JPH09122867A - Thixocasting method - Google Patents

Thixocasting method

Info

Publication number
JPH09122867A
JPH09122867A JP7308175A JP30817595A JPH09122867A JP H09122867 A JPH09122867 A JP H09122867A JP 7308175 A JP7308175 A JP 7308175A JP 30817595 A JP30817595 A JP 30817595A JP H09122867 A JPH09122867 A JP H09122867A
Authority
JP
Japan
Prior art keywords
alloy material
phase
casting
alloy
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7308175A
Other languages
Japanese (ja)
Other versions
JP2869889B2 (en
Inventor
Nobuhiro Saito
信広 斉藤
Haruo Shiina
治男 椎名
Takeyoshi Nakamura
武義 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7308175A priority Critical patent/JP2869889B2/en
Priority to US08/728,435 priority patent/US5993572A/en
Priority to DE69622664T priority patent/DE69622664T2/en
Priority to EP96307358A priority patent/EP0773302B1/en
Publication of JPH09122867A publication Critical patent/JPH09122867A/en
Application granted granted Critical
Publication of JP2869889B2 publication Critical patent/JP2869889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thixocasting method by which a high-strength Al alloy casting is obtainable. SOLUTION: An Al-Si alloy material which has a hypo-eutectic compsn. and in which the first peak-shaped endothermic part (b) by eutectic dissolution and the second peak-shaped endothermic part (c) by dissolution of the component of the m.p. higher than the m.p. of the eutectic point in a differential thermal analysis curve (a) is subjected to a heat treatment to prepare the half-molten Al-Si alloy material in which a solid phase and a liquid phase coexist in this thixocasting method. The packing of the half-molten Al-Si alloy material into the cavity of a casting mold and the subsequent solidification of the half-melted Al-Si alloy material are then executed under pressurization. The casting temp. T of the half-melted Al-Si alloy material is set at T1 <=T<=T2 when the temp. of the elevation start point (d) of the first peak-shaped endothermic part (b) is defined as T1 and the temp. at the falling end point (e) thereof as T2 . As a result, the fine crystallization of the primary crystal Si phase is embodied and the strength of the Al alloy casting is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はチクソキャスティン
グ法、特に、亜共晶組成を有し、且つ示差熱分析曲線に
おいて、共晶溶解による第1山形吸熱部と、共晶点より
も高融点の成分の溶解による第2山形吸熱部とが存在す
る合金材料に加熱処理を施して、固相(略固体となって
いる相、以下同じ)と液相とが共存する半溶融合金材料
を調製し、次いで、加圧下で、半溶融合金材料の鋳型キ
ャビティへの充填と、それに次ぐ半溶融合金材料の凝固
とを行う方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thixocasting method, and more particularly, it has a hypoeutectic composition and has a first chevron endotherm due to eutectic melting and a melting point higher than the eutectic point in a differential thermal analysis curve. A semi-molten alloy material in which a solid phase (substantially solid phase, the same applies hereinafter) and a liquid phase coexist is prepared by subjecting an alloy material having a second chevron endotherm due to melting of the components to heat treatment. Then, it relates to an improvement in a method of filling a mold cavity with semi-molten alloy material under pressure and then solidifying the semi-molten alloy material under pressure.

【0002】[0002]

【従来の技術】従来、この種チクソキャスティング法に
おいては、第1山形吸熱部の下降終了点の温度をT2
し、また第2山形吸熱部のピークの温度をT3 としたと
き、半溶融合金材料の鋳造温度TをT2 ≦T≦T3 に設
定している。
2. Description of the Related Art Conventionally, in this type of thixocasting method, when the temperature at the end point of the descending end of the first chevron endotherm is T 2 and the peak temperature of the second chevron endotherm is T 3 , semi-melting occurs. The casting temperature T of the alloy material is set to T 2 ≤T≤T 3 .

【0003】このように鋳造温度Tを比較的高く設定す
る理由は、半溶融合金材料の固相率を低めてその鋳造性
を良好にするためである。
The reason why the casting temperature T is set relatively high in this way is to lower the solid phase ratio of the semi-molten alloy material and improve its castability.

【0004】この場合、得られた合金鋳物の金属組織
は、固相の凝固によるα相と、マトリックス、したがっ
て液相の凝固によるα−β共晶相とからなり、合金鋳物
はその金属組織に応じた機械的特性を有する。
In this case, the metal structure of the obtained alloy casting is composed of an α phase due to solidification of a solid phase and an α-β eutectic phase due to solidification of a matrix, that is, a liquid phase. It has suitable mechanical properties.

【0005】[0005]

【発明が解決しようとする課題】前記のような合金鋳物
の機械的特性をさらに向上させるためには、そのマトリ
ックスにβ相を微細に晶出させることが考えられるが、
従来法によったのでは、β相の微細晶出は実現不可能で
ある。
In order to further improve the mechanical properties of the alloy casting as described above, it is conceivable to finely crystallize the β phase in the matrix,
Fine crystallization of the β phase cannot be realized by the conventional method.

【0006】[0006]

【課題を解決するための手段】本発明は、亜共晶組成を
有する合金材料を用いてβ相の微細晶出を実現し得る前
記チクソキャスティング法を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide the above thixocasting method capable of realizing fine crystallization of β phase by using an alloy material having a hypoeutectic composition.

