JPH09124372A - Production of magnet of rare earth element - Google Patents

Production of magnet of rare earth element

Info

Publication number
JPH09124372A
JPH09124372A JP7281033A JP28103395A JPH09124372A JP H09124372 A JPH09124372 A JP H09124372A JP 7281033 A JP7281033 A JP 7281033A JP 28103395 A JP28103395 A JP 28103395A JP H09124372 A JPH09124372 A JP H09124372A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
compact
extrusion
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7281033A
Other languages
Japanese (ja)
Other versions
JP3818397B2 (en
Inventor
Yasumasa Kasai
靖正 葛西
Hiyoshi Yamada
日吉 山田
Norio Yoshikawa
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP28103395A priority Critical patent/JP3818397B2/en
Publication of JPH09124372A publication Critical patent/JPH09124372A/en
Application granted granted Critical
Publication of JP3818397B2 publication Critical patent/JP3818397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a magnet of a rare earth element causing neither seizing nor cracking, capable of being sufficiently extruded, hardly deteriorating magnetic characteristics, by cold pressing powder of magnet alloy to prepare a compact, coating the whole surface of the compact with a lubricant and continuously carrying out hot pressing and extrusion. SOLUTION: An ingot obtained by casting a molten metal comprising a rare earth element, an iron-group element and boron is ground to give powder of magnet alloy having <=1,000μm particle diameter. The powder is cold pressed to give a compact. The whole surface of the compact is coated with a lubricant (e.g. graphite) and simultaneously hot-pressed and extruded. The treatment temperature is 600-900 deg.C and the pressure is 0.5-10ton/cm<2> . The process is shown in the figure. A container 4 is arranged in a space formed by a die 1, a lower punch 2 and an upper punch 3, the compact 5 coated with the lubricant is put in the space and hot pressed and extruded. An outer punch 6 is installed at the free end of the extrusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、希土類磁石の製
造方法に関するものである。さらに詳しくは、この発明
は、発電機、電動機の高速回転状態で使用されるマグネ
ットロータ等に有用な、磁石の破損防止性能に優れた多
重構造の希土類磁石の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rare earth magnet. More specifically, the present invention relates to a method for producing a rare earth magnet having a multiple structure, which is useful for a magnet rotor used in a high-speed rotating state of a generator or an electric motor, and has excellent magnet damage prevention performance.

【0002】[0002]

【従来の技術とその課題】Nd−Fe−B系に代表され
る希土類永久磁石は、その優れた磁気特性から、様々な
分野においてその利用が広がってきている。このような
特徴のある希土類磁石は、通常は、溶解した合金を鋳造
し、得られたインゴットを粉砕した後に、磁場中で配向
しつつ成形して焼結し、さらに所要の熱処理を施してか
ら磁化することによって製造されている。
2. Description of the Related Art Rare earth permanent magnets represented by the Nd-Fe-B system have been widely used in various fields because of their excellent magnetic properties. Rare earth magnets with such characteristics are usually cast from a molten alloy, the obtained ingot is crushed, then shaped and sintered in a magnetic field while oriented, and then subjected to the required heat treatment. Manufactured by magnetizing.

【0003】また、特に高い磁気特性の磁石は、溶解し
た合金を超急冷して薄帯とし、これを粉砕して得た粉末
をホットプレスして成形し、これを磁化して等方性磁石
とすることや、あるいは、ホットプレス後に、熱間加工
した後に磁化して、最大エネルギー種の極めて大きな異
方性磁石とすることにより製造されている。しかしなが
ら、これまでのNd−Fe−B系等の希土類磁石の場合
には、いずれの製造方法によるものでも、発電機や電動
機のマグネットロータ等の高速回転部位に使用するため
には、その物理的強度が充分でなく、回転時に破損する
危険があり、必ずしも実用的なものでないという欠点が
あった。
Further, a magnet having particularly high magnetic characteristics is an isotropic magnet in which a molten alloy is rapidly quenched to form a ribbon, and a powder obtained by crushing the alloy is hot-pressed to be magnetized. Alternatively, or after hot pressing, it is manufactured by hot working and then magnetizing to obtain an extremely large anisotropic magnet of maximum energy species. However, in the case of a rare earth magnet such as an Nd-Fe-B system up to now, in order to use it in a high-speed rotating portion such as a magnet rotor of a generator or an electric motor, the physical properties of the rare earth magnet are not limited to those produced by any manufacturing method. The strength is not sufficient, there is a risk of damage during rotation, there is a drawback that it is not necessarily practical.

