JPH09122484A - Regenerating process for liquid phase adsorbent - Google Patents

Regenerating process for liquid phase adsorbent

Info

Publication number
JPH09122484A
JPH09122484A JP28160795A JP28160795A JPH09122484A JP H09122484 A JPH09122484 A JP H09122484A JP 28160795 A JP28160795 A JP 28160795A JP 28160795 A JP28160795 A JP 28160795A JP H09122484 A JPH09122484 A JP H09122484A
Authority
JP
Japan
Prior art keywords
liquid phase
phase adsorbent
adsorbent
regenerating
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28160795A
Other languages
Japanese (ja)
Inventor
Shinichi Urayama
真一 浦山
Akira Haji
晃 土師
Nobuhiro Uemura
信弘 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP28160795A priority Critical patent/JPH09122484A/en
Publication of JPH09122484A publication Critical patent/JPH09122484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To reproduce a liquid phase adsorbent used for adsorbing and removing a liquid phase, particularly water, contained in an organic solvent by treating and reproducing the adsorbent used for the liquid phase adsorption. SOLUTION: In a semi-permanent reproducing process, an organic compound or its carbonized material adhered to the surface of a liquid phase adsorbent is oxidized and removed by treating the liquid phase adsorbent with lowered water content adsorption amount by an oxidizing agent water solution. In the process, the liquid phase adsorbent with lowered adsorption amount is treated by repeating the adsorption and reproduction of the liquid phase adsorbent, or preferably by using the oxidizing agent water solution of temperature of 0 deg.C or over. The process is particularly suitable for the reproduction of the liquid phase adsorbent caulked with the carbonized material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液相吸着剤の再生
方法に関する。さらに詳しくは、有機溶媒中に含まれる
液相、特に、水を吸着、除去するために使用した液相吸
着剤を使用後、再生する方法に関する。
TECHNICAL FIELD The present invention relates to a method for regenerating a liquid phase adsorbent. More specifically, it relates to a method of regenerating after using a liquid phase contained in an organic solvent, particularly a liquid phase adsorbent used for adsorbing and removing water.

【0002】[0002]

【従来の技術】合成反応等で用いられる有機溶媒、例え
ば、アセトンは、そこに含まれる水を液相吸着剤、例え
ば、ゼオライトで処理して脱水した後、再使用されるの
が一般的である。ゼオライトには、この吸着により、
水、有機溶媒および有機化合物が吸着または付着する。
通常、このような液相吸着剤は、窒素ガス等のイナート
ガスを150〜250℃程度に加熱し、吸着剤に通気す
ることにより、水を脱着して再生し、再使用される(特
開昭62−110748号)。しかしながら、液相吸着
剤粒子に吸着または付着した有機溶媒や有機化合物は、
この条件下では脱着されることなく、再生時の高温ガス
との繰り返し接触により、徐々に加熱分解し、炭化する
に至る。液相吸着剤粒子表面に生成した炭化物は吸着面
をコーキングすることにより、その吸着度が徐々に減少
していき、再使用不可能となる。通常、吸着度が減少
し、使用に耐えられなくなると、液相吸着剤ゼオライト
は系外に出され埋立て等で処分される。一般的には、液
相吸着剤は1000〜10000回吸着、再生され、そ
の吸着量が初期の吸着量に比べて20%前後劣化した場
合、廃棄されている。
2. Description of the Related Art Generally, an organic solvent used in a synthetic reaction such as acetone is reused after water contained therein is treated with a liquid phase adsorbent such as zeolite to be dehydrated. is there. Due to this adsorption on zeolite,
Water, organic solvents and organic compounds are adsorbed or attached.
Usually, such a liquid-phase adsorbent is heated by heating an inert gas such as nitrogen gas at about 150 to 250 ° C. and aerated to adsorb the adsorbent to desorb and regenerate water for reuse. 62-110748). However, the organic solvent or organic compound adsorbed or attached to the liquid phase adsorbent particles is
Under this condition, it is not desorbed, and is repeatedly thermally decomposed and carbonized by repeated contact with the high temperature gas at the time of regeneration. By coking the adsorption surface, the carbide generated on the surface of the liquid-phase adsorbent particles gradually decreases its adsorption degree, and cannot be reused. Usually, when the degree of adsorption decreases and it becomes unusable, the liquid-phase adsorbent zeolite is taken out of the system and disposed of by landfill or the like. Generally, the liquid phase adsorbent is adsorbed and regenerated 1000 to 10,000 times, and is discarded when the adsorbed amount deteriorates by about 20% compared to the initial adsorbed amount.

【0003】[0003]

【発明が解決しようとする課題】有機化合物等の炭化物
でコーキングされ、吸着量が劣化した液相吸着剤の再生
法については、ほとんど知られていない。わずかに、4
00〜600℃程度の加熱空気を使用して、強制的に燃
焼再生する方法が知られているが、通常の工業的設備で
は、高温下での装置材料等の腐食問題があるため、応用
はほとんど不可能といえる。そこで、この有機化合物等
の炭化物を常温付近で除去する再生法の開発が望まれて
いた。
Little is known about a method for regenerating a liquid-phase adsorbent that has been adsorbed by coking with a carbide such as an organic compound and has a deteriorated adsorption amount. Slightly 4
Although a method of forcibly burning and regenerating by using heated air of about 00 to 600 ° C. is known, it is not applicable to normal industrial equipment because it has a problem of corrosion of equipment materials at high temperature. It's almost impossible. Therefore, it has been desired to develop a regeneration method for removing the carbide such as the organic compound at around room temperature.

【0004】[0004]

【課題を解決するための手段】本発明者らは、水分吸着
量の低下した液相吸着剤を酸化剤水溶液で処理すること
により、液相吸着剤表面に付着した有機化合物またはそ
の炭化物を酸化除去できることを見い出した。これらの
知見に基づき、さらに検討した結果、発明者らは、従来
にない半永久的な液相吸着剤の再生法を見いだし、本発
明を完成するに至った。
The inventors of the present invention treat an organic compound or its carbide adhering to the surface of a liquid-phase adsorbent by treating the liquid-phase adsorbent having a reduced water adsorption amount with an aqueous oxidant solution. I found that it can be removed. As a result of further study based on these findings, the inventors have found a semi-permanent liquid phase adsorbent regeneration method which has not been heretofore, and completed the present invention.

【0005】すなわち、本発明は、液相吸着に使用した
吸着剤を、酸化剤水溶液で処理して再生することを特徴
とする液相吸着剤の再生法、さらに詳しくは、液相吸着
剤の吸着・再生の繰り返しにより、吸着量が低下した液
相吸着剤を、好ましくは、0℃以上の温度の酸化剤水溶
液で処理することを特徴とする液相吸着剤を提供するも
ので、この方法は、特に、炭化物でコーキングされてい
る液相吸着剤の再生に好適である。
That is, the present invention relates to a method for regenerating a liquid-phase adsorbent, which is characterized in that the adsorbent used for liquid-phase adsorption is treated with an oxidizing agent aqueous solution to regenerate it. A liquid-phase adsorbent characterized by treating a liquid-phase adsorbent having a reduced adsorption amount by repeated adsorption / regeneration, preferably with an oxidizing agent aqueous solution at a temperature of 0 ° C. or higher. Is particularly suitable for the regeneration of liquid phase adsorbents which are coked with carbides.

【0006】また、本発明は、酸化剤水溶液の液相吸着
剤の再生における使用および、かかる酸化剤水溶液の処
理で再生された液相吸着剤も提供する。本発明の方法
は、合成反応で使用される有機溶媒に含まれる水を液相
吸着剤を用いて除去した後の、当該液相吸着剤の工業的
かつ経済的な再生法として用いられる。
The invention also provides the use of an aqueous oxidant solution in the regeneration of a liquid phase adsorbent and a liquid phase adsorbent regenerated by the treatment of such an aqueous oxidant solution. The method of the present invention is used as an industrial and economical regeneration method of a liquid phase adsorbent after water contained in the organic solvent used in the synthesis reaction is removed using the liquid phase adsorbent.

【0007】[0007]

【発明の実施の形態】本発明における液相吸着剤として
は、ゼオライト、活性アルミナ、シリカゲル等が挙げら
れ、耐熱性、吸着性の観点から、ゼオライトが一般的に
よく用いられており、本発明の方法もゼオライトに好適
に適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the liquid phase adsorbent in the present invention include zeolite, activated alumina, silica gel and the like. Zeolite is commonly used from the viewpoint of heat resistance and adsorptivity. The method (1) can also be suitably applied to zeolite.

【0008】用いる酸化剤としては、揮発性物質が好ま
しく、例えば、過酸化水素(H22)、過塩素酸(HC
lO4、HClO3、HClO2、HClO)等が使用でき
る。酸化剤水溶液の濃度は、適宜選択できるが、例え
ば、過酸化水素の場合、5%以上、好ましくは、10〜
50%水溶液とする。通常、酸化剤水溶液の温度を約0
〜50℃として処理を行うと、効率よく再生が行われ
る。一般に、酸化剤水溶液を、使用した吸着剤と、浸漬
法または通液法により接触させて処理を行う。処理時間
は、吸着剤の吸着能の低下状態により変化するが、化学
的酸化反応の目安である気泡発生がなくなるまでの時
間、通常、上記の酸化剤水溶液温度で、0.5時間以
上、好ましくは、1〜2時間接触を維持する。
The oxidant used is preferably a volatile substance such as hydrogen peroxide (H 2 O 2 ) or perchloric acid (HC).
lO 4, HClO 3, HClO 2 , HClO) and the like can be used. The concentration of the oxidizing agent aqueous solution can be appropriately selected, but in the case of hydrogen peroxide, for example, 5% or more, preferably 10 to
Make a 50% aqueous solution. Usually, the temperature of the oxidant aqueous solution is set to about 0.
When the treatment is performed at -50 ° C, the regeneration is efficiently performed. Generally, the oxidizing agent aqueous solution is brought into contact with the adsorbent used by a dipping method or a liquid passing method for treatment. The treatment time varies depending on the lowering of the adsorption capacity of the adsorbent, but it is the time until the generation of bubbles, which is a guideline for the chemical oxidation reaction, disappears, usually at the above-mentioned oxidizing agent aqueous solution temperature, for 0.5 hours or more, preferably. Maintain contact for 1-2 hours.

【0009】本発明の再生法は、含水有機溶媒中の水吸
着に使用した吸着剤を再生するのに特に好適である。有
機溶媒としては、親水性有機溶媒であればいずれの場合
でも応用でき、例えば、アセトン等のケトン類、メチル
アルコール等のアルコール類等が挙げられる。つぎに、
吸着剤としてゼオライトを使用した、含水アセトンに含
まれる水の除去を例にして、本発明の再生法を説明す
る。
The regeneration method of the present invention is particularly suitable for regenerating the adsorbent used for water adsorption in a water-containing organic solvent. As the organic solvent, any hydrophilic organic solvent can be applied, and examples thereof include ketones such as acetone and alcohols such as methyl alcohol. Next,
The regeneration method of the present invention will be described by taking as an example the removal of water contained in hydrous acetone using zeolite as an adsorbent.

【0010】合成反応に使用され、回収される、例え
ば、水を1000〜5000ppm程度含有する含水アセ
トンを液相吸着剤であるゼオライトの充填塔に通液する
ことにより、水は吸着・脱水され、アセトンがリサイク
ル使用される。吸着・脱水の終了したゼオライトは、2
00℃のN2ガスにより脱着・再生され、繰り返し使用
される。含水アセトンの発生する反応の例としては、ア
セトンを用いる糖のケタール反応(例、L−ソルボース
にアセトンを反応させるジアセトン−L−ソルボースの
製造)が挙げられる。
Water is adsorbed and dehydrated by passing water-containing acetone, which is used and recovered in the synthetic reaction, containing, for example, about 1000 to 5000 ppm of water through a packed column of zeolite which is a liquid phase adsorbent, Acetone is recycled. The number of zeolites that have been adsorbed and dehydrated is 2
It is desorbed and regenerated with N 2 gas at 00 ° C and repeatedly used. An example of the reaction in which water-containing acetone is generated is a ketal reaction of sugar using acetone (eg, production of diacetone-L-sorbose by reacting L-sorbose with acetone).

【0011】含水アセトン中に含まれる極微量の有機化
合物は液相吸着剤であるゼオライトの繰り返し使用によ
り、徐々にゼオライト表面に蓄積され、部分的酸化等に
より炭化物となり、ゼオライトの吸着性能を劣化させ
る。ゼオライトの繰り返し吸着・脱着操作により、その
吸着量が初期吸着量と比べて約20%程度劣化したとき
に、ゼオライトを取り出し、浸漬法または通液法により
上記の濃度の過酸化水素水溶液と接触させる。この際、
化学的酸化反応による発熱により、温度上昇が約10〜
50℃程見られ、また、化学的酸化に伴い、CO2ガス
等の発生により気泡が発生するため、浸漬もしくは通液
前の過酸化水素水溶液温度は上記の温度、特に、常温近
辺が望ましい。浸漬もしくは通液時間は、上記のごと
く、化学的酸化反応の目安である気泡発生がなくなる時
間である。再生操作時の過酸化水素水溶液との接触時間
は0.5時間以上、望ましくは1〜2時間である。
The trace amount of organic compounds contained in hydrated acetone is gradually accumulated on the zeolite surface by repeated use of zeolite which is a liquid phase adsorbent, and becomes a carbide by partial oxidation etc., which deteriorates the adsorption performance of zeolite. . When the amount of adsorption of zeolite deteriorates by about 20% compared to the initial adsorption amount due to repeated adsorption / desorption operations, the zeolite is taken out and brought into contact with an aqueous hydrogen peroxide solution having the above concentration by a dipping method or a liquid passing method. . On this occasion,
Due to the heat generated by the chemical oxidation reaction, the temperature rise is about 10
The temperature is about 50 ° C., and bubbles are generated due to the generation of CO 2 gas and the like due to the chemical oxidation. Therefore, the temperature of the aqueous hydrogen peroxide solution before immersion or liquid passing is preferably the above temperature, particularly around normal temperature. The dipping or liquid passing time is, as described above, the time during which the generation of bubbles, which is a measure of the chemical oxidation reaction, disappears. The contact time with the aqueous hydrogen peroxide solution during the regeneration operation is 0.5 hours or longer, preferably 1 to 2 hours.

【0012】以上の液相吸着剤ゼオライトの再生操作終
了後、常法により、すなわち、200℃の空気接触によ
り付着された水等を除くことにより、完全に液相吸着剤
のゼオライトの吸着量を新品のゼオライト並に発現させ
ることができる。
After the above-described regeneration operation of the liquid-phase adsorbent zeolite, the amount of zeolite adsorbed by the liquid-phase adsorbent is completely removed by a conventional method, that is, by removing water and the like attached by air contact at 200 ° C. It can be expressed in the same manner as new zeolite.

【0013】[0013]

【実施例】つぎに、実施例を挙げて本発明をさらに詳し
く説明するが、本発明はこれらに限定されるものではな
い。 実施例1 劣化ゼオライト100gをカラム(13.5φmm+15
00mmH)に充填し、10%H22 50mlを加え、発
熱酸化させた。97℃まで発熱し、70℃となった地点
で液を抜いた。引き続いて、30%H22 50mlを加
え、同様に発熱酸化させ液を抜き、再度30%H22
50mlで同様の処理をした。この再生操作に続いて、水
を通液し、残存H22が100ppm以下になるまで行
い、水を抜いた。最後に200℃の空気にてゼオライト
を乾燥し、再生終了とした。この再生ゼオライトを用い
て、アセトンの水分の脱水能力を調べた所、新品と比べ
て差がなかった。結果を表1に示す。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 100 g of deteriorated zeolite was applied to a column (13.5φ mm + 15
00 mmH) and charged with 50 ml of 10% H 2 O 2 to oxidize exothermically. The heat was generated up to 97 ° C, and the liquid was drained when the temperature reached 70 ° C. Subsequently, 30% H 2 O 2 50ml was added, similarly disconnect the heating oxidation was liquid, again 30% H 2 O 2
The same treatment was performed with 50 ml. Following this regeneration operation, water was passed through until the residual H 2 O 2 became 100 ppm or less, and water was drained. Finally, the zeolite was dried with air at 200 ° C. to complete the regeneration. When this dehydrated zeolite was used to examine the dehydration ability of acetone for water, there was no difference as compared with a new product. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【実施例2】化学的酸化によるゼオライトの再生の可能
性を、各種酸化剤水溶液にゼオライト浸漬した際の発熱
の有無で判断した。すなわち、発熱が観察されることは
ゼオライト表面にコーキングされた有機物の酸化反応に
よるものと考えた。結果を表2に示す。
Example 2 The possibility of regenerating zeolite by chemical oxidation was judged by the presence or absence of heat generation when the zeolite was immersed in various aqueous oxidizer solutions. That is, it was considered that the exotherm was observed due to the oxidation reaction of the organic matter coked on the zeolite surface. Table 2 shows the results.

【0016】[0016]

【表2】 [Table 2]

【0017】化学的酸化によるゼオライトの再生につい
ては、酸化反応後、固形物が残らない揮発性の酸化剤が
よく、表2に示すように、H22が最も効果的であっ
た。しかも、H22の必要濃度は10%以上であれば、
十分に効果的と観察された。
For the regeneration of zeolite by chemical oxidation, a volatile oxidizer that does not leave a solid after the oxidation reaction is preferable, and as shown in Table 2, H 2 O 2 was the most effective. Moreover, if the required concentration of H 2 O 2 is 10% or more,
It was observed to be fully effective.

【0018】[0018]

【発明の効果】本発明の再生法によれば、化学的酸化で
液相吸着剤の再生を行うので、吸着剤の取り出しや、再
仕込みが不要となり、しかも、従来、産業廃棄物として
捨てられていたものを、再利用できる利点がある。
According to the regeneration method of the present invention, since the liquid phase adsorbent is regenerated by chemical oxidation, it is not necessary to take out or recharge the adsorbent, and in the past, it was discarded as industrial waste. There is an advantage that you can reuse what you used.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 液相吸着に使用した吸着剤を、酸化剤水
溶液で処理して再生することを特徴とする液相吸着剤の
再生法。
1. A method for regenerating a liquid-phase adsorbent, which comprises treating the adsorbent used for liquid-phase adsorption with an aqueous oxidant solution to regenerate the adsorbent.
【請求項2】 液相吸着剤がゼオライト、活性アルミナ
またはシリカゲルである請求項1記載の液相吸着剤の再
生法。
2. The method for regenerating a liquid phase adsorbent according to claim 1, wherein the liquid phase adsorbent is zeolite, activated alumina or silica gel.
【請求項3】 液相吸着剤がゼオライトである請求項2
記載の液相吸着剤の再生法。
3. The liquid phase adsorbent is zeolite.
A method for regenerating the liquid phase adsorbent described.
【請求項4】 液相吸着剤が、炭化物でコーキングされ
ている請求項1記載の液相吸着剤の再生法。
4. The method for regenerating a liquid phase adsorbent according to claim 1, wherein the liquid phase adsorbent is caulked with a carbide.
【請求項5】 酸化剤が揮発性酸化剤である請求項1記
載の液相吸着剤の再生法。
5. The method for regenerating a liquid phase adsorbent according to claim 1, wherein the oxidant is a volatile oxidant.
【請求項6】 酸化剤が過酸化水素または過塩素酸であ
る請求項4記載の液相吸着剤の再生法。
6. The method for regenerating a liquid phase adsorbent according to claim 4, wherein the oxidizing agent is hydrogen peroxide or perchloric acid.
【請求項7】 使用した吸着剤を、浸漬法または通液法
により浸漬処理を行う請求項1記載の液相吸着剤の再生
法。
7. The method for regenerating a liquid-phase adsorbent according to claim 1, wherein the used adsorbent is subjected to an immersion treatment by an immersion method or a liquid passing method.
【請求項8】 含水有機溶媒中の水吸着に使用した吸着
剤を再生する請求項1記載の液相吸着剤の再生法。
8. The method for regenerating a liquid phase adsorbent according to claim 1, wherein the adsorbent used for water adsorption in a water-containing organic solvent is regenerated.
【請求項9】 有機溶媒がアセトンである請求項8記載
の液相吸着剤の再生法。
9. The method for regenerating a liquid phase adsorbent according to claim 8, wherein the organic solvent is acetone.
【請求項10】 酸化剤水溶液の温度を約0〜50℃と
して処理を行う請求項1記載の再生法。
10. The regeneration method according to claim 1, wherein the treatment is carried out at a temperature of the oxidant aqueous solution of about 0 to 50 ° C.
【請求項11】 酸化剤水溶液の液相吸着剤の再生にお
ける使用。
11. Use of an aqueous oxidizing agent solution in the regeneration of a liquid phase adsorbent.
【請求項12】 請求項1記載の再生法で再生された液
相吸着剤。
12. A liquid phase adsorbent regenerated by the regeneration method according to claim 1.
JP28160795A 1995-10-30 1995-10-30 Regenerating process for liquid phase adsorbent Pending JPH09122484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28160795A JPH09122484A (en) 1995-10-30 1995-10-30 Regenerating process for liquid phase adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28160795A JPH09122484A (en) 1995-10-30 1995-10-30 Regenerating process for liquid phase adsorbent

Publications (1)

Publication Number Publication Date
JPH09122484A true JPH09122484A (en) 1997-05-13

Family

ID=17641505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28160795A Pending JPH09122484A (en) 1995-10-30 1995-10-30 Regenerating process for liquid phase adsorbent

Country Status (1)

Country Link
JP (1) JPH09122484A (en)

Similar Documents

Publication Publication Date Title
US4831011A (en) Carbon-based adsorbent and process for production thereof
US5112494A (en) Removal of cyanide from water
CN111298847B (en) Method for regenerating carbon-based catalyst, carbon-based catalyst and water treatment method
JP2911961B2 (en) High concentration alcohol purification method and adsorbent for purification
JPH09122484A (en) Regenerating process for liquid phase adsorbent
JP2014014783A (en) Method and apparatus for regenerating adsorbing material and water purification system using the apparatus
JPS61200837A (en) Treatment of exhaust gas
JP3132962B2 (en) Method for producing modified activated carbon
JP2001294415A (en) Method of removing residue in liquefied gas and regenerating method of activated carbon
JP2009195803A (en) Absorbent of volatile organic compound
JPH11188258A (en) Aldehyde removing agent
SU1161157A1 (en) Method of cleaning gases from mercury
JPS588552A (en) Method of regenerating palladium chloride catalyst carrying activated carbon
TWI290180B (en) Process for stripping amine borane complex from an electroless plating solution
JPH1057808A (en) Regenerating method for activated carbon
SU1678768A1 (en) Method for treating effluents
US6696030B1 (en) Method for reducing the chemical conversion of oxidizable or disproportionable compounds contacting carbonaceous chars
JP2954364B2 (en) Purification method of nitrogen trifluoride gas
JPS5811475B2 (en) Method for treating alkanolamine aqueous solution
EP0058116B1 (en) Improved regeneration of caustic impregnated activated carbon
JPH0781916A (en) Silane treated activated carbon
RU2105744C1 (en) Method for reactivation of worked out activated coal of recuperation of steam of alcohol-ether solvent system
JPH0374127B2 (en)
JP2016112535A (en) Method for generating hydrogen arsenide adsorption active carbon
JPH11511693A (en) Method for regenerating a catalyst having a sulfur-containing active phase contaminated by mercury compounds

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A02