それにより、HCNのN2 Oへの反応が促進され
る。さらに、その後の炉出口での排ガス温度を少なくと
も1000℃以上となるように制御して、N2 OのN2
への還元を行い、未分解のN2 Oが大気に放出されるの
を防止することにより、本発明の目的は達成される。
FIG. 10 illustrates the case where the method for treating combustion gas obtained from the above experimental results is applied to an actual combustion furnace, and the burned material (for example, dust) has an air ratio ≧
Combustion gas generated in the main combustion zone is injected into the wake of the main combustion zone in which the combustion gas generated in the main combustion zone is burned in No. 1 under the fuel excess condition (reducing atmosphere: air ratio <1).
To reduce NO x (reburning zone).
Further, in the subsequent burnout zone, the temperature of the combustion gas is adjusted to 7 by means such as arranging a water pipe group.
Heat is removed so as to be in the range of about 00 ° C to 800 ° C. After that, secondary air is supplied so that the air ratio becomes 1 or more. Thereby, the reaction of HCN to N 2 O is promoted. Further, the exhaust gas temperature at the subsequent furnace outlet is controlled to be at least 1000 ° C. or higher, and the N 2 O N 2
The object of the present invention is achieved by carrying out the reduction to N and preventing the release of undecomposed N 2 O to the atmosphere.

【0017】なお、本発明において、リバーニングゾー
ンからの燃焼ガスを700℃〜800℃の温度範囲とな
るように抜熱する手段は任意であってよく、水管群によ
る熱交換に限らず、空冷管のような手段も有効である。
また、その後に燃焼ガスを1000℃以上に昇温する手
段も任意であり、二次空気の供給による未燃分の燃焼に
よる昇温に加えて、電気加熱、もしくは少量の燃料と空
気の添加、排ガス再循環による加熱のような手段を講じ
ることも可能である。
In the present invention, any means may be used to remove heat from the combustion gas from the reburning zone so as to bring it into the temperature range of 700 ° C. to 800 ° C., not limited to heat exchange by the water tube group, but air cooling. Means such as tubes are also effective.
Further, after that, means for raising the temperature of the combustion gas to 1000 ° C. or more is also optional, and in addition to raising the temperature by burning the unburned portion by supplying the secondary air, electric heating or addition of a small amount of fuel and air It is also possible to take measures such as heating by exhaust gas recirculation.

【0018】[0018]

【発明の効果】本発明によるリバーニング燃焼法におけ
る燃焼ガスの処理方法は、従来のリバーニング燃焼炉に
簡単な改良を加えることにより容易に実施可能であり、
かつ、確実な低NOx 燃焼を達成できる。
The method of treating combustion gas in the reburning combustion method according to the present invention can be easily implemented by adding a simple improvement to the conventional reburning combustion furnace,
Moreover, reliable low NO x combustion can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を処理方法を実証するのに用いた実験装
置を説明する図。
FIG. 1 is a diagram illustrating an experimental apparatus used for demonstrating a processing method of the present invention.

【図2】 一段反応時での各生成物濃度を示すグラフ。FIG. 2 is a graph showing the concentration of each product in the one-step reaction.

【図3】 一段反応と二段反応での生成物濃度の違いを
比較するグラフ。
FIG. 3 is a graph comparing the difference in product concentration between the one-step reaction and the two-step reaction.

【図4】 HCNの反応過程を説明する図。FIG. 4 is a diagram illustrating a reaction process of HCN.

【図5】 二段反応(温度履歴あり)での各生成物濃度
を示すグラフ(実験値)。
FIG. 5 is a graph (experimental value) showing the concentration of each product in a two-step reaction (with temperature history).

【図6】 二段反応(温度履歴あり)での各生成物濃度
を示すグラフ(計算値)。
FIG. 6 is a graph (calculated value) showing the concentration of each product in a two-step reaction (with temperature history).

【図7】 二段反応(温度履歴あり)での他の条件での
各生成物濃度を示すグラフ(実験値)。
FIG. 7 is a graph (experimental value) showing the concentration of each product under other conditions in the two-step reaction (with temperature history).

【図8】 二段反応(温度履歴あり)での他の条件での
各生成物濃度を示すグラフ(計算値)。
FIG. 8 is a graph (calculated value) showing the concentration of each product under other conditions in the two-step reaction (with temperature history).

【図9】 二段反応(温度履歴なし)での各生成物濃度
を示すグラフ(計算値)。
FIG. 9 is a graph (calculated value) showing the concentration of each product in a two-step reaction (no temperature history).

【図10】 本発明による燃焼ガスの処理方法を用いる
燃焼装置を説明する図。
FIG. 10 is a diagram for explaining a combustion apparatus that uses the method for treating combustion gas according to the present invention.

【図11】 従来のリバーニング燃焼炉を説明する図。FIG. 11 is a diagram illustrating a conventional reburning combustion furnace.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 主燃焼ゾーンで生成した燃焼ガスに対し
て炭化水素燃料を吹き込み、該燃焼ガスを燃料過剰条件
下で燃焼処理した後、後流側のバーンアウトゾーンを通
過させるようにしたリバーニング燃焼法において、前記
燃料過剰条件下で燃焼処理した燃焼ガスを一旦700℃
〜800℃の温度範囲に維持した後、1000℃以上の
環境下で未燃分の燃焼を行うようにしたことを特徴する
リバーニング燃焼法における燃焼ガスの処理方法。
1. A hydrocarbon fuel is blown into the combustion gas produced in the main combustion zone, the combustion gas is burned under an excessive fuel condition, and then passed through a burnout zone on the downstream side. In the burning combustion method, the combustion gas burned under the above-mentioned excess fuel condition was once heated to 700 ° C.
A method for treating combustion gas in a reburning combustion method, which comprises maintaining a temperature range of up to 800 ° C. and then burning unburned components in an environment of 1000 ° C. or higher.
JP28133995A 1995-10-30 1995-10-30 Processing method of combustion gas in re-burning combustion method Pending JPH09126413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28133995A JPH09126413A (en) 1995-10-30 1995-10-30 Processing method of combustion gas in re-burning combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28133995A JPH09126413A (en) 1995-10-30 1995-10-30 Processing method of combustion gas in re-burning combustion method

Publications (1)

Publication Number Publication Date
JPH09126413A true JPH09126413A (en) 1997-05-16

Family

ID=17637736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28133995A Pending JPH09126413A (en) 1995-10-30 1995-10-30 Processing method of combustion gas in re-burning combustion method

Country Status (1)

Country Link
JP (1) JPH09126413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052750A (en) * 2010-09-02 2012-03-15 Miura Co Ltd Method of purifying combustion gas, and combustion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052750A (en) * 2010-09-02 2012-03-15 Miura Co Ltd Method of purifying combustion gas, and combustion device

Similar Documents

Publication Publication Date Title
EP0581850B1 (en) ADVANCED REBURNING FOR REDUCTION OF NOx EMISSIONS IN COMBUSTION SYSTEMS
US5547650A (en) Process for removal of oxides of nitrogen
AU2008200024B2 (en) Methods and systems for reducing NOx emissions in industrial combustion systems
US5120516A (en) Process for removing nox emissions from combustion effluents
TWI686569B (en) Radiant tube burner equipment
JP2006023076A (en) Method and system for operating combustion system
TWI736499B (en) Radiant tube burner facility and industrial furnace
JPH0268404A (en) Method and device for reducing nitrogen oxide (nox) from combustion exhaust gas
CN109838795B (en) Incineration device and method for realizing high-nitrogen-content waste gas and waste liquid nitrogen oxide reduction emission
JPH04504899A (en) How to reduce nitrogen oxide released when burning solid fuels
JPH09126413A (en) Processing method of combustion gas in re-burning combustion method
EP3875167A1 (en) Improved nox removal method
CN106693700A (en) Ammonia injection quantity control system and method
TWI753900B (en) Industrial furnace
EP0317110A2 (en) Low NOx cogeneration process
EP0512156A1 (en) A process for reducing nitric oxides in a flue gas
TWI686570B (en) Industrial furnace
JP3526490B2 (en) Exhaust gas denitration device and denitration method
JPS6249521B2 (en)
TWI711484B (en) Nitrogen oxide emission reduction method for flue gas generated by combustion furnace
CN111503645A (en) Flue gas denitration process and flue gas denitration device
SU1719673A1 (en) Process for cleaning exhaust gases
JPS5825926B2 (en) Method and device for reducing NOx in combustion exhaust gas of cement firing equipment
JP2010240521A (en) Method and facility for regenerating denitration catalyst for exhaust gas from coke oven
RU2293254C2 (en) Method of removing toxic agents from combustion products of gas fuel