【0004】このことは、特に優れた磁気特性を持つ、
超急冷薄帯からの粉末により製造される磁石にとって、
その優れた磁気特性を利用することにおいて、大きな課
題であった。このようなNd−Fe−B系に代表される
希土類磁石の強度の点での弱点を補う等の目的のため
に、強度が比較的大きく、耐食性等に優れた素材からな
る容器内に磁石合金粉末をホットプレスしたり、磁石を
押出し加工して多重構造化することがこれまでにも提案
されているが、これらの提案されている方法では、たと
えば粉末を容器内に密閉しなければならないために工業
生産上の問題があることや、磁石と容器との焼き付けが
生じ、磁石に割れが発生すること等の問題があった。
This has particularly excellent magnetic properties,
For magnets made of powder from ultra-quenched ribbon,
It was a big problem in utilizing the excellent magnetic properties. For the purpose of compensating for the weakness in strength of the rare earth magnet typified by the Nd-Fe-B system, the magnet alloy is contained in a container made of a material having relatively large strength and excellent corrosion resistance. Hot pressing of powders and extrusion of magnets for multiple structuring have been proposed in the past, but these proposed methods require, for example, that the powder be enclosed in a container. However, there are problems such as industrial production problems, and burning of the magnet and the container, resulting in cracking of the magnet.

【0005】そこで、この発明は、以上の通りの従来技
術の課題を解決し、押出し加工による焼き付きや割れの
発生がなく、十分な押出しが可能で、磁気特性の劣化も
ほとんどなく、高速回転部位等への使用が可能な破損防
止性に優れた多重構造磁石を製造することのできる新し
い方法を提供することを目的としている。
Therefore, the present invention solves the problems of the prior art as described above, does not cause seizure or cracks due to extrusion, allows sufficient extrusion, hardly deteriorates magnetic properties, and has a high-speed rotating portion. It is an object of the present invention to provide a new method capable of producing a multi-structured magnet excellent in breakage preventive property that can be used for such purposes.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、希土類元素、鉄族元素並びにホ
ウ素を含有する希土類磁石の容器内への押出し加工によ
る多重構造磁石の製造において、磁石合金の粉末を冷間
プレスして成形体を作製し、その全面に潤滑剤を塗布し
た後に成形体を容器内に入れ、ホットプレスと押出し加
工を連続して行うことを特徴とする希土類磁石の製造法
を提供する。
Means for Solving the Problems The present invention is, in order to solve the above problems, in the production of a multi-structure magnet by extruding a rare earth magnet containing a rare earth element, an iron group element and boron into a container, A rare earth magnet characterized in that a magnet alloy powder is cold-pressed to prepare a compact, a lubricant is applied to the entire surface of the compact, the compact is placed in a container, and hot pressing and extrusion are continuously performed. To provide a manufacturing method of.

【0007】[0007]

【発明の実施の形態】この発明では、上記の通りの方法
によって容器内への押出し加工によって多重構造化され
た希土類磁石を製造することを特徴としているが、希土
類磁石そのものの組成においては、希土類元素は、Nd
(ネオジウム)に代表されるものであって、Ce、D
y、Pr等の他の希土類の各種のものである。なかで
も、Nd、もしくは、このNdにCe、Dy等が加えら
れたものとして考慮される。鉄族元素については、代表
的にはFe、もしくはCoであって、その両者からなる
系も例示される。希土類元素−鉄族元素−ホウ素の組成
比については、従来より知られている範囲であってよ
い。また、磁気性能の向上だけでなく、耐食性、加工
性、耐熱性等の改善のために、Ga、Nb、Ni、Z
n、Pb、Al等の元素をさらに含有させてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is characterized in that a rare earth magnet having a multi-structure is manufactured by extrusion into a container by the method as described above. However, in the composition of the rare earth magnet itself, the rare earth magnet is Element is Nd
(Neodymium), Ce, D
Various kinds of other rare earths such as y and Pr. Among them, it is considered as Nd, or Ce, Dy, etc. added to this Nd. The iron group element is typically Fe or Co, and a system composed of both is also exemplified. The composition ratio of rare earth element-iron group element-boron may be in a conventionally known range. Further, in order to improve not only magnetic performance but also corrosion resistance, workability, heat resistance, etc., Ga, Nb, Ni, Z
You may further contain elements, such as n, Pb, and Al.

【0008】これらの組成の磁石は、この発明では、ま
ず合金粉末として冷間プレス加工により所要の形状、大
きさの成形体に成形される。この場合の合金粉末として
は、希土類磁石構成元素の溶融合金の鋳造により得られ
るインゴットの粉砕、あるいは超急冷により得られる薄
帯の粉砕等から作製されたものが用られる。その粒径に
は厳密な制限はないが、焼結性、磁気特性等の点から
は、一般的には1000μm以下、さらには100〜8
00μm程度のものが好ましく使用される。
In the present invention, the magnets having these compositions are first formed as alloy powder by cold pressing into a compact having a desired shape and size. In this case, as the alloy powder, one prepared by crushing an ingot obtained by casting a molten alloy of rare earth magnet constituent elements, crushing a thin band obtained by ultra-quenching, or the like is used. There is no strict limitation on the particle size, but in view of sinterability, magnetic properties, etc., it is generally 1000 μm or less, more preferably 100 to 8 μm.
Those having a diameter of about 00 μm are preferably used.

【0009】次いで得られた成形体には、その全面に潤
滑剤が塗布される。潤滑剤としては無機質、有機質のも
のが考慮されるが、高温安定性等の観点からは、グラフ
ァイトがその好適なものの一つとして例示される。この
潤滑剤は、成形体の全面に塗布されるべきであり、一部
のみの塗布では、容器と磁石との間に焼き付きが生じ、
充分な押出し加工ができない。磁石に割れが生じやすく
もなる。
Then, a lubricant is applied to the entire surface of the obtained molded body. Inorganic or organic lubricants are considered as the lubricant, but graphite is exemplified as one of the preferable lubricants from the viewpoint of high temperature stability and the like. This lubricant should be applied to the entire surface of the molded body, and if only a part of it is applied, seizure occurs between the container and the magnet,
It cannot be extruded sufficiently. The magnet also tends to crack.

【0010】潤滑剤を塗布した成形体は、所定の容器内
に入れ、ホットプレスと押出し加工を連続的に行うこと
になる。この場合の容器は、破損防止のために充分に強
度があり、熱間変形抵抗が小さく、焼き付きが生じにく
く、さらには使用目的に応じて良好な耐食性や加工性等
も備えたものとして選ばれる。ホットプレス、押出し加
工は600〜900℃程度に加熱して行われるが、容器
そのものを加熱しておくことが考えられる。また、真空
下、もしくはAr(アルゴン)等の不活性ガス雰囲気で
行うのが好ましくもある。圧力は容器の大きさ、厚みに
もよるが、およそ0.5〜10トン/cm2 程度とされ
る。なお、ホットプレスと押出し加工は、この発明にお
いては、連続して行われる。ホットプレス後に冷却し、
再度加熱して押出し加工する場合には、磁石の結晶粒が
成長し、変形抵抗の増大や磁気特性の劣化、特にiHc
の大きな低下をまねくため好ましくない。
The molded body coated with the lubricant is placed in a predetermined container and hot pressed and extruded continuously. The container in this case has sufficient strength to prevent breakage, has a small resistance to hot deformation, is unlikely to cause seizure, and is also selected as having good corrosion resistance and workability according to the purpose of use. . Hot pressing and extrusion are performed by heating at about 600 to 900 ° C., but it is conceivable to heat the container itself. It is also preferable to carry out under vacuum or in an inert gas atmosphere such as Ar (argon). The pressure depends on the size and thickness of the container, but is set to about 0.5 to 10 ton / cm 2 . It should be noted that the hot pressing and the extrusion process are continuously performed in the present invention. Cool down after hot pressing,
When heated and extruded again, the crystal grains of the magnet grow, increasing the deformation resistance and deteriorating the magnetic properties, especially iHc.
Is not preferable because it causes a large decrease in

【0011】また、押出し加工では、押出し自由端に圧
力を付与して行うのが、磁石の割れの発生を抑えるとの
点において好ましい。図1は、ホットプレスとこれに続
く押出し加工の工程を例示したものであり、ダイ(1)
と下パンチ(2)および上パンチ(3)とによって形成
される空間には容器(4)が配置されており、この容器
(4)内に、潤滑剤がその全面に塗布された冷間プレス
成形体(5)が装入されてホットプレスが行われ、続い
て直ちに、容器(4)および磁石成形体(5)が連続し
て加熱された状態で押出し加工が行われる。この時、図
1の例では押出し自由端にはアウターパンチ(6)によ
り圧力が付与されてもいる。
In the extrusion process, it is preferable to apply pressure to the free end of extrusion in order to suppress cracking of the magnet. FIG. 1 shows an example of the steps of hot pressing and subsequent extrusion processing.
A container (4) is arranged in a space formed by the lower punch (2) and the upper punch (3), and a cold press in which a lubricant is applied to the entire surface of the container (4). The molded body (5) is charged and hot pressing is performed, and immediately thereafter, extrusion processing is performed while the container (4) and the magnet molded body (5) are continuously heated. At this time, in the example of FIG. 1, pressure is applied to the free extruding end by the outer punch (6).

【0012】以上のようにして、この発明の破損防止性
能に優れた多重構造磁石が製造される。そこで以下に実
施例を示し、さらに詳しくこの発明の実施の形態につい
て説明する。
As described above, the multi-structured magnet of the present invention, which is excellent in damage prevention performance, is manufactured. Therefore, examples will be shown below, and the embodiments of the present invention will be described in more detail.

【0013】[0013]

【実施例】実施例 Nd30.5wt%、Co5.5wt%、B0.9wt
%、Ga0.6wt%、Fe62.5wt%からなる組
成の溶融合金から超急冷法によって作製された粉末を用
いて、冷間プレスによって成形体を作製した。この成形
体の全面に潤滑剤としてグラファイトを塗布した後、図
2に示した大きさ、形状の円筒型のインコネル×750
製の容器に入れた。この容器を750℃まで加熱した
後、図1に示した方法でホットプレスを行い、続いて押
出し加工を行った。
EXAMPLES Example Nd 30.5 wt%, Co 5.5 wt%, B 0.9 wt
%, Ga 0.6 wt%, Fe 62.5 wt%, and a powder produced by a super-quenching method from a molten alloy having a composition of 6% by weight. After applying graphite as a lubricant to the entire surface of this molded body, a cylindrical Inconel of the size and shape shown in FIG.
It was put in a container made of. After heating this container to 750 ° C., hot pressing was performed by the method shown in FIG. 1 and subsequently extrusion processing was performed.

【0014】比較例1 実施例と同様にして成形体を作製し、成形体の上下端面
だけに潤滑剤を塗布し、容器内に入れてホットプレス並
びに押出し加工を行った。比較例2 ホットプレス後、一端室温まで冷却した。その後再度上
端面に潤滑剤を塗布し、750℃まで加熱し押出し加工
を行った。なお、その他の条件は実施例と同様とした。
実施例及び比較例で得られた磁石の押出し深さ、割れの
発生の有無、磁気特性を表1に示した。潤滑剤を成形体
全面に塗布しないで、押出し加工を行う(比較例1)と
容器と磁石との間に焼き付きが生じ、十分な押出し加工
ができなかった。また、磁石に割れが発生する。さら
に、ホットプレスと押出し加工を連続して行わず、2回
の加熱を行う(比較例2)と結晶粒が成長し、変形抵抗
の増大や磁気特性の劣化、特にiHcの大きな低下が認
められた。
Comparative Example 1 A molded body was prepared in the same manner as in Example 1. A lubricant was applied only to the upper and lower end surfaces of the molded body, and the molded body was placed in a container and hot pressed and extruded. Comparative Example 2 After hot pressing, it was once cooled to room temperature. After that, a lubricant was applied again to the upper end surface, heated to 750 ° C., and extruded. The other conditions were the same as in the example.
Table 1 shows the extrusion depth, the presence or absence of cracks, and the magnetic properties of the magnets obtained in the examples and comparative examples. When the extrusion process was performed without applying the lubricant to the entire surface of the molded body (Comparative Example 1), seizure occurred between the container and the magnet, and sufficient extrusion process could not be performed. Also, cracks occur in the magnet. Further, when hot pressing and extrusion processing are not continuously performed and heating is performed twice (Comparative Example 2), crystal grains grow and deformation resistance increases and magnetic characteristics deteriorate, particularly iHc significantly decreases. It was

【0015】[0015]

【表1】 [Table 1]

【0016】これに対し、この発明の実施例では、焼き
付き、割れの発生はなく、十分に押出し加工ができ、磁
気特性の劣化もほとんどなかった。そして、得られた容
器との多重構造磁石では、電動機の高速回転でも一切磁
石に破損は生じなかった。
On the other hand, in the examples of the present invention, neither seizure nor cracking occurred, sufficient extrusion processing was possible, and the magnetic characteristics were hardly deteriorated. With the obtained multi-structure magnet with the container, the magnet was not damaged even at high speed rotation of the electric motor.

【0017】[0017]

【発明の効果】以上詳しく説明した通り、この発明によ
り、焼き付きや割れの発生なく、十分な押出し加工が可
能で、磁気特性の劣化もほとんどなく、高速回転時の破
損防止性能に優れた多重構造化希土類磁石を製造するこ
とが可能となる。
As described in detail above, according to the present invention, a multi-layer structure which is capable of sufficient extrusion without seizure or cracking, has almost no deterioration in magnetic properties, and has an excellent damage prevention performance at high speed rotation. It becomes possible to manufacture a rare earth oxide magnet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法を例示した工程断面図である。FIG. 1 is a process cross-sectional view illustrating a method of the present invention.

【図2】容器を例示した断面図である。FIG. 2 is a cross-sectional view illustrating a container.

【符号の説明】[Explanation of symbols]

1 ダイ 2 下パンチ 3 上パンチ 4 容器 5 成形体 6 アウターパンチ 7 磁石 1 die 2 lower punch 3 upper punch 4 container 5 molded body 6 outer punch 7 magnet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素、鉄族元素並びにホウ素を含
有する希土類磁石の容器内への押出し加工による多重構
造磁石の製造において、磁石合金の粉末を冷間プレスし
て成形体を作製し、その全面に潤滑剤を塗布した後に成
形体を容器内に入れ、ホットプレスと押出し加工を連続
して行うことを特徴とする希土類磁石の製造法。
1. In the production of a multi-structured magnet by extruding a rare earth magnet containing a rare earth element, an iron group element and boron into a container, a powder of a magnet alloy is cold pressed to produce a compact, and A method for producing a rare earth magnet, which comprises applying a lubricant to the entire surface, placing the molded body in a container, and continuously performing hot pressing and extrusion.
【請求項2】 押出し自由端に圧力を付与しながら押出
し加工する請求項1の製造法。
2. The production method according to claim 1, wherein the extrusion is performed while applying pressure to the free end of the extrusion.
JP28103395A 1995-10-27 1995-10-27 Manufacturing method of multi-structure rare earth metal magnet body Expired - Fee Related JP3818397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28103395A JP3818397B2 (en) 1995-10-27 1995-10-27 Manufacturing method of multi-structure rare earth metal magnet body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28103395A JP3818397B2 (en) 1995-10-27 1995-10-27 Manufacturing method of multi-structure rare earth metal magnet body

Publications (2)

Publication Number Publication Date
JPH09124372A true JPH09124372A (en) 1997-05-13
JP3818397B2 JP3818397B2 (en) 2006-09-06

Family

ID=17633361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28103395A Expired - Fee Related JP3818397B2 (en) 1995-10-27 1995-10-27 Manufacturing method of multi-structure rare earth metal magnet body

Country Status (1)

Country Link
JP (1) JP3818397B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340380A (en) * 2015-07-10 2017-01-18 丰田自动车株式会社 Production method of compact
JP2017126752A (en) * 2016-01-14 2017-07-20 中国科学院寧波材料技術与工程研究所Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Method and apparatus for manufacturing heat deformation magnet
CN111403166A (en) * 2020-04-17 2020-07-10 成都银河磁体股份有限公司 Preparation method of hot-pressed magnet and product thereof
CN112635188A (en) * 2020-12-14 2021-04-09 电子科技大学 Method and equipment for laser cladding of heavy rare earth wire on neodymium iron boron surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340380A (en) * 2015-07-10 2017-01-18 丰田自动车株式会社 Production method of compact
US10629370B2 (en) 2015-07-10 2020-04-21 Toyota Jidosha Kabushiki Kaisha Production method of compact
JP2017126752A (en) * 2016-01-14 2017-07-20 中国科学院寧波材料技術与工程研究所Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Method and apparatus for manufacturing heat deformation magnet
CN111403166A (en) * 2020-04-17 2020-07-10 成都银河磁体股份有限公司 Preparation method of hot-pressed magnet and product thereof
CN112635188A (en) * 2020-12-14 2021-04-09 电子科技大学 Method and equipment for laser cladding of heavy rare earth wire on neodymium iron boron surface

Also Published As

Publication number Publication date
JP3818397B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
TWI464757B (en) Manufacture of rare earth magnets
CN102347126B (en) High-performance sintered neodymium-iron-boron (Nd-Fe-B) rare-earth permanent magnet material and manufacturing method thereof
JP7371108B2 (en) Rare earth diffusion magnet manufacturing method and rare earth diffusion magnet
JP6457598B2 (en) Manufacturing method of R-Fe-B sintered magnet
US11742120B2 (en) Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet
CN104505207B (en) Big L/D ratio radial hot pressing permanent-magnetic clamp and preparation method thereof
CN105321702A (en) Method for improving coercivity of sintered NdFeB magnet
CN101562067A (en) Manufacture method of corrosion-resistant R-Fe-B rare-earth permanent magnet
JP7253071B2 (en) RTB Permanent Magnet Material, Manufacturing Method, and Application
CN108305735B (en) High-performance high-resistivity sintered samarium-cobalt permanent magnet material, and preparation method and application thereof
CN103456451A (en) Method for preparing room temperature high magnetic energy product anti-corrosion sintered NdFeB
CN108154986B (en) Y-containing high-abundance rare earth permanent magnet and preparation method thereof
CN111180191A (en) Method for preparing high-performance sintered neodymium-iron-boron magnet
CN101620928A (en) Sm (Co, cu, fe, zr)ztype alloy strip magnet preparation method
JP6613730B2 (en) Rare earth magnet manufacturing method
CN104488048A (en) Process for producing NdFeB-based sintered magnet
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
EP4152348B1 (en) Preparation method for heavy rare earth-free high-performance neodymium-iron-boron permanent magnet material
JP3818397B2 (en) Manufacturing method of multi-structure rare earth metal magnet body
CN108447638A (en) A kind of New energy automobile motor ultra-high coercive force Nd-Fe-B permanent magnet and preparation method thereof
JPS61268006A (en) Anisotropic magnet
CN104167271A (en) High-resistivity rare earth iron series R-Fe-B magnet and manufacturing method thereof
SG177916A1 (en) Permanent magnet and method of manufacturing same
JP2643267B2 (en) Method for producing R-Fe-B anisotropic magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees