JPH09125182A - Aluminum alloy for casting high in elongation - Google Patents

Aluminum alloy for casting high in elongation

Info

Publication number
JPH09125182A
JPH09125182A JP32094795A JP32094795A JPH09125182A JP H09125182 A JPH09125182 A JP H09125182A JP 32094795 A JP32094795 A JP 32094795A JP 32094795 A JP32094795 A JP 32094795A JP H09125182 A JPH09125182 A JP H09125182A
Authority
JP
Japan
Prior art keywords
content
elongation
casting
aluminum alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32094795A
Other languages
Japanese (ja)
Inventor
Toku Sumitomo
徳 住友
Masanori Harada
政則 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMITSUTO ALUM KK
Original Assignee
SAMITSUTO ALUM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMITSUTO ALUM KK filed Critical SAMITSUTO ALUM KK
Priority to JP32094795A priority Critical patent/JPH09125182A/en
Publication of JPH09125182A publication Critical patent/JPH09125182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy for casting high in elongation as cast. SOLUTION: This aluminum alloy for casting high in elongation has a compsn. contg. 1.5 to 2.5% Mg, 0.7 to 2.2% Mn and 0.40 to 0.9% Fe, in which the relation of 3 × Mg content + 6 × Fe content + 4 × Mn content <=15.0% is established among the contents of Mg, Fe and Mn, and contg. <=0.30% Si, <=0.50% Cu, <=0.3% Ti, <=0.1% B and <=0.1% Be, and the balance aluminum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[産業上の利用分野]自動車部品、機械部
品、電気機器部品等の複雑な形状の製品は鋳物で製造す
ることが好ましく、軽量且つ伸びの大きな鋳造用アルミ
ニウム合金を提供出来ることは鋳物の用途が広がり、産
業上極めて重要である。
[Industrial field of application] It is preferable to manufacture products having complicated shapes such as automobile parts, machine parts and electric equipment parts by casting, and it is possible to provide a lightweight aluminum alloy for casting which is large in casting. Is widely used and is extremely important in industry.

【0002】[従来の技術]従来からJISのアルミニ
ウム合金鋳物はもとより、類似の他のアルミニウム合金
鋳物でも、優れた機械的強度と高い靭性を合わせもった
ものは少ない。
[Prior Art] Conventionally, not only JIS aluminum alloy castings but also other similar aluminum alloy castings have excellent mechanical strength and high toughness.

【0003】JISAC7Aは鋳放しのままで大きな強
度と伸びを有しているが、Mg含有量が多いために溶解
鋳造時のMgの酸化が激しくて、鋳造欠陥が生じ易い欠
点を有している。
JIS AC7A has a large strength and elongation in the as-cast state, but has a drawback that the Mg content is large and thus the oxidation of Mg during the melt casting is severe, and casting defects are likely to occur. .

【0004】またJISAC4CHは鋳造性が比較的良
くて、強靭な材料であるが、かなり面倒な熱処理を施さ
ねばならないという欠点が有った。
[0004] JISAC4CH has a relatively good castability and is a tough material, but it has a drawback that it has to undergo a rather troublesome heat treatment.

【0005】鋳放しのままで伸びの大きな鋳造用アルミ
ニウム合金はAl−Si系合金あるいはAl−Si−C
u系合金では得られない。
An aluminum alloy for casting which has a large elongation as cast is an Al-Si alloy or Al-Si-C.
It cannot be obtained with u-based alloys.

【0006】[発明が解決しようとする課題]本発明者
等は各種合金系について鋭意研究を重ねた結果、鋳造性
が良くて、鋳放しのままで伸びの大きな鋳造用アルミニ
ウム合金を提供するものである。
[Problems to be Solved by the Invention] As a result of intensive studies on various alloy systems, the inventors of the present invention provide an aluminum alloy for casting which has good castability and has a large elongation as cast. Is.

【0007】[課題を解決するための手段]本発明はア
ルミニウム合金中のMg,Mn及びFe含有量を厳しく
管理することにより、伸びの大きな鋳造用アルミニウム
合金を提供するものである。
[Means for Solving the Problems] The present invention provides a casting aluminum alloy having a large elongation by strictly controlling the contents of Mg, Mn and Fe in the aluminum alloy.

【0008】本発明の要旨はMg含有量1.5〜2.5
%,Mn含有量0.7〜2.2%,Fe含有量0.40
〜0.9%で且つMgとFeとMnの含有量の間に3×
Mg含有量+6×Fe含有量+4×Mn含有量≦15.
0%の関係が成立し、Si含有量0.30%以下、Cu
含有量0.50%以下、Ti含有量0.30%以下、B
含有量0.1%以下、Be含有量0.1%以下、残部ア
ルミニウムであることを特徴とする伸びの大きな鋳造用
アルミニウム合金にある。
The gist of the present invention is that the Mg content is 1.5 to 2.5.
%, Mn content 0.7 to 2.2%, Fe content 0.40
~ 0.9% and 3 × between the contents of Mg, Fe and Mn
Mg content + 6 × Fe content + 4 × Mn content ≦ 15.
0% relationship is established, Si content is 0.30% or less, Cu
Content 0.50% or less, Ti content 0.30% or less, B
An aluminum alloy for casting having a large elongation, characterized in that the content is 0.1% or less, the Be content is 0.1% or less, and the balance is aluminum.

【0009】本明細書において、合金元素の含有量は全
て重量百分率を表示する。
In the present specification, the content of alloying elements is expressed as a weight percentage.

【0010】本発明に於いて、Mgは合金の機械的強度
及び鋳造性を向上させる。しかしその含有量が多すぎる
と、溶解鋳造時に酸化膜が生じ易く、伸びが低下し、逆
に含有量が少なすぎると、機械的強度及び流動性が低下
する。従ってMg含有量は1.5〜2.5%とする。
In the present invention, Mg improves the mechanical strength and castability of the alloy. However, if the content is too large, an oxide film is liable to be formed during melt casting, and the elongation is lowered. On the contrary, if the content is too small, mechanical strength and fluidity are lowered. Therefore, the Mg content is set to 1.5 to 2.5%.

【0011】MnはMgと同様に合金の機械的強度及び
鋳造性を向上させる。しかしその含有量が多すぎると機
械的強度及び靭性が低下し、逆に含有量が少なすぎて
も、機械的強度及び鋳造性が低下する。従って合金中の
Mn含有量は0.7〜2.2%とする。
Like Mg, Mn improves the mechanical strength and castability of the alloy. However, if the content is too large, the mechanical strength and toughness will decrease, and conversely, if the content is too small, the mechanical strength and castability will decrease. Therefore, the Mn content in the alloy is set to 0.7 to 2.2%.

【0012】FeもMnと同様に合金の機械的強度及び
鋳造性を向上させる。しかしその含有量が多すぎると、
靭性と流動性が低下し、凝固収縮割れが起こり易くな
る。逆に含有量が少なすぎても、鋳造割れが起こり易く
なる。従って合金中のFe含有量は0.40〜0.9%
とする。
Like Mn, Fe also improves the mechanical strength and castability of the alloy. However, if its content is too high,
Toughness and fluidity are reduced, and solidification shrinkage cracking is likely to occur. On the contrary, if the content is too small, casting cracks are likely to occur. Therefore, the Fe content in the alloy is 0.40 to 0.9%
And

【0013】尚FeとMnは多量に合金されると、粗大
なFeMn化合物が生成し、靭性が阻害されるので、高
い伸びを保持する為には、FeとMnの含有量の間に3
×Fe含有量+2×Mn含有量≦5.3%の関係が成立
する範囲内にFe及びMn含有量を限定する。
If Fe and Mn are alloyed in a large amount, a coarse FeMn compound will be formed and the toughness will be impaired.
The Fe and Mn contents are limited within the range where the relationship of × Fe content + 2 × Mn content ≦ 5.3% is established.

【0014】更にMgとFeとMnの含有量の間に3×
Mg含有量+6×Fe含有量+4×Mn含有量≦15.
0%の関係が成立する範囲内にMgとFeとMnの含有
量を限定する。
Furthermore, if the content of Mg, Fe and Mn is 3 ×
Mg content + 6 × Fe content + 4 × Mn content ≦ 15.
The contents of Mg, Fe and Mn are limited within the range where the relation of 0% is established.

【0015】Feはダイカスト鋳造にさいし、合金溶湯
の金型への焼き付きを防止する効果があるので、本発明
は重力鋳造の他にダイカスト、高圧鋳造等にもよく適合
する材料を提供するものである。
Since Fe has the effect of preventing the molten alloy from sticking to the die during die casting, the present invention provides a material that is well suited to die casting, high pressure casting, etc. in addition to gravity casting. is there.

【0016】本発明合金は熱処理を必要としない。The alloys of the present invention do not require heat treatment.

【0017】本発明には必要に応じてTi,B及び又は
Beを合金するものとする。
In the present invention, Ti, B and / or Be may be alloyed if necessary.

【0018】Tiは鋳物の結晶粒を微細化し、引け性、
鋳造割れ性を改善する。Ti含有量は0.30%以下好
ましくは0.05〜0.20%の範囲から選ばれる。
Ti refines the crystal grains of the casting, reduces the shrinkage,
Improves cast crackability. The Ti content is 0.30% or less, preferably selected from the range of 0.05 to 0.20%.

【0019】Tiの他に0.1%以下のB好ましくは
0.001〜0.05%のBをTiと共存させるると、
更にその効果が顕著となる。
If, in addition to Ti, 0.1% or less of B, preferably 0.001 to 0.05% of B is made to coexist with Ti,
Furthermore, the effect becomes remarkable.

【0020】Beは0.002%以上合金されると、ア
ルミニウム合金溶湯中のMgの酸化を防止し、鋳物の強
度及び伸びを向上させる効果があるが、0.1%を越え
て合金されても効果が変わらないので、Be含有量は
0.1%以下好ましくは0.002〜0.05%の範囲
とする。
When Be is alloyed in an amount of 0.002% or more, it has the effect of preventing the oxidation of Mg in the molten aluminum alloy and improving the strength and elongation of the casting. However, Be is alloyed in excess of 0.1%. Since the effect does not change, the Be content is set to 0.1% or less, preferably 0.002 to 0.05%.

【0021】本発明に通常含有される不純物としてのS
iは0.30%以下、Cuは0.50%以下にとどめる
べきである。
S as an impurity usually contained in the present invention
i should be 0.30% or less and Cu should be 0.50% or less.

【0022】[発明の効果]以上詳細に説明したよう
に、本発明はアルミニウム合金中のMg,Mn,及びF
e含有量を厳しく管理することにより鋳放しのままで伸
びの大きな鋳造用アルミニウム合金を提供する。
[Effects of the Invention] As described in detail above, the present invention provides Mg, Mn, and F in an aluminum alloy.
By strictly controlling the e content, an as-cast as-cast aluminum alloy having a large elongation is provided.

【0023】[実施例]次に本発明を実施例により更に
詳細に説明するが、本発明はその要旨を越えない限り以
下の実施例に限定されるものではない。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0024】実施例1 表1に示す化学成分の合金を溶製し、750℃でJIS
4号舟金型(室温)に鋳造して得た鋳塊の機械的性質と
して、引っ張り特性とブリネル硬度を測定した。
Example 1 Alloys having the chemical components shown in Table 1 were melted, and were JIS at 750 ° C.
Tensile properties and Brinell hardness were measured as mechanical properties of the ingot obtained by casting in a No. 4 boat mold (room temperature).

【0025】溶湯の一部は渦巻き式流動性試験金型を用
いて流動性を測定した。そのときの鋳造温度は730
℃、金型温度は330℃であった。
The fluidity of a part of the molten metal was measured using a spiral fluidity test mold. The casting temperature at that time is 730
The mold temperature was 330 ° C.

【0026】表2に試験結果を示す。Mg含有量が増加
するにつれて引け量が若干増加するが、流動性がよくな
った。また引っ張り強さはMg量が増加するにつれて大
きくなるが、伸びが低下してくるので、流動性が良くて
大きな伸びを維持するためにMg含有量は1.5〜2.
5%の範囲内でなければならないことがわかる。
Table 2 shows the test results. Although the shrinkage amount slightly increased as the Mg content increased, the fluidity improved. Further, the tensile strength increases as the amount of Mg increases, but the elongation decreases, so the Mg content is 1.5-2.
It can be seen that it must be within the range of 5%.

【0027】合金No.1は本発明合金で、大きな伸び
を有する鋳造用アルミニウム合金であることを示す。
Alloy No. Reference numeral 1 indicates the alloy of the present invention, which is an aluminum alloy for casting having a large elongation.

【0028】実施例2 図1はAl−1.8%Mg系合金のMnとFeの含有量
を種々の割合で配合した合金について、JIS4号舟金
型鋳塊の引っ張り特性を測定した結果をまとめたもの
で、大きな伸びと引っ張り強さを共有する領域を示す。
Example 2 FIG. 1 shows the results of measuring the tensile properties of JIS No. 4 boat mold ingots for alloys in which the contents of Mn and Fe of Al-1.8% Mg alloy were mixed in various proportions. This is a summary of the areas that share a large amount of elongation and tensile strength.

【0029】領域は引っ張り強さが186N/mm
以上、伸び19%以上の領域を示し、領域は引っ張り
強さが196N/mm以上、伸び20%以上の領域を
示す。
The area has a tensile strength of 186 N / mm 2
As described above, a region having an elongation of 19% or more is shown, and a region having a tensile strength of 196 N / mm 2 or more and an elongation of 20% or more is shown.

【0030】図2はAl−Mg系合金のMg含有量を
1.5〜2.5%まで変化させたときの伸び20%をし
めすMnとFeの含有量を示し、Mg含有量が多くなる
につれてMn含有量を低くしなければならず、Mn含有
量が低くなるにつれてFe含有量も変化していることが
分かる。
FIG. 2 shows the contents of Mn and Fe showing an elongation of 20% when the Mg content of the Al--Mg system alloy is changed from 1.5 to 2.5%, and the Mg content increases. It can be seen that the Mn content must be decreased as the Mn content increases, and the Fe content also changes as the Mn content decreases.

【0031】Al−1.5%Mg系でFeとMnの間に
3×Fe含有量+2×Mn含有量=4.8%の関係が成
立している。Al−2.5%Mg系ではFeとMnの間
に3×Fe含有量+2×Mn含有量=3.3%の関係が
成立している。またMgとFeとMnの間に3×Mg含
有量+6×Fe含有量+4×Mn含有量=14.1%の
関係が成立している。
In the Al-1.5% Mg system, the relationship of 3 × Fe content + 2 × Mn content = 4.8% is established between Fe and Mn. In the Al-2.5% Mg system, the relationship of 3 x Fe content + 2 x Mn content = 3.3% is established between Fe and Mn. Further, the relationship of 3 × Mg content + 6 × Fe content + 4 × Mn content = 14.1% is established between Mg, Fe and Mn.

【0032】実施例3 図3はAl−1.8%Mg系合金について、外径58m
m,内径48mm、高さ20mmのリング状金型(室
温)に750℃で鋳造した場合の鋳造割れ試験結果を示
す。
Example 3 FIG. 3 shows an outer diameter of 58 m for Al-1.8% Mg alloy.
The results of the casting cracking test when cast at 750 ° C. in a ring-shaped die (room temperature) having an m, an inner diameter of 48 mm and a height of 20 mm are shown.

【0033】鋳造割れ性は肉眼観察により割れの状況を
判定し、割れなかったものに○印、割れたものに×印、
割れても破断に迄至らなかったものに△印そして自由凝
固面に引け割れの認められたものに▲印を付けて示し
た。
Regarding the cast cracking property, the condition of cracking was judged by observing with the naked eye.
Those that did not result in fracture even when cracked were marked with a triangle, and those with shrinkage cracks on the free solidified surface were marked with a triangle.

【0034】Mn含有量が0.7〜2.2%の範囲内で
鋳造割れのおこらないFe含有量は0.40〜0.9%
であることがわかる。
When the Mn content is in the range of 0.7 to 2.2%, the Fe content at which casting cracks do not occur is 0.40 to 0.9%.
It can be seen that it is.

【0035】実施例4 表3に示すAl−1.8%Mg系合金について、Mn,
Cu,Si含有量が引っ張り特性および鋳造性に及ぼす
影響を実施例1と同様の方法で調べた結果を表4に示
す。
Example 4 For the Al-1.8% Mg-based alloy shown in Table 3, Mn,
Table 4 shows the results of examining the influence of the Cu and Si contents on the tensile properties and castability in the same manner as in Example 1.

【0036】Mn含有量が少ないほど伸びが大きくなる
が、0.7%未満で引っ張り強さと流動性が小さくなる
ことが分かる。またMn含有量が2.2%をこえると引
っ張り強さが低下し、伸びも著しく低下する。
It can be seen that the elongation increases as the Mn content decreases, but the tensile strength and fluidity decrease when the Mn content is less than 0.7%. Further, when the Mn content exceeds 2.2%, the tensile strength is lowered and the elongation is remarkably lowered.

【0037】Cuは0.31%含有されても機械的性
質、鋳造性に悪影響を及ぼさないが、Siは0.54%
含有されると伸びが著しく低下していることがわかる。
Even if the Cu content is 0.31%, the mechanical properties and castability are not adversely affected, but the Si content is 0.54%.
It can be seen that when it is contained, the elongation is remarkably reduced.

【0038】実施例5 表5に示す化学成分の合金について、4号舟金型鋳塊の
引っ張り特性、硬度、流動性及び鋳造割れ性を測定した
結果を表6に示す。本発明合金は比較合金に比して鋳造
性、機械的強度において同等以上で、しかも大きな伸び
を有しているこがわかる。
Example 5 Table 6 shows the results of measuring the tensile properties, hardness, fluidity and casting crackability of No. 4 boat mold ingots for the alloys having the chemical components shown in Table 5. It can be seen that the alloys of the present invention have the same or higher castability and mechanical strength as compared with the comparative alloys, and have a large elongation.

【0039】[0039]

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al−1.8%Mg系合金の大きな伸びと引っ
張り強さを共有するFeとMnの領域を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing regions of Fe and Mn that share large elongation and tensile strength of an Al-1.8% Mg-based alloy.

【図2】Al−Mg系合金のMg含有量を1.5〜2.
5%まで変化させたときの大きな伸び20%を示すFe
とMnの含有量を示す説明図である。
FIG. 2 shows a Mg content of an Al-Mg alloy of 1.5-2.
Fe showing a large elongation of 20% when changed to 5%
It is explanatory drawing which shows the content of Mn.

【図3】Al−1.8%Mg系合金の鋳造割れの起こら
ないFeとMnの濃度範囲を示す説明図である。 [符号の説明] 1.図1の領域は引っ張り強さが186N/mm
上、伸び19%以上の領域を示す説明図である。 2.図1の領域は引っ張り強さが196N/mm
上、伸び20%以上の領域を示す説明図である。 3.図3の○印は鋳造割れの無かったものを示す。 4.図3の×印は鋳造割れの有ったものを示す。 5.図3の△印は鋳造割れが有っても破断までに至らな
かったものを示す。 6.図3の▲印は自由凝固面に引け割れの認められたも
のを示す。
FIG. 3 is an explanatory diagram showing concentration ranges of Fe and Mn in which casting cracking of an Al-1.8% Mg alloy does not occur. [Explanation of Codes] 1. The region of FIG. 1 is an explanatory diagram showing a region having a tensile strength of 186 N / mm 2 or more and an elongation of 19% or more. 2. The region of FIG. 1 is an explanatory view showing a region having a tensile strength of 196 N / mm 2 or more and an elongation of 20% or more. 3. The ◯ mark in FIG. 3 indicates that there were no casting cracks. 4. The X mark in FIG. 3 indicates that there were casting cracks. 5. The mark Δ in FIG. 3 indicates that even if there were casting cracks, the fracture did not occur. 6. The ▲ mark in FIG. 3 indicates that shrinkage cracks were observed on the free solidified surface.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項 1】Mg含有量1.5〜2.5%,Mn含有
量0.7〜2.2%,Fe含有量0.40〜0.9%で
且つMgとFeとMnの含有量の間に3×Mg含有量+
6×Fe含有量+4×Mn含有量≦15.0%の関係が
成立し、Si含有量0.30%以下、Cu含有量0.5
0%以下、Ti含有量0.30%以下、B含有量0.1
%以下、Be含有量0.1%以下、残部アルミニウムで
あることを特徴とする伸びの大きな鋳造用アルミニウム
合金。
1. A Mg content of 1.5 to 2.5%, a Mn content of 0.7 to 2.2%, an Fe content of 0.40 to 0.9% and a content of Mg, Fe and Mn. 3 × Mg content between +
The relationship of 6 × Fe content + 4 × Mn content ≦ 15.0% is established, Si content is 0.30% or less, Cu content is 0.5.
0% or less, Ti content 0.30% or less, B content 0.1
%, A Be content of 0.1% or less, and the balance aluminum, a casting aluminum alloy having a large elongation.
JP32094795A 1995-11-01 1995-11-01 Aluminum alloy for casting high in elongation Pending JPH09125182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32094795A JPH09125182A (en) 1995-11-01 1995-11-01 Aluminum alloy for casting high in elongation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32094795A JPH09125182A (en) 1995-11-01 1995-11-01 Aluminum alloy for casting high in elongation

Publications (1)

Publication Number Publication Date
JPH09125182A true JPH09125182A (en) 1997-05-13

Family

ID=18127072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32094795A Pending JPH09125182A (en) 1995-11-01 1995-11-01 Aluminum alloy for casting high in elongation

Country Status (1)

Country Link
JP (1) JPH09125182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017410A1 (en) * 1998-09-21 2000-03-30 Gibbs Die Casting Aluminum Corporation Aluminum die cast alloy having high manganese content
JP2007162046A (en) * 2005-12-12 2007-06-28 Toyo Alum Kk Aluminum alloy billet for manufacture of heat roll

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017410A1 (en) * 1998-09-21 2000-03-30 Gibbs Die Casting Aluminum Corporation Aluminum die cast alloy having high manganese content
JP2007162046A (en) * 2005-12-12 2007-06-28 Toyo Alum Kk Aluminum alloy billet for manufacture of heat roll

Similar Documents

Publication Publication Date Title
JP3255560B2 (en) Die-cast alloys and die-cast products
CA2574962C (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings
KR100199362B1 (en) Aluminum alloy for die casting and ball joint using the same
US20080299001A1 (en) Aluminum alloy formulations for reduced hot tear susceptibility
CA2380546A1 (en) Method for grain refinement of high strength aluminum casting alloys
JP2001200325A (en) Aluminum alloy casting subjected to plastic working, method for producing aluminum alloy casting and joining method utilizing plastic deformation
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
US7201210B2 (en) Casting of aluminum based wrought alloys and aluminum based casting alloys
EP1229140B1 (en) Aluminium alloy for high pressure die-casting
JPH09125182A (en) Aluminum alloy for casting high in elongation
JP3112452B2 (en) Method for modifying microstructure of master alloy, eutectic and hypoeutectic aluminum-silicon casting alloy, and method for manufacturing master alloy
JP2003027169A (en) Aluminum alloy and aluminum alloy casting
EP0494900A1 (en) Strontium-magnesium-aluminum master alloy.
JPH08260090A (en) Mg-si-ca hyper-eutectic alloy excellent in die castability
JPH09296245A (en) Aluminum alloy for casting
JPH09272940A (en) Hypo-eutectic aluminum-silicon die-cast alloy excellent in elongation and impact toughness
JP3242493B2 (en) Heat resistant magnesium alloy
JP2002129271A (en) Aluminum alloy and method for producing casting made of aluminum alloy
JP3800345B2 (en) Hot chamber castable zinc alloy
JPH09324235A (en) Hyper-eutectic aluminum-silicon alloy, hyper-eutectic aluminum-silicon alloy die-cast casting, its production and method for using the same
JP2868017B2 (en) Power steering system component manufacturing method
JPH09125183A (en) Aluminum alloy for casting excellent in heat resistance
JPH06212334A (en) Aluminum alloy for thin casting
JPH1017970A (en) Aluminum alloy for casting
JP3465774B2 (en) Aluminum alloy sliding member and method of manufacturing the same