【0007】前記目的を達成するため本発明によれば、
亜共晶組成を有し、且つ示差熱分析曲線において、共晶
溶解による第1山形吸熱部と、共晶点よりも高融点の成
分の溶解による第2山形吸熱部とが存在する合金材料に
加熱処理を施して、固相と液相とが共存する半溶融合金
材料を調製し、次いで、加圧下で、前記半溶融合金材料
の鋳型キャビティへの充填と、それに次ぐ前記半溶融合
金材料の凝固とを行うチクソキャスティング法におい
て、前記第1山形吸熱部の上昇開始点の温度をT1
し、またその下降終了点の温度をT2 としたとき、前記
半溶融合金材料の鋳造温度TをT1 ≦T≦T2 に設定す
るチクソキャスティング法が提供される。
[0007] To achieve the above object, according to the present invention,
An alloy material having a hypoeutectic composition and having a first chevron endotherm due to eutectic melting and a second chevron endotherm due to melting of a component having a melting point higher than the eutectic point in the differential thermal analysis curve Heat treatment is performed to prepare a semi-molten alloy material in which a solid phase and a liquid phase coexist, and then, under pressure, filling the mold cavity of the semi-molten alloy material, and then the semi-molten alloy material In the thixocasting method of performing solidification, when the temperature of the rising start point of the first chevron endothermic part is T 1 and the temperature of the falling end point is T 2 , the casting temperature T of the semi-molten alloy material is A thixocasting method is provided in which T 1 ≤T≤T 2 .

【0008】鋳造温度Tを前記のように設定すると、そ
の温度Tの範囲、即ち、T1 ≦T≦T2 では液相は共晶
組成を有する。そして、凝固過程においては、その液相
の組成が共晶点を境にして過共晶側および亜共晶側へ揺
らぐように変化するので、過共晶側ではβ相が晶出し、
また亜共晶側ではα−β共晶相が晶出する。
When the casting temperature T is set as described above, the liquid phase has a eutectic composition within the range of the temperature T, that is, T 1 ≤T≤T 2 . Then, in the solidification process, the composition of the liquid phase changes so as to fluctuate toward the hypereutectic side and the hypoeutectic side with the eutectic point as a boundary, so the β phase crystallizes on the hypereutectic side,
On the hypoeutectic side, the α-β eutectic phase crystallizes out.

【0009】この場合、β相の成長は、固相であるα相
により妨げられるので、その微細化が達成される。
In this case, since the growth of the β phase is hindered by the α phase which is a solid phase, the miniaturization is achieved.

【0010】また鋳造温度Tを前記のように設定する
と、半溶融合金材料の固相率が高くなるが、β相が固相
相互の凝集を阻止する作用を発揮するので、半溶融合金
材料は良好な流動性を有する。
When the casting temperature T is set as described above, the solid phase ratio of the semi-molten alloy material increases, but the β phase exerts the effect of preventing the mutual solid phase aggregation, so that the semi-molten alloy material is It has good fluidity.

【0011】これにより、鋳造欠陥の発生が無く、また
機械的特性を従来のものよりも向上させた亜共晶組成の
合金鋳物を得ることができる。
As a result, it is possible to obtain a cast alloy having a hypoeutectic composition, which is free from casting defects and has improved mechanical properties as compared with the conventional ones.

【0012】ただし、鋳造温度TがT<T1 では合金材
料において液相を存在させることができず、一方、T>
2 では従来法のごとくβ相の晶出を実現することがで
きない。
However, when the casting temperature T is T <T 1 , the liquid phase cannot be present in the alloy material, while T>
In T 2 can not achieve crystallization of the β-phase as the conventional method.

【0013】[0013]

【発明の実施の形態】図1に示す加圧鋳造機1はAl合
金材料(合金材料)を用いてチクソキャスティング法の
適用下でAl合金鋳物を鋳造するために用いられる。そ
の加圧鋳造機1は鋳型を備え、その鋳型は鉛直な合せ面
2a,3aを有する固定金型2および可動金型3よりな
り、両合せ面2a,3a間に鋳物成形用キャビティ4が
形成される。固定金型2に半溶融Al合金材料(半溶融
合金材料)5を設置するチャンバ6が形成され、そのチ
ャンバ6はゲート7を介してキャビティ4に連通する。
また固定金型2に、チャンバ6に連通するスリーブ8が
水平に付設され、そのスリーブ8にチャンバ6に挿脱さ
れる加圧プランジャ9が摺動自在に嵌合される。スリー
ブ8は、その周壁上部に材料用挿入口10を有する。 〔実施例1〕表1は、亜共晶組成を有するAl−Si系
合金材料の化学成分を示す。このAl−Si系合金材料
は、連続鋳造法の適用下で鋳造された高品質な長尺連続
鋳造材より切出されたものであって、その鋳造に当って
は初晶α−Alの球状化処理が行われている。Al−S
i系合金材料の寸法は直径50mm、長さ65mmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pressure casting machine 1 shown in FIG. 1 is used to cast an Al alloy casting using an Al alloy material (alloy material) under the application of a thixocasting method. The pressure casting machine 1 is provided with a mold, which comprises a fixed mold 2 having vertical mating surfaces 2a and 3a and a movable mold 3, and a molding cavity 4 is formed between the mating surfaces 2a and 3a. To be done. A chamber 6 in which a semi-molten Al alloy material (semi-molten alloy material) 5 is installed is formed in the fixed mold 2, and the chamber 6 communicates with the cavity 4 via a gate 7.
Further, a sleeve 8 communicating with the chamber 6 is horizontally attached to the fixed mold 2, and a pressure plunger 9 inserted into and removed from the chamber 6 is slidably fitted to the sleeve 8. The sleeve 8 has a material insertion port 10 in the upper portion of the peripheral wall thereof. [Example 1] Table 1 shows chemical components of an Al-Si alloy material having a hypoeutectic composition. This Al-Si alloy material was cut out from a high-quality long continuous casting material that was cast under the application of the continuous casting method. Is being processed. Al-S
The size of the i-based alloy material is 50 mm in diameter and 65 mm in length.

【0014】[0014]

【表1】 [Table 1]

【0015】Al−Si系合金材料について示差走査熱
量測定(DSC)を行ったところ、図2の結果を得た。
図2の示差熱分析曲線aにおいて、共晶溶解による第1
山形吸熱部bと、共晶点よりも高融点の成分の溶解によ
る第2山形吸熱部cとが存在する。第1山形吸熱部bの
上昇開始点dの温度T1 はT1 =556℃、下降終了点
(第2山形吸熱部cの上昇開始点、以下同じ)eの温度
2 はT2 =580℃、第2山形吸熱部cのピークfの
温度T3 はT3 =598℃である。また第1山形吸熱部
bのピークgの温度は571℃、第2山形吸熱部cの下
降終了点hの温度は608℃である。
Differential scanning calorimetry (DSC) was performed on the Al--Si alloy material, and the results shown in FIG. 2 were obtained.
In the differential thermal analysis curve a of FIG. 2, the first by eutectic dissolution
There is a chevron heat absorbing portion b and a second chevron heat absorbing portion c due to dissolution of a component having a higher melting point than the eutectic point. Temperature T 1 of the rising start point d in the first angled endothermic section b is T 1 = 556 ° C., lowering the end point (rising start point of the second angled endothermic section c, hereinafter the same) is the temperature T 2 of the e T 2 = 580 C., the temperature T 3 of the peak f of the second chevron endothermic part c is T 3 = 598 ° C. The temperature of the peak g of the first chevron endothermic part b is 571 ° C., and the temperature of the end point h of the second chevron endothermic part c is 608 ° C.

【0016】次に、Al−Si系合金材料を誘導加熱装
置の加熱コイル内に設置し、次いで周波数 1kHz、
最大出力 37kWの条件で加熱して、固相と液相とが
共存する半溶融Al−Si系合金材料を調製した。この
場合、半溶融Al−Si系合金材料の加熱温度は575
℃、またその固相率は70%に設定された。
Next, the Al--Si alloy material is placed in the heating coil of the induction heating device, and then the frequency is set to 1 kHz.
A semi-molten Al-Si alloy material in which a solid phase and a liquid phase coexist was prepared by heating under the condition of the maximum output of 37 kW. In this case, the heating temperature of the semi-molten Al-Si alloy material is 575.
C., and its solid fraction was set to 70%.

【0017】その後、図1に示すように、半溶融Al−
Si系合金材料5をチャンバ6に設置し、半溶融Al−
Si系合金材料5の鋳造温度T=575℃(T1 ≦T≦
2)、加圧プランジャ9の移動速度 0.2m/sec
、金型温度 250℃の条件で半溶融Al−Si系合
金材料5を加圧しつつゲート7を通過させてキャビティ
4内に充填した。そして、加圧プランジャ9をストロー
ク終端に保持することによってキャビティ4内に充填さ
れた半溶融Al−Si系合金材料5に加圧力を付与し、
その加圧下で半溶融Al−Si系合金材料5を凝固させ
てAl合金鋳物A1 を得た。
Thereafter, as shown in FIG. 1, semi-molten Al--
The Si-based alloy material 5 is placed in the chamber 6, and the semi-molten Al-
Casting temperature of Si-based alloy material 5 T = 575 ° C. (T 1 ≦ T ≦
T 2 ), moving speed of the pressure plunger 9 0.2 m / sec
While the mold temperature was 250 ° C., the semi-molten Al—Si alloy material 5 was pressurized and passed through the gate 7 to fill the cavity 4. Then, by holding the pressurizing plunger 9 at the end of the stroke, a pressing force is applied to the semi-molten Al—Si alloy material 5 filled in the cavity 4,
The semi-molten Al—Si alloy material 5 was solidified under the pressure to obtain an Al alloy casting A 1 .

【0018】比較のため、半溶融Al−Si系合金材料
5の鋳造温度TをT=585℃(T2 ≦T≦T3 )に、
また固相率を45%にそれぞれ設定した、ということ以
外は前記と同一条件で前記同様の鋳造作業を行ってAl
合金鋳物A2 を得た。
For comparison, the casting temperature T of the semi-molten Al--Si alloy material 5 is set to T = 585 ° C. (T 2 ≤T≤T 3 ).
In addition, the same casting operation was performed under the same conditions as described above except that the solid fraction was set to 45%.
An alloy casting A 2 was obtained.

【0019】図3,4はAl合金鋳物A1 の金属組織を
示す顕微鏡写真である。この金属組織は、固相の凝固に
よるα−Al相と、マトリックスM、したがって液相の
凝固による初晶Si相およびAl−Si共晶相とからな
る。この場合、初晶Si相は固相周りに分散し、その体
積分率VfはVf=2.8%であった。
3 and 4 are micrographs showing the metal structure of the Al alloy casting A 1 . This metallographic structure is composed of an α-Al phase formed by solidification of a solid phase, and a matrix M, that is, a primary crystal Si phase and an Al—Si eutectic phase formed by solidification of a liquid phase. In this case, the primary crystal Si phase was dispersed around the solid phase, and its volume fraction Vf was Vf = 2.8%.

【0020】このように亜共晶組成を有するAl−Si
系合金材料を用いたのにも拘らず、前記のような、初晶
Si相が存する金属組織が得られる理由は次の通りであ
る。即ち、鋳造温度TをT=575℃に設定すると、そ
の温度Tが、図2においてT1 (556℃)≦T(57
5℃)≦T2 (580℃)の範囲に属することから液相
は図5に示すように11.7重量%Siの共晶組成を有
する。そして、凝固過程においては、その液相の組成が
図5、曲線iで示すように共晶点を境にして過共晶側お
よび亜共晶側へ揺らぐように変化するので、過共晶側で
は初晶Si相が晶出し、また亜共晶側ではAl−Si共
晶相が晶出する。
Thus, Al-Si having a hypoeutectic composition
The reason why the metal structure having the primary crystal Si phase as described above can be obtained despite the use of the base alloy material is as follows. That is, when the casting temperature T is set to T = 575 ° C., the temperature T becomes T 1 (556 ° C.) ≦ T (57
5 ° C.) ≦ T 2 (580 ° C.), the liquid phase has a eutectic composition of 11.7 wt% Si as shown in FIG. In the solidification process, the composition of the liquid phase changes so as to fluctuate toward the hypereutectic side and the hypoeutectic side with the eutectic point as a boundary, as shown by the curve i in FIG. , The primary Si phase crystallizes, and the Al-Si eutectic phase crystallizes on the hypoeutectic side.

【0021】この場合、初晶Si相の成長は、固相であ
るα−Al相により妨げられるので、その粒径Dは5μ
m≦D≦20μmとなる。過共晶組成を有するAl−S
i系合金材料を用いて重力鋳造を行うに際し、P等を使
用して初晶Si相の微細化が行われているが、この場合
には初晶Si相の粒径Dは20μm≦D≦50μmであ
り、これと比較すると、前記方法によれば初晶Si相の
一層の微細化が達成されていることが判る。
In this case, since the growth of the primary crystal Si phase is hindered by the solid phase α-Al phase, the grain size D is 5 μm.
m ≦ D ≦ 20 μm. Al-S with hypereutectic composition
When gravity casting is performed using an i-based alloy material, the primary crystal Si phase is refined using P or the like. In this case, the grain size D of the primary crystal Si phase is 20 μm ≦ D ≦ It is 50 μm, and by comparison with this, it can be seen that further miniaturization of the primary crystal Si phase is achieved by the above method.

【0022】また鋳造温度Tを前記のように設定する
と、半溶融Al−Si系合金材料の固相率が70%とい
ったように高くなるが、初晶Si相が固相相互の凝集を
阻止する作用を発揮するので、半溶融Al−Si系合金
材料は良好な流動性を有し、Al合金鋳物A1 において
鋳造欠陥の発生は認められなかった。
When the casting temperature T is set as described above, the solid phase ratio of the semi-molten Al-Si alloy material is as high as 70%, but the primary crystal Si phase prevents the mutual solid phase aggregation. since cause an effect, the semi-molten Al-Si based alloy material has good flow properties, occurrence of casting defects in the Al alloy castings a 1 was observed.

【0023】図6,7はAl合金鋳物A2 の金属組織を
示す顕微鏡写真である。この金属組織は固相の凝固によ
るα−Al相と、マトリックスM、したがって液相の凝
固によるAl−Si共晶相とからなり、初晶Si相は存
在しない。
6 and 7 are micrographs showing the metal structure of the Al alloy casting A 2 . This metallic structure is composed of an α-Al phase obtained by solidification of a solid phase and a matrix M, that is, an Al-Si eutectic phase obtained by solidification of a liquid phase, and there is no primary Si phase.

【0024】このように初晶Si相が不存在である理由
は次の通りである。即ち、鋳造温度TをT=585℃に
設定すると、その温度Tが、図2においてT2 (580
℃)≦T(585℃)≦T3 (598℃)の範囲に属す
ることから液相は図5に示すように約10.4重量%S
iの亜共晶組成を有する。そして、凝固過程において
は、その組成が図5、曲線jで示すように約10.4重
量%Siを境にして高Si側および低Si側へ揺らぐよ
うに変化するが、共晶点を超えることはなく、したがっ
て初晶Si相は晶出しない。
The reason why the primary Si phase is absent is as follows. That is, when the casting temperature T is set to T = 585 ° C., the temperature T is T 2 (580
C) ≦ T (585 ° C.) ≦ T 3 (598 ° C.), the liquid phase is about 10.4 wt% S as shown in FIG.
It has a hypoeutectic composition of i. Then, in the solidification process, the composition changes so as to fluctuate toward the high Si side and the low Si side with about 10.4 wt% Si as a boundary, as shown by the curve j in FIG. 5, but exceeds the eutectic point. Therefore, the primary Si phase does not crystallize.

【0025】次に、両Al合金鋳物A1 ,A2 よりそれ
ぞれテストピースA1 ,A2 を作製し、それらA1 ,A
2 にT6処理を施した後引張り試験およびシャルピー衝
撃試験を行ったところ、表2の結果を得た。
Next, to produce both Al alloy castings A 1, respectively from A 2 Test piece A 1, A 2, which A 1, A
When the tensile test and the Charpy impact test were performed after T2 treatment on 2, the results shown in Table 2 were obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、初晶Si相が存
在するテストピースA1 は、初晶Si相の無いテストピ
ースA2 に比べて強度が向上している。またテストピー
スA1 においては、初晶Si相の微細化が図られると共
にその体積分率Vfが適当であることから、延性および
靱性の低下が抑制されている。 〔実施例2〕表3は亜共晶組成を有するAl−Si系合
金材料B1 〜B3 および過共晶組成を有するAl−Si
系合金材料B4 の化学成分を示す。これらAl−Si系
合金材料B1 等は、連続鋳造法の適用下で鋳造された高
品質な長尺連続鋳造材より切出されたものであって、そ
の鋳造に当ってはα−Alの球状化処理が行われてい
る。Al−Si系合金材料B1 等の寸法は直径50mm、
長さ65mmである。
As is clear from Table 2, the strength of the test piece A 1 containing the primary crystal Si phase is higher than that of the test piece A 2 having no primary crystal Si phase. Further, in the test piece A 1 , since the primary crystal Si phase is made fine and the volume fraction Vf thereof is appropriate, the decrease in ductility and toughness is suppressed. Example 2 Table 3 shows Al-Si alloy materials B 1 to B 3 having a hypoeutectic composition and Al-Si having a hypereutectic composition.
The chemical composition of the system alloy material B 4 is shown below. These Al-Si alloy materials B 1 and the like are cut out from a high-quality long continuous casting material that is cast under the application of the continuous casting method. The spheroidizing process is being performed. The dimension of the Al-Si alloy material B 1 etc. is 50 mm in diameter,
The length is 65 mm.

【0028】[0028]

【表3】 [Table 3]

【0029】Al−Si系合金材料B1 等について示差
走査熱量測定(DSC)を行ったところ、それら示差熱
分析曲線において、共晶溶解による第1山形吸熱部と、
共晶点より高融点の成分の溶解による第2山形吸熱部と
が存在することが判明した。
Differential scanning calorimetry (DSC) was carried out on the Al-Si alloy material B 1 and the like. As a result, the first chevron endotherm due to eutectic melting in the differential thermal analysis curves,
It was found that there was a second chevron endotherm due to the dissolution of the component having a higher melting point than the eutectic point.

【0030】表4は、それら示差熱分析曲線における各
点の温度をまとめたものである。
Table 4 summarizes the temperatures at each point in the differential thermal analysis curves.

【0031】[0031]

【表4】 [Table 4]

【0032】次に、Al−Si合金材料B1 を誘導加熱
装置の加熱コイル内に設置し、次いで周波数 1kH
z、最大出力 37kWの条件で加熱して、固相と液相
とが共存する半溶融Al−Si系合金材料B1 を調製し
た。
Next, the Al--Si alloy material B 1 is placed in the heating coil of the induction heating device, and then the frequency is set to 1 kHz.
By heating under conditions of z and maximum output of 37 kW, a semi-molten Al-Si alloy material B 1 in which a solid phase and a liquid phase coexist was prepared.

【0033】その後、図1に示すように、半溶融Al−
Si系合金材料B1 (符号5)をチャンバ6に設置し、
加圧プランジャ9の移動速度 0.2m/sec 、金型温
度250℃の条件で半溶融Al−Si系合金材料B1
加圧しつつゲート7を通過させてキャビティ4内に充填
した。そして、加圧プランジャ9をストローク終端に保
持することによってキャビティ4内に充填された半溶融
Al−Si系合金材料B1 に加圧力を付与し、その加圧
下で半溶融Al−Si系合金材料B1 を凝固させてAl
合金鋳物B1 を得た。また他のAl−Si系合金材料B
2 〜B4 を用い、前記同様の鋳造作業を行ってAl合金
鋳物B2 〜B4 を得た。
Then, as shown in FIG. 1, semi-molten Al--
Si-based alloy material B 1 (reference numeral 5) is installed in the chamber 6,
The semi-molten Al—Si alloy material B 1 was pressed under the conditions of a moving speed of the pressure plunger 9 of 0.2 m / sec and a mold temperature of 250 ° C., while passing through the gate 7 to fill the cavity 4. Then, by holding the pressure plunger 9 at the end of the stroke, a pressure is applied to the semi-molten Al-Si alloy material B 1 filled in the cavity 4, and under the pressure, the semi-molten Al-Si alloy material B 1 is applied. B 1 is solidified to form Al
An alloy casting B 1 was obtained. Other Al-Si alloy material B
Using 2 to B 4 , the same casting operation as above was performed to obtain Al alloy castings B 2 to B 4 .

【0034】各Al合金鋳物B1 〜B4 についてその金
属組織を調べたところ、その金属組織は、実施例1のA
l合金鋳物A1 と同様に、固相の凝固によるα−Al相
と、マトリックスM、したがって液相の凝固による初晶
Si相およびAl−Si共晶相とからなることが判明し
た。また各Al合金鋳物B1 〜B4 において鋳造欠陥の
発生は認められなかった。
When the metal structure of each of the Al alloy castings B 1 to B 4 was examined, the metal structure was found to be A in Example 1.
It was found that, like the 1- alloy casting A1, it consisted of an α-Al phase due to solidification of the solid phase, and a primary phase Si phase and an Al-Si eutectic phase due to solidification of the matrix M, and hence the liquid phase. The occurrence of casting defects in the Al alloy castings B 1 .about.B 4 was observed.

【0035】次に各Al−Si系合金材料B1 〜B4
ついて流動性試験を行った。この試験用可動金型31
しては、図8に示すようにそのキャビティ41 が、ゲー
ト7に連通する円形部4aと、その円形部4aから延出
して略凹字状をなす屈曲部4bとからなるものが用いら
れた。
Next, a fluidity test was conducted on each of the Al--Si alloy materials B 1 to B 4 . As shown in FIG. 8, the movable mold 3 1 for testing has a cavity 4 1 having a circular portion 4 a communicating with the gate 7 and a bent portion 4 b extending from the circular portion 4 a and having a substantially concave shape. The one consisting of and was used.

【0036】流動性試験に当っては、先ず、前記鋳造作
業と同様の条件にて半溶融Al−Si系合金材料B1
調製し、その材料B1 を前記と同様の条件でキャビティ
1に注入し、凝固させた。
[0036] The hitting the fluidity test, first, the prepared semi-molten Al-Si based alloy material B 1 in casting operations and similar conditions, the cavity 4 1 the material B 1 under the same conditions as the And allowed to solidify.

【0037】型開き後、キャビティ41 の屈曲部4bに
存する凝固材料B1 の重量を測定して、その重量をAl
−Si系合金材料B1 の流動長とした。
After the mold was opened, the weight of the solidified material B 1 existing in the bent portion 4b of the cavity 4 1 was measured, and the weight was measured as Al.
It was flow length -Si alloy material B 1.

【0038】また他のAl−Si系合金材料B2 〜B4
について前記同様の流動性試験を行い、それらの流動長
を測定した。
Other Al-Si alloy materials B 2 to B 4
Was subjected to the same fluidity test as above, and their flow lengths were measured.

【0039】そして、Al−Si系合金材料B1 の流動
長を「1.0」として、他のAl−Si系合金材料B2
〜B4 の流動長比を求めた。
Then, the flow length of the Al-Si alloy material B 1 is set to "1.0", and another Al-Si alloy material B 2 is used.
It was determined flow length ratio of .about.B 4.

【0040】さらに4種のAl合金鋳物B1 〜B4 より
それぞれテストピースを作製し、それらにT6処理を施
した後シャルピー衝撃試験を行った。
Further, test pieces were prepared from four kinds of Al alloy castings B 1 to B 4 , respectively, subjected to T6 treatment, and then subjected to a Charpy impact test.

【0041】表5は、Al合金鋳物B1 〜B4 に関する
鋳造温度T、固相率および各種測定値を示す。
Table 5 shows the casting temperature T, the solid phase ratio and various measured values regarding the Al alloy castings B 1 to B 4 .

【0042】[0042]

【表5】 [Table 5]

【0043】表5から、各Al合金鋳物B1 〜B4 につ
いて、その鋳造温度TはT1 ≦T≦T2 に設定されたこ
とが判る。また初晶Si相の体積分率Vfが増加する
と、半溶融Al−Si系合金材料の流動性が向上すると
が判る。
From Table 5, it can be seen that the casting temperature T of each of the Al alloy castings B 1 to B 4 was set to T 1 ≤T≤T 2 . Further, it is understood that when the volume fraction Vf of the primary crystal Si phase is increased, the fluidity of the semi-molten Al-Si alloy material is improved.

【0044】図9は、表5に基づきAl合金鋳物B1
4 において、初晶Si相の体積分率Vfと、流動長比
およびシャルピー衝撃値との関係をグラフ化したもので
ある。
FIG. 9 shows Al alloy castings B 1 to
In B 4 , the relationship between the volume fraction Vf of the primary crystal Si phase, the flow length ratio and the Charpy impact value is graphed.

【0045】表5、図9から明らかなように、Al合金
鋳物B1 〜B3 のごとく、初晶Si相の粒径Dが5μm
≦D≦20μmであって、その体積分率Vfが1.5%
≦Vf≦4.7%であれば、半溶融Al−Si系合金材
料の流動性を良好にして、鋳造欠陥の発生を防止し、ま
たAl合金鋳物の強度および靱性を確保することができ
る。
As is clear from Table 5 and FIG. 9, the grain size D of the primary crystal Si phase is 5 μm as in the Al alloy castings B 1 to B 3.
≦ D ≦ 20 μm, and the volume fraction Vf is 1.5%
When ≦ Vf ≦ 4.7%, it is possible to improve the fluidity of the semi-molten Al—Si alloy material, prevent the occurrence of casting defects, and secure the strength and toughness of the Al alloy casting.

【0046】因に、実施例1のAl合金鋳物A1 に関す
る流動長比は1.1であった。
Incidentally, the flow length ratio of the Al alloy casting A 1 of Example 1 was 1.1.

【0047】なお、本発明における合金材料にはAl−
Si系合金材料だけでなく、Al−CuAl2 系合金材
料、Al−Mg2 Si系合金材料、Al−AlFeSi
金属間化合物系合金材料等も含まれる。
The alloy material used in the present invention is Al-
Not only Si based alloy material, Al-CuAl 2 alloy material, Al-Mg 2 Si based alloy material, Al-AlFeSi
Intermetallic compound alloy materials and the like are also included.

【0048】[0048]

【発明の効果】本発明によれば、前記のように特定され
た手段を採用することによって、亜共晶組成を有する合
金材料を用いてβ相の微細晶出を実現させた高強度な合
金鋳物を得ることができる。
According to the present invention, by adopting the means specified above, a high-strength alloy in which fine crystallization of β phase is realized by using an alloy material having a hypoeutectic composition A casting can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】加圧鋳造機の縦断正面図である。FIG. 1 is a vertical sectional front view of a pressure casting machine.

【図2】Al−Si系合金の示差熱分析曲線である。FIG. 2 is a differential thermal analysis curve of an Al—Si alloy.

【図3】Al合金鋳物の一例の金属組織を示す顕微鏡写
真である。
FIG. 3 is a micrograph showing a metal structure of an example of an Al alloy casting.

【図4】(a)は図3の部分拡大写真に相当し、(b)
は(a)の要部写図である。
FIG. 4 (a) corresponds to a partially enlarged photograph of FIG. 3, and FIG.
[Fig. 3] is a main part map of (a).

【図5】Al−Si系合金の状態図の要部を示す。FIG. 5 shows a main part of a state diagram of an Al—Si alloy.

【図6】Al合金鋳物の他例の金属組織を示す顕微鏡写
真である。
FIG. 6 is a micrograph showing a metal structure of another example of an Al alloy casting.

【図7】(a)は図6の部分拡大写真に相当し、(b)
は(a)の要部写図である。
FIG. 7 (a) corresponds to a partially enlarged photograph of FIG. 6, and (b)
[Fig. 3] is a main part map of (a).

【図8】可動金型の要部側面図である。FIG. 8 is a side view of a main part of a movable mold.

【図9】初晶Si相の体積分率Vfと、流動長比および
シャルピー衝撃値との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the volume fraction Vf of the primary crystal Si phase, the flow length ratio and the Charpy impact value.

【符号の説明】[Explanation of symbols]

4 キャビティ 5 半溶融Al合金材料(半溶融合金材料) a 示差熱分析曲線 b 第1山形吸熱部 c 第2山形吸熱部 d 上昇開始点 e 下降終了点 4 Cavity 5 Semi-molten Al alloy material (semi-molten alloy material) a Differential thermal analysis curve b 1st chevron endothermic part c 2nd chevron endothermic part d Rise start point e Descent end point

【手続補正書】[Procedure amendment]

【提出日】平成9年1月31日[Submission date] January 31, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】[0013]

【発明の実施の形態】図1に示す加圧鋳造機1はAl合
金材料(合金材料)を用いてチクソキャスティング法の
適用下でAl合金鋳物を鋳造するために用いられる。そ
の加圧鋳造機1は鋳型を備え、その鋳型は鉛直な合せ面
2a,3aを有する固定金型2および可動金型3よりな
り、両合せ面2a,3a間に鋳物成形用キャビティ4が
形成される。固定金型2に半溶融Al合金材料(半溶融
合金材料)5を設置するチャンバ6が形成され、そのチ
ャンバ6はゲート7を介してキャビティ4に連通する。
また固定金型2に、チャンバ6に連通するスリーブ8が
水平に付設され、そのスリーブ8にチャンバ6に挿脱さ
れる加圧プランジャ9が摺動自在に嵌合される。スリー
ブ8は、その周壁上部に材料用挿入口10を有する。 〔実施例1〕表1は、亜共晶組成を有するAl−Si系
合金材料の化学成分を示す。このAl−Si系合金材料
は、連続鋳造法の適用下で鋳造された高品質な長尺連続
鋳造材より切出されたものであって、その鋳造に当って
はα−Alの球状化処理が行われている。Al−Si系
合金材料の寸法は直径50mm、長さ65mmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pressure casting machine 1 shown in FIG. 1 is used to cast an Al alloy casting using an Al alloy material (alloy material) under the application of a thixocasting method. The pressure casting machine 1 is provided with a mold, which comprises a fixed mold 2 having vertical mating surfaces 2a and 3a and a movable mold 3, and a molding cavity 4 is formed between the mating surfaces 2a and 3a. To be done. A chamber 6 in which a semi-molten Al alloy material (semi-molten alloy material) 5 is installed is formed in the fixed mold 2, and the chamber 6 communicates with the cavity 4 via a gate 7.
Further, a sleeve 8 communicating with the chamber 6 is horizontally attached to the fixed mold 2, and a pressure plunger 9 inserted into and removed from the chamber 6 is slidably fitted to the sleeve 8. The sleeve 8 has a material insertion port 10 in the upper portion of the peripheral wall thereof. [Example 1] Table 1 shows chemical components of an Al-Si alloy material having a hypoeutectic composition. This Al-Si alloy material was cut from a high-quality long continuous casting material that was cast under the application of the continuous casting method.
Is subjected to spheroidizing treatment of α- Al. The Al-Si alloy material has a diameter of 50 mm and a length of 65 mm.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0019】図3,4(a)はAl合金鋳物A1 の金属
組織を示す顕微鏡写真、図4(b)は図4(a)の要部
写図である。この金属組織は、固相の凝固によるα−A
l相と、マトリックスM、したがって液相の凝固による
初晶Si相およびAl−Si共晶相とからなる。この場
合、初晶Si相は固相周りに分散し、その体積分率Vf
はVf=2.8%であった。
3 and 4 (a) are micrographs showing the metal structure of the Al alloy casting A 1 , and FIG. 4 (b) is a main part of FIG. 4 (a).
It is a map . This metallic structure is α-A due to solidification of the solid phase.
It consists of the 1 phase and the matrix M, and therefore the primary Si phase and Al—Si eutectic phase due to the solidification of the liquid phase. In this case, the primary Si phase is dispersed around the solid phase, and its volume fraction Vf
Was Vf = 2.8%.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】図6,7(a)はAl合金鋳物A2 の金属
組織を示す顕微鏡写真、図7(b)は図7(a)の要部
写図である。この金属組織は固相の凝固によるα−Al
相と、マトリックスM、したがって液相の凝固によるA
l−Si共晶相とからなり、初晶Si相は存在しない。
FIGS. 6 and 7 (a) are micrographs showing the metal structure of the Al alloy casting A 2 and FIG. 7 (b) is a main part of FIG. 7 (a).
It is a map . This metallic structure is α-Al produced by solidification of the solid phase.
Phase and matrix M, and thus A due to the solidification of the liquid phase
1-Si eutectic phase and no primary Si phase.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 21/02 C22C 21/02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22C 21/02 C22C 21/02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 亜共晶組成を有し、且つ示差熱分析曲線
(a)において、共晶溶解による第1山形吸熱部(b)
と、共晶点よりも高融点の成分の溶解による第2山形吸
熱部(c)とが存在する合金材料(5)に加熱処理を施
して、固相と液相とが共存する半溶融合金材料(5)を
調製し、次いで、加圧下で、前記半溶融合金材料(5)
の鋳型キャビティ(4)への充填と、それに次ぐ前記半
溶融合金材料(5)の凝固とを行うチクソキャスティン
グ法において、前記第1山形吸熱部(b)の上昇開始点
(d)の温度をT1 とし、またその下降終了点(e)の
温度をT2 としたとき、前記半溶融合金材料(5)の鋳
造温度TをT1 ≦T≦T2 に設定することを特徴とする
チクソキャスティング法。
1. A first chevron endotherm (b) having a hypoeutectic composition and having a differential thermal analysis curve (a) due to eutectic melting.
A semi-molten alloy in which a solid phase and a liquid phase coexist by heat-treating the alloy material (5) having the second chevron endotherm (c) due to melting of a component having a melting point higher than the eutectic point. Preparing a material (5) and then under pressure, said semi-molten alloy material (5)
In the thixocasting method in which the mold cavity (4) is filled with and the semi-molten alloy material (5) is subsequently solidified, the temperature of the rising start point (d) of the first chevron endothermic part (b) is and T 1, also characterized by setting its lowered end point temperature of (e) when the T 2, wherein the casting temperature T of the semi-molten alloy material (5) to T 1 ≦ T ≦ T 2 thixotropy Casting method.
JP7308175A 1995-10-09 1995-11-01 Thixocasting method Expired - Fee Related JP2869889B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7308175A JP2869889B2 (en) 1995-11-01 1995-11-01 Thixocasting method
US08/728,435 US5993572A (en) 1995-10-09 1996-10-09 Thixocasting process, and thixocasting aluminum alloy material
DE69622664T DE69622664T2 (en) 1995-10-09 1996-10-09 thixocasting
EP96307358A EP0773302B1 (en) 1995-10-09 1996-10-09 Thixocasting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7308175A JP2869889B2 (en) 1995-11-01 1995-11-01 Thixocasting method

Publications (2)

Publication Number Publication Date
JPH09122867A true JPH09122867A (en) 1997-05-13
JP2869889B2 JP2869889B2 (en) 1999-03-10

Family

ID=17977816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7308175A Expired - Fee Related JP2869889B2 (en) 1995-10-09 1995-11-01 Thixocasting method

Country Status (1)

Country Link
JP (1) JP2869889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204066A (en) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc Aluminum alloy member and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204066A (en) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc Aluminum alloy member and method of manufacturing the same

Also Published As

Publication number Publication date
JP2869889B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
EP0701002A1 (en) Process for moulding aluminium- or magnesiumalloys in semi-solidified state
JP2939091B2 (en) Thixotropic magnesium alloy and method for producing the same
JP3764200B2 (en) Manufacturing method of high-strength die-cast products
JP3000442B2 (en) Thixocasting method
JPH11293375A (en) Aluminum alloy die casting with high toughness and its production
US5787961A (en) Thixocasting process, for a thixocasting alloy material
US5186234A (en) Cast compsoite material with high silicon aluminum matrix alloy and its applications
US5993572A (en) Thixocasting process, and thixocasting aluminum alloy material
JPH09122867A (en) Thixocasting method
JP2000303133A (en) Aluminum alloy for pressure casting, excellent in fatigue strength
JPH07316709A (en) Eutectic alloy material for thixocasting
JP2794540B2 (en) Al-Cu-Si alloy material for thixocasting
JP2794539B2 (en) Thixocasting method
JP2841029B2 (en) Thixocasting method
JP2003183756A (en) Aluminum alloy for semi-solid molding
JP2794542B2 (en) Semi-solid casting material for thixocasting
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JP2832660B2 (en) Casting method of Al-based alloy casting
JP2794536B2 (en) Thixocasting method
JP2981977B2 (en) Thixocasting method
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JP2832691B2 (en) Thixocasting method
JP2794544B2 (en) Thixocasting method
JP3473214B2 (en) Forming method of semi-molten metal
AU669309B2 (en) Cast composite materials

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees