JPH09122222A - Manufacture of sliding member for prosthetic joint - Google Patents

Manufacture of sliding member for prosthetic joint

Info

Publication number
JPH09122222A
JPH09122222A JP7284220A JP28422095A JPH09122222A JP H09122222 A JPH09122222 A JP H09122222A JP 7284220 A JP7284220 A JP 7284220A JP 28422095 A JP28422095 A JP 28422095A JP H09122222 A JPH09122222 A JP H09122222A
Authority
JP
Japan
Prior art keywords
molecular weight
weight polyethylene
sliding member
rays
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7284220A
Other languages
Japanese (ja)
Other versions
JP2984203B2 (en
Inventor
Yoshito Ikada
義人 筏
Hiroyasu Onishi
啓靖 大西
Gen Fujisawa
玄 藤沢
Shingo Masuda
真吾 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7284220A priority Critical patent/JP2984203B2/en
Publication of JPH09122222A publication Critical patent/JPH09122222A/en
Application granted granted Critical
Publication of JP2984203B2 publication Critical patent/JP2984203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sliding member for an prothetic joint having a small creep deformation factor and no deterioration of a surface layer and excellent in sliding characteristic and abrasion resistance by irradiating a prescribed quantity of γ-rays to ultrahigh-molecular weight polyethylene as the absorbed dose, heat-treating it at the prescribed temperature, then molding it into the desired shape by cut machining. SOLUTION: γ-rays 500-10,000kGy are irradiated to ultrahigh-molecular weight polyethylene as the absorbed dose, it is heat-treated at 80-200 deg.C, then it is cut- machined into the desired shape to manufacture a sliding member for an prothetic joint. When γ-ray irradiation and heat treatment are combined, the creep deformation is suppressed to less than 1%, and the creep resistance and abrasion resistance can be remarkably improved. The sliding member is molded into the desired shape by cut machining after γ-ray irradiation and heat treatment, the deteriorated raw material surface of the ultrahigh-molecular weight polyethylene is removed, and the sliding characteristic and abrasion resistance of the sliding face can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、人の関節を補綴す
るための人工関節に用いられる摺動部材の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sliding member used in an artificial joint for prosthesis of a human joint.

【0002】[0002]

【従来の技術】従来より人工関節においては、例えば人
工股関節では、金属またはセラミックス製の人工骨頭と
プラスチック(主として摩耗特性に優れた超高分子ポリ
エチレン〔UHMWPE〕)製の人工臼蓋(ソケット)
を用いて関節部分を構成してた。
2. Description of the Related Art Conventionally, in artificial joints, for example, in artificial hip joints, artificial bone heads made of metal or ceramics and artificial acetabulum (socket) made of plastic (mainly ultra-high molecular weight polyethylene [UHMWPE] excellent in wear characteristics).
Was used to construct the joint.

【0003】しかし、超高分子量ポリエチレン製の人工
臼蓋は生体内での長期間の使用により変形、摩耗し、生
体骨との間でゆるみ、摩耗粉による生体組織の炎症反応
等、種々の問題を起こしている。(文献 「In vivo we
ar of polyegthylen acetabular components」、THE JO
URNAL OF BONE AND JOINT SURGERY, VOL 75-B, NO.2,MA
RCH 1993) 人工関節用摺動部材としての超高分子量ポリエチレンの
改質についてはUSP5037928に約200℃に加
熱しながら、約1時間以上280MPa(約2800気
圧)以上の圧力を加えることによって、ポリエチレンを
熱架橋することによって耐クリープ変形性を向上させ、
耐摩耗性を向上させるという方法が示されており、この
ような方法によればクリープ変形率をAMST規格に基
づき0.5%程度まで小さくすることができると記載さ
れている。
However, the artificial acetabulum made of ultra-high molecular weight polyethylene is deformed and abraded due to long-term use in a living body, loosens between itself and a living bone, and causes various problems such as an inflammatory reaction of a living tissue due to abrasion powder. Is waking up. (Reference "In vivo we
ar of polyegthylen acetabular components '', THE JO
URNAL OF BONE AND JOINT SURGERY, VOL 75-B, NO.2, MA
RCH 1993) Regarding modification of ultra high molecular weight polyethylene as a sliding member for artificial joints, polyethylene is added to USP 5037928 by heating at about 200 ° C. for about 1 hour or more and at least 280 MPa (about 2800 atm). Improves creep deformation resistance by thermal crosslinking,
A method of improving wear resistance is disclosed, and it is described that such a method can reduce the creep deformation rate to about 0.5% based on the AMST standard.

【0004】また、敷田らの報告(「金属材料より非金
属材料への人工関節材料の転換」医療 第32巻4号
1978.4)では、成形加工後のポリエチレンに真空中でγ
線を照射して超高分子量ポリエチレンを架橋する試みが
記載されている。
In addition, a report by Shikita et al. ("Conversion of artificial joint material from metallic material to non-metallic material", Medical Vol. 32, No. 4)
1978.4), in the molded polyethylene, γ
Attempts to crosslink ultra high molecular weight polyethylene by irradiation have been described.

【0005】また、本発明者の1人である大西と敷田の
報告(「耐摩耗性にすぐれた人工股関節」 別冊整形外
科 NO.18 P216 - 221 '90 年)では、超高分子
量ポリエチレンに一定量のγ線照射(105 〜106
ad及び5×107 〜108rad、尚、1Mrad=
10kGy)したものが超高分子量ポリエチレンの摺動
部材の摩耗減に効果があることが記載されている。
According to a report by Onishi and Shikita, one of the inventors of the present invention (“Artificial Hip Joint with Excellent Wear Resistance”, Supplementary Orthopedic Surgery No. 18 P216-221, 1990), it was fixed to ultrahigh molecular weight polyethylene. Amount of γ-ray irradiation (10 5 to 10 6 r
ad and 5 × 10 7 to 10 8 rad, 1 Mrad =
10 kGy) is effective in reducing the wear of the sliding member made of ultra high molecular weight polyethylene.

【0006】[0006]

【従来技術の課題】しかしながら、上記従来技術には以
下に説明するような問題があった。すなわち、約200
℃に加熱しながら、約1時間以上280MPa(約28
00気圧)以上の圧力を加えることによって、ポリエチ
レンを熱架橋する方法では、クリープ変形率をAMST
規格に基づき0.5%程度まで小さくすることができ低
耐摩耗性の超高分子量ポリエチレンを提供することがで
きるが、上記加熱処理を高圧下でおこなわなければなら
ず、大がかりな設備と多大なコストが必要であったとい
う不具合があった。
However, the above-mentioned prior art has the following problems. That is, about 200
280 MPa (about 28 hours) while heating to ℃
In the method of thermally cross-linking polyethylene by applying a pressure of not less than 00 atm), the creep deformation rate is
It is possible to provide ultra-high molecular weight polyethylene with low wear resistance that can be reduced to about 0.5% based on the standard, but the above heat treatment must be performed under high pressure, and large-scale equipment and a large amount of equipment are required. There was a problem that cost was required.

【0007】此れに対して、前記γ線を照射して超高分
子量ポリエチレンを架橋する方法では、比較的簡易で安
価な装置でもって超高分子量ポリエチレンを架橋できる
ものであるが、γ線の照射量が5×107 〜108 ra
dと非常に大きいため、超高分子量ポリエチレンの表面
劣化により初期摩耗が大きいという問題点があった。
On the other hand, in the method for irradiating γ rays to crosslink ultrahigh molecular weight polyethylene, it is possible to crosslink ultrahigh molecular weight polyethylene with a relatively simple and inexpensive device. The irradiation dose is 5 × 10 7 to 10 8 ra
Therefore, there is a problem that the initial wear is large due to the surface deterioration of the ultra high molecular weight polyethylene.

【0008】[0008]

【発明の目的】上記のような従来技術の課題に鑑み、本
発明は、クリープ変形率が少なく且つ表面層の劣化がな
く、もって摺動特性、耐摩耗性に優れた超高分子量ポリ
エチレン製の人工関節用摺動部材を比較的簡易で安価な
装置でもって且つ低ランニングコストで用意できるよう
な新規な製造方法を提供すること、並びに、クリープ変
形率を従来より更に改善せしめた超高分子量ポリエチレ
ン製の人工関節用摺動部材の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION In view of the problems of the prior art as described above, the present invention is made of ultra-high molecular weight polyethylene having a low creep deformation rate and no deterioration of the surface layer, and thus excellent in sliding characteristics and wear resistance. To provide a novel manufacturing method capable of preparing a sliding member for an artificial joint with a relatively simple and inexpensive device and at a low running cost, and to provide an ultrahigh molecular weight polyethylene having a further improved creep deformation rate than ever before. It is an object of the present invention to provide a method for manufacturing a sliding member for artificial joints made of steel.

【0009】[0009]

【課題を解決するための手段】前記従来技術の課題を解
決するため本発明は、素材としての超高分子量ポリエレ
ンに多量のγ線(吸収熱線量として500kGy〜1,
000kGy)を照射し、これを80℃から200℃で
30分から12時間程度まで加熱処理し、その後、所望
形状に切削加工によって所望形状に成形することを特徴
とする人工関節用摺動部材の製造方法を提供する。
In order to solve the above-mentioned problems of the prior art, the present invention provides ultra high molecular weight polyethylene as a raw material with a large amount of γ rays (absorption heat dose of 500 kGy to 1,
000 kGy), heat treatment at 80 ° C. to 200 ° C. for about 30 minutes to 12 hours, and thereafter, cutting into a desired shape to form a desired shape, producing a sliding member for an artificial joint. Provide a way.

【0010】[0010]

【作用】本発明の製造方法においては、素材としての超
高分子量ポリエレンに多量のγ線(吸収熱線量として5
00kGy〜1,000kGy)を照射し、これを80
℃から200℃で加熱処理する、という両者の組み合わ
せによりクリープ変形1%未満(ASTM D621に
基づく材料試験 荷重条件は、1000psi・24h
r)に抑え、耐クリーブ性と耐摩耗性を著しく向上させ
ることができる。
In the production method of the present invention, a large amount of γ-rays (absorption heat dose of 5) is added to the ultra-high molecular weight polyethylene as a raw material.
Irradiate with 00kGy to 1,000kGy), and
Creep deformation of less than 1% due to the combination of both heat treatment at ℃ to 200 ℃ (Material test based on ASTM D621 Loading condition: 1000 psi ・ 24h
r), and the cleave resistance and wear resistance can be significantly improved.

【0011】また、上記γ線照射と熱処理の後に所望形
状に切削加工によって成形することで、劣化した超高分
子量ポリエチレンの素材表面を除去するので摺動面の摺
動特性および耐摩耗性を向上せしめる。
Further, after the γ-ray irradiation and the heat treatment, the material surface of the deteriorated ultra-high molecular weight polyethylene is removed by forming it into a desired shape by cutting, so that the sliding characteristics and wear resistance of the sliding surface are improved. Excuse me.

【0012】γ線の照射には、飼料や医療機器の滅菌に
使用されている装置をそのまま流用でき、加熱処理も市
販の真空熱処理装置を使用できるので、装置のコスト及
び製造のランニングコストを比較的低く抑えることがで
きる。また、照射後に切削加工することによってγ線に
よって劣化した表面層を除去できるので、ガンマ線の照
射中に特殊な真空容器などを用いる必要もない。
For γ-ray irradiation, the equipment used for sterilization of feed and medical equipment can be used as it is, and a commercially available vacuum heat treatment equipment can be used for heat treatment. Therefore, the equipment cost and the running cost of manufacturing can be compared. Can be kept low. Further, since the surface layer deteriorated by γ-rays can be removed by cutting after irradiation, it is not necessary to use a special vacuum container or the like during the irradiation of γ-rays.

【0013】γ線により上記素材表面が劣化するのはポ
リエチレンと酸素の結合(酸化反応)がγ線によって加
速されるためである。真空容器を用いることによって酸
素の量を減らし、酸化を抑制することは可能であらが、
完全に酸素をOにすることはできない。そのため、γ線
の大量照射によるポリエチレン表面のある程度の酸化劣
化は避けられない。
The surface of the material is deteriorated by γ-rays because the bond (oxidation reaction) between polyethylene and oxygen is accelerated by the γ-rays. Although it is possible to reduce the amount of oxygen and suppress oxidation by using a vacuum container,
Oxygen cannot be completely turned to O. Therefore, some degree of oxidative deterioration of the polyethylene surface due to a large amount of γ-ray irradiation is unavoidable.

【0014】したがって、本発明において切削加工は表
面劣化層を除去するのに必須の工程である。γ線照射中
に素材を酸素などの活性の気体から完全に隔離すること
は事実上不可能であるが、切削によって、劣化層を取り
除き安定した物性が得られる。
Therefore, the cutting process in the present invention is an essential step for removing the surface deterioration layer. Although it is virtually impossible to completely separate the material from the active gas such as oxygen during the γ-ray irradiation, the deterioration layer is removed by cutting to obtain stable physical properties.

【0015】なお、γ線照射量として吸収線量が500
kGy未満では、熱処理を行っても十分な効果が得られ
ない。他方、γ線照射量として吸収線量が10、000
kGyより大きい場合、材料の脆性が高くなりすぎて、
加工中または使用中に破断をおこすという可能性があ
る。
The absorbed dose is 500 as the γ-ray irradiation dose.
If it is less than kGy, a sufficient effect cannot be obtained even if heat treatment is performed. On the other hand, the absorbed dose is 10,000 as the γ-ray dose.
If it is larger than kGy, the brittleness of the material becomes too high,
There is a possibility of breaking during processing or use.

【0016】加熱温度は、厳密な制御を必要としない
が、80℃以下では実用的な時間で処理することず、他
方200℃以上ではポリエチレンの変形、劣化が激しい
という恐れがある。
The heating temperature does not need to be strictly controlled, but if it is 80 ° C. or lower, it is not processed in a practical time, and if it is 200 ° C. or higher, the polyethylene may be severely deformed and deteriorated.

【0017】また、加熱時間としては、30分から12
時間までが好ましい。加熱時間が30分以下では、十分
な特性を得ることができず、12時間以上では比較的低
めの温度でもポリエチレンの変形、劣化が大きくなり、
且つコスト的に不利になってしまる恐れがある。
The heating time is from 30 minutes to 12 minutes.
Time is preferred. If the heating time is 30 minutes or less, sufficient characteristics cannot be obtained, and if the heating time is 12 hours or more, the deformation and deterioration of polyethylene become large even at a relatively low temperature.
In addition, there is a risk of cost disadvantage.

【0018】本発明における、上記γ線照射量として吸
収線量ならびに加熱温度のより好ましい範囲としては、
吸収線量が1、000〜9,000kGy、加熱温度が
80〜200℃である。加熱温度について更に好ましく
は、100℃〜150℃の範囲であれば時間的な制御が
容易である。
In the present invention, the more preferable range of the absorbed dose as the above γ-ray dose and the heating temperature is as follows.
The absorbed dose is 1,000 to 9,000 kGy and the heating temperature is 80 to 200 ° C. The heating temperature is more preferably 100 ° C. to 150 ° C., and temporal control is easy.

【0019】また、このような製造方法により超高分子
量ポリエチレン製の人工関節用摺動部材のクリープ変形
率をAMST規格に基づき0.3%以下とすることが可
能となる。
Further, according to such a manufacturing method, the creep deformation rate of the artificial joint sliding member made of ultra-high molecular weight polyethylene can be made 0.3% or less based on the AMST standard.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0021】[0021]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0022】〔例1〕素材として平均分子量730万の
超高分子量ポリエチレンを用いる。直径10cm、高さ
10cm程度の円筒状の素材をコバルト60を線源とす
るγ線処理装置に投入し、吸収線量として500,10
00,1500,2000kGyのガンマ線を照射し
た。その後真空熱処理器を用いて10torr以下の気
圧中、110℃で2時間加熱処理し、その後、室温まで
自然冷却した。この処理済材料から以下のような機械的
特性試験用の試験片を切削加工により作製した。なお、
加工の際に、表面から約1mmの部分は完全に除去し
た。
Example 1 Ultrahigh molecular weight polyethylene having an average molecular weight of 7,300,000 is used as a material. A cylindrical material having a diameter of about 10 cm and a height of about 10 cm was put into a γ-ray treatment device using cobalt 60 as a radiation source, and the absorbed dose was 500,10.
Irradiation with gamma rays of 00, 1500 and 2000 kGy was performed. After that, heat treatment was performed at 110 ° C. for 2 hours in a pressure of 10 torr or less using a vacuum heat treatment device, and then naturally cooled to room temperature. From the treated material, the following test pieces for mechanical property test were prepared by cutting. In addition,
During the processing, a portion of about 1 mm from the surface was completely removed.

【0023】 引っ張り試験用:JIS K7113 2(1/2)号
形[全長60mm、厚さ2mm] クリープ試験用:ASTM D621[1.25mm角
の立方体] この試験片の機械的性質の測定値を表1に示す。
For tensile test: JIS K7113 No. 2 (1/2) type [total length 60 mm, thickness 2 mm] For creep test: ASTM D621 [cube of 1.25 mm square] Measured values of mechanical properties of this test piece It shows in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】〔例2〕素材として平均分子量440万の
超高分子量ポリエチレンを用いる。2×2×10cm角
の素材を用い、コバルト60を線源とするγ線処理装置
に投入し、吸収線量として1000,2400kGyの
γ線を照射した。その後、真空熱処理器を用いて10t
orr以下の気圧中、110℃で2時間加熱処理し、室
温まで自然冷却した。この処理済材料から機械的特性試
験用の試験片を切削加工により作製した。加工の際に、
表面から約1mmの部分は完全に除去した。
Example 2 Ultrahigh molecular weight polyethylene having an average molecular weight of 4.4 million is used as a material. A 2 × 2 × 10 cm square material was used, and the material was placed in a γ-ray processing device using cobalt 60 as a radiation source and irradiated with γ-rays having an absorbed dose of 1000,2400 kGy. Then, using a vacuum heat treatment device, 10t
The mixture was heat-treated at 110 ° C. for 2 hours under atmospheric pressure of orr or lower and naturally cooled to room temperature. A test piece for a mechanical property test was produced from this treated material by cutting. When processing,
A part of about 1 mm from the surface was completely removed.

【0026】この試験片の機械的性質の測定値を表1に
示す。
Table 1 shows measured values of mechanical properties of this test piece.

【0027】また、比較例としてγ線照射をしない試験
片を同様に作製し、この試験片の機械的性質を同様の方
法で測定した。
Further, as a comparative example, a test piece not irradiated with γ-ray was similarly prepared, and the mechanical property of this test piece was measured by the same method.

【0028】〔例3〕素材として平均分子量440万の
超高分子量ポリエチレンを用いる。2×2×10cm角
程度の素材を硬質ガラス製の真空容器に入れて封管し、
コバルト60を線源とするγ線処理装置に投入し、吸収
線量として5000kGyのγ線を照射した。
Example 3 Ultra high molecular weight polyethylene having an average molecular weight of 4.4 million is used as a material. Place a 2 x 2 x 10 cm square material in a hard glass vacuum container and seal the tube.
It was put into a γ-ray processing apparatus using cobalt 60 as a radiation source and irradiated with γ-rays of 5000 kGy as an absorbed dose.

【0029】なお、真空容器はγ線による強度劣化の影
響で照射終了時には破断していた。
The vacuum container was broken at the end of irradiation due to the influence of strength deterioration due to γ-rays.

【0030】その後、素材のみを真空熱処理器を用いて
10torr以下の気圧中、110℃で2時間加熱処理
し、その後、室温まで自然冷却した。この処理済材料か
ら機械的特性試験用の試験片を切削加工により作製し
た。加工の際に、表面から約1mmの部分は完全に除去
した。
Thereafter, only the raw material was heat-treated at 110 ° C. for 2 hours at a pressure of 10 torr or less using a vacuum heat treatment device, and then naturally cooled to room temperature. A test piece for a mechanical property test was produced from this treated material by cutting. During the processing, a portion of about 1 mm from the surface was completely removed.

【0031】この試験片の機械的性質の測定値を表1に
示す。
Table 1 shows the measured values of the mechanical properties of this test piece.

【0032】また、比較例としてγ線照射をしない試験
片と、500kGy照射をするが熱処理を行わない試験
片を同様に作製し、これらの試験片の機械的性質を同様
の方法で測定した。
Further, as comparative examples, test pieces which were not irradiated with γ-rays and test pieces which were irradiated with 500 kGy but not heat-treated were prepared in the same manner, and the mechanical properties of these test pieces were measured by the same method.

【0033】表1の結果から明らかなように、慴動部材
として用いられる超高分子量ポリエチレン素材に吸収線
量500kGy以上のγ線を照射した後、100℃で1
時間以上加熱処理し、その後切削加工によって所望の形
状に成形加工することによって、クリープ変形を1%未
満に抑え、耐摩耗性を向上した。
As is clear from the results shown in Table 1, the ultra-high molecular weight polyethylene material used as the sliding member was irradiated with γ-rays having an absorbed dose of 500 kGy or more, and then at 1
By subjecting it to heat treatment for at least the time and then forming it into a desired shape by cutting, creep deformation was suppressed to less than 1%, and wear resistance was improved.

【0034】特に、クリープ変形率については一例を除
き、すべて0.3%以下という非常に優れた結果を示
し、これらはいずれも実験上、摩耗量が極微量であっ
た。このような超高分子量ポリエチレンを人工関節用摺
動部材として用いた場合、長年の使用によっても上記ポ
リエチレンの摩耗粉の発生がほとんどなく、したがって
生体に安全である。
In particular, with respect to the creep deformation rate, except for one example, all showed extremely excellent results of 0.3% or less, and all of them had an extremely small amount of wear in the experiment. When such ultra-high molecular weight polyethylene is used as a sliding member for an artificial joint, even if it is used for many years, the abrasion powder of the polyethylene is hardly generated, and therefore it is safe for the living body.

【0035】これに対してγ線照射または熱処理のいず
れかが施されていない上記比較例は、クリープ変形率が
1%以上であり、また摩耗量も比較的多かった。
On the other hand, in the above comparative example in which neither γ-ray irradiation nor heat treatment was applied, the creep deformation rate was 1% or more, and the wear amount was relatively large.

【0036】ところで、上記実施例によればγ線の照射
には、飼料や医療機器の滅菌に使用されている装置をそ
のまま流用でき、加熱処理も市販の真空熱処理装置を使
用できるので、装置のコスト及び製造のランニングコス
トを比較的低く抑えることができる。また、照射後に切
削加工することによってγ線によって劣化した表面層を
除去できるので、ガンマ線の照射中に特殊な真空容器な
どを用いる必要もない。
By the way, according to the above-mentioned embodiment, since the apparatus used for sterilizing feed and medical equipment can be used as it is for γ-ray irradiation, and a commercially available vacuum heat treatment apparatus can be used for the heat treatment, The costs and running costs for manufacturing can be kept relatively low. Further, since the surface layer deteriorated by γ-rays can be removed by cutting after irradiation, it is not necessary to use a special vacuum container or the like during the irradiation of γ-rays.

【0037】なお、γ線照射量として吸収線量が500
kGy未満では、熱処理を行っても十分な効果が得られ
ない。他方、γ線照射量として吸収線量が10、000
kGyより大きい場合、材料の脆性が高くなりすぎて加
工中又は使用中に破断を起こすという可能性がある。
The absorbed dose is 500 as the γ-ray irradiation dose.
If it is less than kGy, a sufficient effect cannot be obtained even if heat treatment is performed. On the other hand, the absorbed dose is 10,000 as the γ-ray dose.
If it is larger than kGy, the brittleness of the material may be too high, causing breakage during processing or use.

【0038】加熱温度は、厳密な制御を必要としない
が、80℃以下では実用的な時間で処理することず、他
方200℃以上ではポリエチレンの変形、劣化が激しい
という恐れがある。
The heating temperature does not need to be strictly controlled, but if it is 80 ° C. or lower, it is not processed in a practical time, while if it is 200 ° C. or higher, the polyethylene may be severely deformed and deteriorated.

【0039】本発明における、上記γ線照射量として吸
収線量ならびに加熱温度のより好ましい範囲としては、
吸収線量が1、000〜9,000kGy、加熱温度が
80〜200℃である。加熱温度について更に好ましく
は、100℃〜150℃の範囲であれば時間的な制御が
容易である。
In the present invention, the more preferable range of the absorbed dose as the above γ-ray irradiation amount and the heating temperature is as follows.
The absorbed dose is 1,000 to 9,000 kGy and the heating temperature is 80 to 200 ° C. The heating temperature is more preferably 100 ° C. to 150 ° C., and temporal control is easy.

【0040】[0040]

【発明の効果】叙上のように、本発明の人工関節用摺動
部材の製造方法によれば、素材としての超高分子量ポリ
エレンに多量のγ線を照射し、また、これを加熱処理す
るので上記摺動部材を構成する超高分子量ポリエチレン
のクリープ変形率が非常に小さくクリープ変形率をAM
ST規格に基づき0.3%以下まで減少させることも可
能である。したがって、このように製造される人工関節
用慴動部材は、生体内での摩耗量が極微量なので、生体
に安全で、長期間、安心して使用できるという優れた効
果を奏する。
As described above, according to the method for manufacturing a sliding member for an artificial joint of the present invention, a large amount of γ-rays is irradiated to the ultra-high molecular weight polyethylene as a raw material, and this is heat-treated. Therefore, the creep deformation rate of the ultra high molecular weight polyethylene that constitutes the above sliding member is very small, and the creep deformation rate is AM.
It is also possible to reduce it to 0.3% or less based on the ST standard. Therefore, the slidable member for artificial joints manufactured in this manner has an extremely small amount of wear in the living body, and thus has an excellent effect that it is safe for living bodies and can be used safely for a long period of time.

【0041】また、本発明の製造方法によれば、上記γ
線照射および加熱処理の後に部材を切削加工によって所
望形状に成形し、劣化した表面層を取り除くので、大が
かりな機器や装置を必要とせず、コスト的に非常に有利
である。
According to the production method of the present invention, the above γ
Since the member is formed into a desired shape by cutting after the irradiation of rays and the heat treatment and the deteriorated surface layer is removed, a large-scale device or device is not required, which is very advantageous in terms of cost.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 真吾 滋賀県蒲生郡蒲生町川合10番地の1 京セ ラ株式会社滋賀工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shingo Masuda 1 at 10 Kawai, Gamo-cho, Gamo-gun, Shiga Prefecture Kyocera Corporation Shiga factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超高分子量ポリエチレンにγ線を吸収線
量として500kGyから10,000kGy照射した
後、80℃から200℃で加熱処理し、これを切削加工
により所望形状に成形することを特徴とする人工関節用
摺動部材の製造方法。
1. Ultra-high molecular weight polyethylene is irradiated with γ-rays as an absorbed dose of 500 kGy to 10,000 kGy and then heat-treated at 80 ° C. to 200 ° C., which is then cut into a desired shape. A method for manufacturing a sliding member for an artificial joint.
JP7284220A 1995-10-31 1995-10-31 Manufacturing method of sliding member for artificial joint Expired - Fee Related JP2984203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7284220A JP2984203B2 (en) 1995-10-31 1995-10-31 Manufacturing method of sliding member for artificial joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7284220A JP2984203B2 (en) 1995-10-31 1995-10-31 Manufacturing method of sliding member for artificial joint

Publications (2)

Publication Number Publication Date
JPH09122222A true JPH09122222A (en) 1997-05-13
JP2984203B2 JP2984203B2 (en) 1999-11-29

Family

ID=17675733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7284220A Expired - Fee Related JP2984203B2 (en) 1995-10-31 1995-10-31 Manufacturing method of sliding member for artificial joint

Country Status (1)

Country Link
JP (1) JP2984203B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998014223A1 (en) * 1996-10-02 1998-04-09 E.I. Du Pont De Nemours And Company Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
EP0923945A3 (en) * 1997-12-16 2001-01-31 Società per Azioni SAMO Cross-linking and sterilization treatment for manufacturing polyethylene items with high-level tribological characteristics, particularly for biomedical applications
JP2001070434A (en) * 1999-07-29 2001-03-21 Depuy Orthopaedics Inc Prosthesis parts and their production
JP2001070435A (en) * 1999-07-29 2001-03-21 Depuy Orthopaedics Inc Prosthesis parts and production
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6627141B2 (en) 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
JP2004504178A (en) * 2000-07-14 2004-02-12 デピュイ・オーソピーディックス・インコーポレイテッド Method for molding crosslinked preforms
US6692679B1 (en) 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
US6818172B2 (en) 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
JP2008543433A (en) * 2005-06-14 2008-12-04 オムニ ライフ サイエンス, インク. Cross-linked polyethylene particles
US7517919B2 (en) 2002-06-06 2009-04-14 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US7819925B2 (en) 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
US9421104B2 (en) 2007-07-27 2016-08-23 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1987849B1 (en) 2006-02-06 2016-11-23 Kyocera Medical Corporation Low-wear sliding member and artificial joint making use of the same
JP5775694B2 (en) 2008-12-25 2015-09-09 京セラメディカル株式会社 Polymer sliding material, artificial joint member, medical instrument and method for manufacturing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6242507B1 (en) 1996-10-02 2001-06-05 Depuy Orthopaedics, Inc. Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6562540B2 (en) 1996-10-02 2003-05-13 Depuy Orthopaedics, Inc. Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
WO1998014223A1 (en) * 1996-10-02 1998-04-09 E.I. Du Pont De Nemours And Company Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
EP0923945A3 (en) * 1997-12-16 2001-01-31 Società per Azioni SAMO Cross-linking and sterilization treatment for manufacturing polyethylene items with high-level tribological characteristics, particularly for biomedical applications
US6692679B1 (en) 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6627141B2 (en) 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
JP2001070434A (en) * 1999-07-29 2001-03-21 Depuy Orthopaedics Inc Prosthesis parts and their production
JP2001070435A (en) * 1999-07-29 2001-03-21 Depuy Orthopaedics Inc Prosthesis parts and production
JP2004504178A (en) * 2000-07-14 2004-02-12 デピュイ・オーソピーディックス・インコーポレイテッド Method for molding crosslinked preforms
US6818172B2 (en) 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
US7819925B2 (en) 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
US7517919B2 (en) 2002-06-06 2009-04-14 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US7714036B2 (en) 2002-06-06 2010-05-11 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US8030370B2 (en) 2002-06-06 2011-10-04 How medica Osteonics Corp. Sequentially cross-linked polyethylene
US8324291B2 (en) 2002-06-06 2012-12-04 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US8680173B2 (en) 2002-06-06 2014-03-25 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US9181409B2 (en) 2002-06-06 2015-11-10 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US9650476B2 (en) 2002-06-06 2017-05-16 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
JP2008543433A (en) * 2005-06-14 2008-12-04 オムニ ライフ サイエンス, インク. Cross-linked polyethylene particles
US9421104B2 (en) 2007-07-27 2016-08-23 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components

Also Published As

Publication number Publication date
JP2984203B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US6503439B1 (en) Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
JPH09122222A (en) Manufacture of sliding member for prosthetic joint
US6692679B1 (en) Cross-linked molded plastic bearings
AU759013B2 (en) Low temperature pressure stabilization of implant component
JP3652669B2 (en) MEDICAL IMPLANT COMPRISING CROSSLINKED POLYMER WITH INCREASED WEAR RESISTANCE, ITS COMPONENT AND METHOD FOR PRODUCING THEM
US8110242B2 (en) Methods of preparing hydrogel coatings
US6395799B1 (en) Electromagnetic and mechanical wave energy treatments of UHMWPE
JP7237184B2 (en) Method and application of oxidized ceramic layer on the surface of zirconium and zirconium alloys
EP1795212A2 (en) Crosslinking of polyethylene for low wear using radiation and thermal treatments
JP4503114B2 (en) Cross-linked plastic support
JP2004043798A (en) Successively crosslinked polyethylene
EP1303388A1 (en) Method for compression molding a cross-linked preform
JP2004523291A (en) Manufacturing method of medical implant
US6558794B1 (en) Ceramic particulate reinforced orthopedic implants
US7364685B2 (en) Method for producing implant parts from highly cross-linked UHMWPE and implant parts for human medicine
US7803310B2 (en) Crosslinked polyethylene article
WO2020071946A1 (en) Endoprosthesis insert
EP2921186B1 (en) Annealing method for cross-linked polyethylene
JP2001079081A (en) Prosthesis part and its preparation
JP2001070434A (en) Prosthesis parts and their production
EP1413414B1 (en) Method for forming cross-linked molded plastic bearings
JP2005237629A (en) Artificial joint and manufacturing method of the same
JP4794057B2 (en) Bone repair material manufacturing method and bone repair material
JP2002511307A (en) Wear resistant surface gradient crosslinked polyethylene
AU778259C (en) Method for compression molding a cross-linked preform

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees