JPH09120832A - Manufacture of fuel cell - Google Patents

Manufacture of fuel cell

Info

Publication number
JPH09120832A
JPH09120832A JP8011390A JP1139096A JPH09120832A JP H09120832 A JPH09120832 A JP H09120832A JP 8011390 A JP8011390 A JP 8011390A JP 1139096 A JP1139096 A JP 1139096A JP H09120832 A JPH09120832 A JP H09120832A
Authority
JP
Japan
Prior art keywords
cell
holding member
inter
pair
stacking direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8011390A
Other languages
Japanese (ja)
Other versions
JP3059929B2 (en
Inventor
Isanori Akagi
功典 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8011390A priority Critical patent/JP3059929B2/en
Publication of JPH09120832A publication Critical patent/JPH09120832A/en
Application granted granted Critical
Publication of JP3059929B2 publication Critical patent/JP3059929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a fuel cell in which gas leak inspection can be easily performed. SOLUTION: A fuel cell C is composed in a rectangular plate form of an electrolyte layer 1 provided with an oxygen electrode 2 on one surface, and a fuel electrode 3 on the other surface, and a fluid passage component member 4 disposed on either of the side facing the oxygen electrode 2 and the side to face the fuel electrode 3 to form a cell inner passage (x). Plural cells C are held by holding members 5 to be disposed in parallel in a lamination condition, having soft conductive material 7 filled between each other, a pair of partition wall members 8 to part a pair of aperture end edge parts are provided on end surface parts where the oxygen electrode 2 or fuel electrode 3 is exposed in the lamination direction to be combined with the holding members 5 to form a cell unit U preliminarily, and plural cell units U are disposed in parallel, having the soft conductive material 7 filled between each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一方の面に酸素極
を備え且つ他方の面に燃料極を備えた電解質層と、前記
酸素極に臨む側と前記燃料極に臨む側のいずれか一方
に、セル内流路を形成すべく配置される流路構成部材と
から矩形板状の燃料電池のセルが構成され、そのセル
は、前記流路構成部材によって、前記セルにおける一方
の向かい合う一対の端面を、前記セル内流路が開いた開
口端面となり、他方の向かい合う一対の端面を、前記セ
ル内流路が閉じた閉塞端面となるように構成され、前記
セルにおける前記セル内流路が開いた一対の開口端縁夫
々に配置される一対の保持部材に、前記セルの厚さと同
一又は略同一深さに形成されて、前記開口端縁が入れら
れる切り込み部が設けられ、前記切り込み部は、その切
り込み部に入れられる前記セルにおける前記開口端縁の
両端夫々に隣接する前記閉塞端面に夫々密着する当て付
け面を備え、前記セルの複数が、前記酸素極又は前記燃
料極が露出する面を外側に向けて前記開口端縁を前記切
り込み部に入れた状態で、前記保持部材に保持されて、
セル間流路を形成すべく互いに間隔を隔てた状態で積層
状態に並置され、前記セル間流路が、前記一対の開口端
面側において前記一対の保持部材にて閉じられ、且つ、
前記一対の閉塞端面側において開けられるように構成さ
れ、積層方向に隣接するセル間に、気体の通流を許容す
る状態に形成された柔軟性導電材が充填された燃料電池
の製造方法に関する。
TECHNICAL FIELD The present invention relates to an electrolyte layer having an oxygen electrode on one surface and a fuel electrode on the other surface, and one of the side facing the oxygen electrode and the side facing the fuel electrode. In, a cell of a rectangular plate-shaped fuel cell is composed of a flow path forming member arranged to form a flow path in the cell, and the cell is formed by the flow path forming member of a pair of facing one of the cells. The end face is an open end face where the in-cell flow channel is open, and the other pair of end faces is configured to be a closed end face where the in-cell flow passage is closed, and the in-cell flow passage in the cell is opened. A pair of holding members arranged at each of the pair of opening end edges is provided with a notch formed in the same or substantially the same depth as the thickness of the cell and into which the opening end is inserted, and the notch is , Put in the notch In each cell, a plurality of the cells are provided with contact surfaces that are in close contact with the closed end surfaces that are adjacent to both ends of the opening end edge, respectively, and the plurality of the cells are opened with the surface where the oxygen electrode or the fuel electrode is exposed facing outward. In the state where the edge is put in the cut portion, held by the holding member,
The cells are juxtaposed in a stacked state in a state of being separated from each other to form an inter-cell flow path, the inter-cell flow path is closed by the pair of holding members on the pair of opening end face sides, and,
The present invention relates to a method of manufacturing a fuel cell, which is configured to be opened on the pair of closed end surfaces and is filled with a flexible conductive material formed between cells adjacent to each other in the stacking direction so as to allow gas flow.

【0002】[0002]

【従来の技術】かかる燃料電池は、流路構成部材により
セル内流路を仕切り形成し、積層方向に隣接するセル間
を一対の保持部材により仕切ってセル間流路を形成する
とともに、セルの積層方向に隣接するセル内流路の開口
部とセル間流路の開口部とを、セルの開口端縁を切り込
み部に入れている保持部材とその保持部材に隣接する保
持部材にて仕切り、柔軟性導電材により、積層方向に隣
接するセル同士を導電状態に接続している。そして、セ
ル内流路にその開口部からセル内流路用ガスを供給し、
並びに、セル間流路にその開口部からセル間流路用ガス
を供給して、発電するように構成してある。尚、流路構
成部材を酸素極に臨む側に配置する場合は、セル内流路
用ガスは酸素含有ガスであり、セル間流路用ガスは水素
ガスを含んだ燃料ガスであり、逆に、流路構成部材を燃
料極に臨む側に配置する場合は、セル内流路用ガスは燃
料ガスであり、セル間流路用ガスは酸素含有ガスであ
る。かかる燃料電池を製造する場合、従来では、燃料電
池を構成する全てのセルを一挙に積層状態に並置する方
法を採用していた。
2. Description of the Related Art In such a fuel cell, a flow path forming member partitions an internal flow path of a cell, and a pair of holding members partition adjacent cells in the stacking direction to form an inter-cell flow path. The opening of the in-cell flow passage and the opening of the inter-cell flow passage that are adjacent to each other in the stacking direction are partitioned by a holding member that holds the opening edge of the cell in the cut portion and a holding member adjacent to the holding member, The flexible conductive material connects the cells adjacent in the stacking direction in a conductive state. Then, the gas for the in-cell flow passage is supplied from the opening to the in-cell flow passage,
In addition, the inter-cell flow passage gas is supplied from the opening to the inter-cell flow passage to generate electric power. Incidentally, when the flow path forming member is arranged on the side facing the oxygen electrode, the gas for the flow path inside the cell is an oxygen-containing gas, the gas for the inter-cell flow path is a fuel gas containing hydrogen gas, and vice versa. When the flow path constituent member is arranged on the side facing the fuel electrode, the gas for the intra-cell flow path is the fuel gas and the gas for the inter-cell flow path is the oxygen-containing gas. In the case of manufacturing such a fuel cell, conventionally, a method of arranging all the cells constituting the fuel cell side by side in a stacked state at once has been adopted.

【0003】[0003]

【発明が解決しようとする課題】ところで、セル内流路
やセル間流路の仕切り部分、及び、前記積層方向に隣接
するセル内流路の開口部とセル間流路の開口部との仕切
り部分に、ガスが漏洩するような不具合箇所があると、
その不具合箇所を通じてセル内流路用ガスとセル間流路
用ガスとが(即ち、酸素含有ガスと燃料ガスとが)混合
して燃焼し、その燃焼箇所において局部的に高温状態と
なるため、耐久性を劣化させるという問題が生じる。従
って、前記各仕切り部分におけるガス漏洩検査を行うと
ともに、漏洩箇所があればその補修を行って、ガスの漏
洩を確実に防止する必要がある。しかしながら、従来で
は、全てのセルを一挙に積層状態に並置した後、ガス漏
洩検査を行っていたが、多数のセルが積層されている状
態での漏洩箇所の特定は容易でなく、改善が望まれてい
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By the way, a partition portion of an in-cell flow passage or an inter-cell flow passage, and a partition between an opening of an in-cell flow passage and an opening of an inter-cell flow passage which are adjacent to each other in the stacking direction. If there is a defective part where gas leaks,
Gas for inter-cell channel and gas for inter-cell channel (that is, oxygen-containing gas and fuel gas) are mixed and burned through the defective portion, and the temperature becomes locally high at the burning point, There is a problem that durability is deteriorated. Therefore, it is necessary to surely prevent the leakage of gas by performing a gas leakage inspection on each of the partition portions and repairing the leakage portion if there is any. However, in the past, gas leakage inspection was performed after all cells were placed side by side in a stacked state at once, but it was not easy to identify the leaked location when a large number of cells were stacked, and improvement is desired. It was rare.

【0004】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、ガス漏洩検査を簡単に行うこと
ができる燃料電池の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing a fuel cell capable of easily performing a gas leak inspection.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の構成に
よれば、複数(例えば5枚程度)のセルを、夫々の間に
柔軟性導電材を充填した状態で、保持部材に保持させて
積層状態に並置し、且つ、その積層方向における酸素極
又は燃料極が露出する端面部に、一対の開口端縁部を仕
切る一対の隔壁部材を一対の保持部材に重ねた状態で設
けて、セルユニットを予め形成するので、セルユニット
単位でガス漏洩検査を行うことができる。
According to the structure of claim 1, a plurality of (for example, about 5) cells are held by a holding member in a state in which a flexible conductive material is filled between the cells. And juxtaposed in a stacked state, and on the end face portion where the oxygen electrode or the fuel electrode in the stacking direction is exposed, a pair of partition wall members that partition a pair of open end edges are provided in a state of being stacked on a pair of holding members, Since the cell unit is formed in advance, the gas leakage inspection can be performed on a cell unit basis.

【0006】セルユニット単位でガス漏洩検査を行う場
合、一対の隔壁部材に対して、隔壁板を架け渡す状態で
設けると、セルユニットの積層方向端部において、酸素
極又は燃料極が露出しているセルに対しても、他のセル
と同様に、セルにおける一対の開口端面側において閉じ
られ、且つ、セルにおける一対の閉塞端面側において開
けられた状態の、仮セル間流路を形成することができ
る。そして、各セル内流路にその開口部からセル内流路
用ガスを供給し、各セル間流路及び仮セル間流路に夫々
の開口部からセル間流路用ガスを供給してガス漏洩検査
を行うと、セルユニットを構成する全てのセルのセル内
流路及びセル間流路について、ガス漏洩検査を行うこと
ができる。その際、セルユニットを構成するセルの枚数
は、例えば5枚程度と少ないので、漏洩箇所の特定は容
易であり、仮に漏洩箇所があっても確実にその補修をす
ることができる。
When a gas leakage inspection is carried out in cell unit units, if the partition plates are provided in a state of bridging the pair of partition members, the oxygen electrode or the fuel electrode is exposed at the end of the cell unit in the stacking direction. Similarly to other cells, forming a temporary inter-cell flow path in a state of being closed at the pair of open end faces of the cell and being opened at the pair of closed end faces of the cell, like other cells. You can Then, the gas for the in-cell flow path is supplied to each in-cell flow path from its opening, and the gas for the inter-cell flow path is supplied to each inter-cell flow path and temporary inter-cell flow path from each opening. When the leakage inspection is performed, the gas leakage inspection can be performed on the in-cell passages and the inter-cell passages of all the cells that form the cell unit. At that time, the number of cells constituting the cell unit is small, for example, about 5, so that the location of the leak can be easily identified, and even if the location of the leak exists, the repair can be reliably performed.

【0007】尚、セルユニットは、複数のセルを夫々の
間に柔軟性導電材を充填しながら、保持部材に保持させ
て積層状態に並置して形成するので、柔軟性導電材を積
層方向の両側のセルに対して広い接触面積にて良好に接
触させることができるので、積層方向に隣接するセル同
士を良好に導電状態に接続することができる。
Since the cell unit is formed by arranging a plurality of cells side by side in a stacked state by holding them by a holding member while filling the cells with a flexible conductive material between them, the flexible conductive material is arranged in the stacking direction. Since the cells on both sides can be satisfactorily contacted with each other in a wide contact area, the cells adjacent in the stacking direction can be satisfactorily connected to each other in a conductive state.

【0008】そして、複数のセルユニットを、それらの
間に柔軟性導電材を充填した状態で、並置して燃料電池
を形成する。その並置方向に隣接するセルユニット同士
は、柔軟性導電材にて導電状態に接続する。このように
して形成された燃料電池において、ガス漏洩検査を行う
場合、各セルユニットについては、事前の検査により漏
洩箇所がないことが分かっているので、前記並置方向に
隣接するセルユニット間の接続箇所のみの検査を行えば
よいので、漏洩箇所の特定は容易であり、仮に漏洩箇所
があっても確実にその補修をすることができる。従っ
て、ガス漏洩検査を簡単に行うことができる燃料電池の
製造方法を提供することができるようになった。
A plurality of cell units are arranged side by side with the flexible conductive material filled between them to form a fuel cell. Cell units adjacent to each other in the juxtaposed direction are connected in a conductive state by a flexible conductive material. In a fuel cell formed in this way, when performing a gas leak test, it is known from the previous test that there is no leak point for each cell unit, so connection between adjacent cell units in the juxtaposed direction is performed. Since it suffices to inspect only the location, it is easy to identify the location of leakage, and even if there is a location of leakage, it is possible to reliably repair it. Therefore, it has become possible to provide a method for manufacturing a fuel cell, which can easily perform a gas leak inspection.

【0009】ところで、各セル内流路に対して、セル内
流路用ガスを一方の開口部から供給し他方の開口部から
排出させるための構成として、例えば、各セル内流路の
一方の開口部夫々に連通するセル内流路用ガス通路、及
び、他方の開口部夫々に連通するセル内流路用ガス通路
を設ける必要がある。同様に、各セル間流路に対して、
セル間流路用ガスを一方の開口部から供給し他方の開口
部から排出させるための構成として、例えば、各セル間
流路の一方の開口部夫々に連通するセル間流路用ガス通
路、及び、他方の開口部夫々に連通するセル間流路用ガ
ス通路を設ける必要がある。
By the way, as a structure for supplying the gas for the in-cell flow passage to each of the in-cell flow passages and discharging it from the other opening, for example, one of the in-cell flow passages It is necessary to provide a gas passage for an in-cell flow passage that communicates with each opening and a gas passage for an in-cell flow passage that communicates with each of the other openings. Similarly, for each inter-cell flow path,
As a configuration for supplying the gas for inter-cell passage from one opening and discharging from the other opening, for example, an inter-cell passage gas passage communicating with each one of the openings of each inter-cell passage, Also, it is necessary to provide the gas passage for the inter-cell flow path that communicates with each of the other openings.

【0010】請求項2に記載の構成によれば、上述の如
くセルユニットを形成するとともに、そのセルユニット
を並置して燃料電池を形成することにより、保持部材夫
々の孔及び隔壁部材夫々の孔が前記積層方向に一連に連
なった通路を形成することができ、その通路をセル内流
路用ガス通路として機能させることができるので、セル
内流路用ガス通路を別に設ける必要がない。又、セルユ
ニットのガス漏洩検査を行うときにも、検査用のセル内
流路用ガス通路を設ける必要があるが、請求項2に記載
の構成によれば、セルユニットを形成するのと同時にセ
ル内流路用ガス通路が形成され、それを検査用として使
用することができるので、ガス漏洩検査を行うときに
は、そのセル内流路用ガス通路の両端開口部を閉塞する
だけでよい。従って、請求項1に記載の構成により得ら
れる効果に加えて、製造作業が更に簡単になるととも
に、ガス漏洩検査の際の作業が更に簡単になるという効
果を奏する。
According to the second aspect of the present invention, by forming the cell unit as described above and arranging the cell units side by side to form the fuel cell, the holes of each holding member and the holes of each partition member are formed. Can form a series of passages in the stacking direction, and the passages can function as the gas passages for the in-cell passages, so that it is not necessary to separately provide the gas passages for the in-cell passages. Also, when performing a gas leak inspection of the cell unit, it is necessary to provide a gas passage for the in-cell flow passage for inspection, but according to the configuration of claim 2, the cell unit is formed at the same time. Since the gas passage for the in-cell flow passage is formed and can be used for inspection, when performing the gas leakage inspection, it is only necessary to close both end openings of the gas passage for the in-cell flow passage. Therefore, in addition to the effect obtained by the configuration according to the first aspect, there is an effect that the manufacturing work is further simplified and the work in the gas leakage inspection is further simplified.

【0011】ところで、燃料電池は、基本的には、複数
のセルを互いに直列接続する状態で積層状態に並置して
構成するものであり、セルの面積を大にするほど燃料電
池の容量を大にすることができる。一方、セルの面積を
大にすることは、製作面あるいはコスト面から限度があ
る。そこで、複数のセルを、開口端面を互いに向かい合
わせた状態でセルの面方向に列状に並置してセル列を形
成し、そのセル列の複数を互いに直列接続する状態で積
層状態に並置することにより、セルの面積の大型化を回
避しながら、燃料電池の大容量化を図ることができる。
By the way, a fuel cell is basically constructed by arranging a plurality of cells side by side in a stacked state with the cells connected in series, and the larger the area of the cell, the larger the capacity of the fuel cell. Can be On the other hand, increasing the area of the cell is limited in terms of manufacturing or cost. Therefore, a plurality of cells are juxtaposed in a row in the surface direction of the cells with the open end faces facing each other to form a cell row, and the plurality of cell rows are juxtaposed in a stacked state with the cells connected in series. As a result, it is possible to increase the capacity of the fuel cell while avoiding an increase in the cell area.

【0012】請求項3に記載の構成によれば、上述のよ
うに大容量化を図った燃料電池においても、ガス漏洩検
査を簡単に行うことができる製造方法を提供することが
できるようになった。
According to the third aspect of the present invention, it is possible to provide a manufacturing method capable of easily performing a gas leak inspection even in a fuel cell having a large capacity as described above. It was

【0013】請求項4に記載の構成によれば、セルユニ
ットを形成するとともに、そのセルユニットを並置して
燃料電池を形成するのと同時に、端用保持部材夫々の孔
及び端用隔壁部材夫々の孔が前記積層方向に一連に連な
った通路を形成することができ、その通路をセル内流路
用ガス通路として機能させることができるので、セル内
流路用ガス通路を別に設ける必要がない。又、セルユニ
ットのガス漏洩検査を行うときにも、セルユニットを形
成するのと同時にセル内流路用ガス通路が形成され、そ
れを検査用として使用することができるので、ガス漏洩
検査を行うときには、そのセル内流路用ガス通路の両端
開口部を閉塞するだけでよい。従って、請求項3に記載
の構成により得られる効果に加えて、製造作業が更に簡
単になるとともに、ガス漏洩検査の際の作業が更に簡単
になるという効果を奏する。
According to the fourth aspect of the present invention, the cell unit is formed and the cell units are juxtaposed to form the fuel cell, and at the same time, the holes of the end holding members and the end partition members are formed. Since it is possible to form a passage in which the holes are connected in series in the stacking direction, and the passage can function as a gas passage for the in-cell passage, it is not necessary to separately provide a gas passage for the in-cell passage. . Also, when performing a gas leak inspection of the cell unit, the gas passage for the in-cell flow passage is formed at the same time when the cell unit is formed, and the gas passage can be used for inspection. Occasionally, it is only necessary to close the openings at both ends of the gas passage for the in-cell flow passage. Therefore, in addition to the effect obtained by the configuration according to the third aspect, there is an effect that the manufacturing work is further simplified and the work in the gas leakage inspection is further simplified.

【0014】ところで、セル列を形成するセルの数を多
くするほど、大容量化を図ることができる。一方、セル
列においては、セル内流路用ガスを、セル夫々のセル内
流路を連通接続部を経由させながら通流させるが、セル
列を形成するセルの数を多くするほど、列方向の一端の
セルから他端のセルに至るセル内流路用ガスの通流経路
が長くなる。従って、セル列を形成するセルの数を多く
するほど、セル内流路用ガスの供給圧力を高くする必要
がある。請求項5に記載の構成によれば、内部ガス通路
を通じて、セル内流路にセル内流路用ガスを供給した
り、内部ガス通路に対して、セル内流路からセル内流路
用ガスを排出させることができる。つまり、セル列にお
いて、セル内流路用ガスを通流させる通流経路を複数に
分割することができて、分割した各通流経路を短くする
ことができる。従って、請求項3又は4に記載の構成に
より得られる効果に加えて、セル内流路用ガスの供給圧
力を高くすることなく、セル列を形成するセルの数を所
望通り多くして、燃料電池を一層大容量化することがで
きるようになった。
By the way, as the number of cells forming the cell row is increased, the capacity can be increased. On the other hand, in the cell row, the gas for the cell internal flow passages is made to flow through the cell internal flow passages while passing through the communication connection parts. However, as the number of cells forming the cell row increases, the column direction increases. The flow path of the in-cell flow path gas from the cell at one end to the cell at the other end becomes longer. Therefore, it is necessary to increase the supply pressure of the gas for the in-cell flow passage as the number of cells forming the cell row increases. According to the configuration of claim 5, the gas for cell internal flow passage is supplied to the cell internal flow passage through the internal gas passage, or the gas for cell internal flow passage is supplied to the internal gas passage from the cell internal flow passage. Can be discharged. That is, in the cell row, the flow passages through which the gas for the flow passage in the cell is made to flow can be divided into a plurality, and each of the divided flow passages can be shortened. Therefore, in addition to the effect obtained by the structure according to claim 3 or 4, the number of cells forming a cell row can be increased as desired without increasing the supply pressure of the gas for cell internal flow passages, It has become possible to increase the capacity of batteries.

【0015】ところで、複数のセル又は複数のセル列
を、閉塞端面を互いに向かい合わせた状態でセルの面方
向に並置したものの複数を、互いに電気的に直列接続す
る状態で積層状態に並置することにより、セルの面積を
大型化を回避しながら、燃料電池の大容量化を図ること
ができる。
By the way, a plurality of cells or a plurality of cell rows are juxtaposed in the surface direction of the cells with their closed end faces facing each other, but a plurality of cells are juxtaposed in a stacked state in a state of being electrically connected in series. As a result, it is possible to increase the capacity of the fuel cell while avoiding an increase in the cell area.

【0016】請求項6に記載の構成によれば、上述のよ
うに大容量化を図った燃料電池においても、ガス漏洩検
査を簡単に行うことができる製造方法を提供することが
できるようになった。
According to the structure described in claim 6, it is possible to provide a manufacturing method capable of easily performing a gas leakage inspection even in a fuel cell having a large capacity as described above. It was

【0017】請求項7に記載の構成によれば、保持部材
と隔壁部材が一体的に構成されているので、セルユニッ
トを形成する際に、隔壁部材を設けるための作業を省略
することができる。従って、請求項1、2、3、4、5
又は6に記載の構成により得られる効果に加えて、製造
作業が簡単になるという効果を奏する。
According to the structure of claim 7, since the holding member and the partition member are integrally formed, it is possible to omit the work for providing the partition member when forming the cell unit. . Therefore, claims 1, 2, 3, 4, 5
Alternatively, in addition to the effect obtained by the configuration described in 6, the manufacturing work can be simplified.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔第1実施形態〕以下、図1ないし図8に基づいて、本
発明の第1の実施の形態を説明する。先ず、図1に基づ
いて、燃料電池のセルCについて説明する。一方の面に
酸素極2を備え且つ他方の面に燃料極3を備えた固体電
解質層1と、酸素極2に臨む側に、セル内流路xを形成
すべく配置される流路構成部材としての導電性セパレー
タ4とから矩形板状の燃料電池のセルCを構成してあ
る。
[First Embodiment] Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. First, the cell C of the fuel cell will be described with reference to FIG. A solid electrolyte layer 1 having an oxygen electrode 2 on one surface and a fuel electrode 3 on the other surface, and a flow path constituent member arranged to form an in-cell flow path x on the side facing the oxygen electrode 2. And the electrically conductive separator 4 as the above, a cell C of a rectangular plate-shaped fuel cell is constituted.

【0019】更に説明を加えると、平面形状が矩形板状
の固体電解質層1の一方の面に、固体電解質層1におけ
る向かい合う一対の側縁夫々に側縁全長にわたる電解質
層露出部1aを形成する状態で、膜状又は板状の酸素極
2を一体的に貼り付け、且つ、他方の面に膜状又は板状
の燃料極3を、全面又はほぼ全面にわたって一体的に貼
り付けて、酸素極2と燃料極3とから起電力を得るため
の矩形板状の三層板状体を形成してある。導電性セパレ
ータ4は、板状部4aと、その板状部4aの両端に夫々
位置する一対の帯状突起部4bと、それら一対の帯状突
起部4bの間に位置する複数の凸条部4cを備える状態
で導電性材料にて一体形成してある。その導電性セパレ
ータ4を、複数の凸条部4c夫々が酸素極2と接触する
状態で、一対の帯状突起部4b夫々を両電解質層露出部
1a夫々に貼り付けることにより、セルCを構成してあ
る。
To further explain, on one surface of the solid electrolyte layer 1 having a rectangular plate shape in plan view, an electrolyte layer exposed portion 1a extending over the entire length of the side edge is formed on each of a pair of side edges facing each other in the solid electrolyte layer 1. In this state, the film-like or plate-like oxygen electrode 2 is integrally attached, and the film-like or plate-like fuel electrode 3 is integrally attached to the other surface over the entire surface or almost the entire surface, and the oxygen electrode is formed. A rectangular plate-shaped three-layer plate body for obtaining an electromotive force is formed from 2 and the fuel electrode 3. The conductive separator 4 includes a plate-shaped portion 4a, a pair of strip-shaped protrusions 4b located at both ends of the plate-shaped portion 4a, and a plurality of ridges 4c located between the pair of strip-shaped protrusions 4b. It is integrally formed of a conductive material in a state of being provided. A cell C is formed by attaching the conductive separator 4 to each of the electrolyte layer exposed portions 1a with a pair of strip-shaped protrusions 4b in a state in which the plurality of ridges 4c are in contact with the oxygen electrode 2. There is.

【0020】そして、酸素極2と導電性セパレータ4と
を導電状態に接続するとともに、酸素極2と導電性セパ
レータ4との間に、セルCにおける一方の向かい合う一
対の端面において開いたセル内流路xを形成してある。
つまり、セルCは、導電性セパレータ4によって、一方
の向かい合う一対の端面をセル内流路xが開いた開口端
面となり、他方の向かい合う一対の端面をセル内流路x
が閉じた閉塞端面となるように構成してある。尚、以下
の説明においては、セルCにおいて、セル内流路xが開
いた端縁を開口端縁、セル内流路xが開いた端面を開口
端面、及び、セル内流路xが閉じた端面を閉塞端面と夫
々略記する。セル内流路xは、酸素極2に臨むものであ
り、酸素含有ガスを通流させる酸素含有ガス流路sとし
て機能する。
Then, the oxygen electrode 2 and the conductive separator 4 are connected to each other in a conductive state, and the cell internal flow opened between the oxygen electrode 2 and the conductive separator 4 at the pair of end faces facing each other in the cell C. The path x is formed.
That is, in the cell C, the pair of end faces facing each other become open end faces where the in-cell flow channel x is opened by the conductive separator 4, and the other pair of end faces facing each other are set as the in-cell flow channel x.
Is a closed closed end face. In the following description, in the cell C, the open end of the in-cell flow channel x is the open end, the open end face of the in-cell flow path x is the open end face, and the in-cell flow path x is closed. The end faces are abbreviated as closed end faces, respectively. The in-cell flow path x faces the oxygen electrode 2 and functions as an oxygen-containing gas flow path s that allows the oxygen-containing gas to flow therethrough.

【0021】導電性セパレータ4、固体電解質層1及び
燃料極3の4箇所の角部は、切り落とした形状の傾斜状
にしてあり、これによって、詳しくは後述するが、セル
Cの閉塞端面の両端部夫々に、傾斜部Csを形成してあ
る。
The four corners of the conductive separator 4, the solid electrolyte layer 1 and the fuel electrode 3 are cut off to form an inclined shape, whereby both ends of the closed end face of the cell C will be described in detail later. An inclined part Cs is formed in each part.

【0022】固体電解質層1は、3モル%程度のYtを
固溶させた正方晶のZrO2 、その他適当なものから成
り、酸素極2はLaMnO3 、その他適当なものから成
り、、燃料極3はNiとZrO2 のサーメット、その他
適当なものから成る。又、導電性セパレータ4は、酸化
と還元とに対する耐性に優れたLaCrO3、その他適
当なものから成る。
The solid electrolyte layer 1 is composed of tetragonal ZrO 2 in which about 3 mol% of Yt is dissolved, and other suitable materials. The oxygen electrode 2 is composed of LaMnO 3 and other suitable materials. 3 is a cermet of Ni and ZrO 2 or other suitable material. The conductive separator 4 is made of LaCrO 3 , which has excellent resistance to oxidation and reduction, and other suitable materials.

【0023】次に、図2ないし図4に基づいて、燃料電
池の製造方法について説明する。図中の5は、セルCに
おける一対の開口端縁夫々に配置する矩形板状のセル保
持部材である。このセル保持部材5には、セルCの開口
端縁を入れる切り込み部51と、その切り込み部51に
臨み、且つ、セル保持部材5の厚さ方向に貫通する孔5
2を形成してある。切り込み部51には、その切り込み
部51に入れられるセルCの開口端縁の両端夫々に隣接
する閉塞端面に夫々密着させる一対の当て付け面53を
備えさせてあり、又、切り込み部51は、セルCの厚さ
と略同一深さに形成してある。更に、一対の当て付け面
53を、セル保持部材5の厚さ方向視において、セルC
の開口端縁から離間するほど互いに近接する傾斜状に形
成してあり、その傾斜状の当て付け面53に密着させる
ことが可能なように、セルCの閉塞端面の両端夫々に、
傾斜部Csを形成してある。
Next, a method of manufacturing a fuel cell will be described with reference to FIGS. Reference numeral 5 in the figure denotes a rectangular plate-shaped cell holding member arranged at each of the pair of opening edges of the cell C. The cell holding member 5 has a notch 51 into which the opening edge of the cell C is inserted, and a hole 5 that faces the notch 51 and penetrates in the thickness direction of the cell holding member 5.
2 is formed. The cut portion 51 is provided with a pair of abutting surfaces 53 that are brought into close contact with the closed end surfaces adjacent to both ends of the opening edge of the cell C to be inserted into the cut portion 51, respectively. The cell C is formed to have substantially the same depth as the thickness of the cell C. Further, the pair of abutting surfaces 53 are arranged in the cell C when viewed in the thickness direction of the cell holding member 5.
Is formed in an inclined shape that is closer to each other as it is farther from the opening end edge of the cell C, so that both ends of the closed end surface of the cell C can be closely attached to the inclined contact surface 53.
The inclined portion Cs is formed.

【0024】又、図8にも示すように、セル保持部材5
の切り込み部51の内面には、後述するシール材を充填
するための溝55を形成し、並びに、セル保持部材5に
おける切り込み部51の形成面とは反対側の面には、同
様の溝56を形成してある。尚、溝55及び56は、前
記厚さ方向視において、重なる状態に形成してある。
Further, as shown in FIG. 8, the cell holding member 5
A groove 55 for filling a sealing material, which will be described later, is formed on the inner surface of the notch 51, and a similar groove 56 is formed on the surface of the cell holding member 5 opposite to the surface on which the notch 51 is formed. Has been formed. The grooves 55 and 56 are formed so as to overlap each other when viewed in the thickness direction.

【0025】そして、5枚のセルCを、夫々の間に柔軟
性導電材7を充填した状態で、セル保持部材5に保持さ
せて積層状態に並置し、且つ、その積層方向における燃
料極3が露出する端面部に、一対の開口端縁部を仕切る
一対の隔壁部材8を一対のセル保持部材5に重ねた状態
で設けて、セルユニットUを形成する。
Then, the five cells C are held in the cell holding member 5 and are juxtaposed in a stacked state with the flexible conductive material 7 filled between them, and the fuel electrode 3 in the stacking direction is held. A pair of partition members 8 for partitioning a pair of opening edge portions are provided on the exposed end surface portion in a state of being overlapped with the pair of cell holding members 5 to form a cell unit U.

【0026】隔壁部材8は、セルCの積層方向視におけ
る外形形状が、セル保持部材5の外形形状と同様の板状
に形成してある。隔壁部材8には、前記積層方向視にお
いて、セル保持部材5の孔52と同一形状で且つ重なる
状態で、孔81を形成してある。又、図8にも示すよう
に、隔壁部材8の両面夫々には、前記厚さ方向視におい
て、セル保持部材5の溝55及び56と重なる状態で、
溝82,83を形成してある。セルユニットUを形成す
る際には、セル保持部材5の溝55,56内、隔壁部材
8の溝83内、前記積層方向に隣接するセル保持部材5
間、及び、前記積層方向に隣接するセル保持部材5と隔
壁部材8との間に、図2中において破線6にて示す如
く、シール材を充填する。
The partition member 8 is formed so that the outer shape of the cell C when viewed in the stacking direction is similar to the outer shape of the cell holding member 5. A hole 81 is formed in the partition member 8 so as to have the same shape and overlap with the hole 52 of the cell holding member 5 when viewed in the stacking direction. Also, as shown in FIG. 8, on both sides of the partition wall member 8 in a state of being overlapped with the grooves 55 and 56 of the cell holding member 5 when viewed in the thickness direction,
Grooves 82 and 83 are formed. When forming the cell unit U, the cell holding members 5 adjacent to each other in the grooves 55 and 56 of the cell holding member 5 and the groove 83 of the partition wall member 8 in the stacking direction.
A space and a space between the cell holding member 5 and the partition member 8 which are adjacent to each other in the stacking direction are filled with a sealing material as indicated by a broken line 6 in FIG.

【0027】セルCの開口端縁をセル保持部材5の切り
込み部51に入れる際には、セル保持部材5をセルCの
開口端縁に対して押し付けることにより、セルCの両側
の閉塞端面の傾斜部Cs夫々に、当て付け面53を夫々
密着させる。
When the opening edge of the cell C is inserted into the notch 51 of the cell holding member 5, the cell holding member 5 is pressed against the opening edge of the cell C so that the closed end faces on both sides of the cell C are pressed. The contact surfaces 53 are brought into close contact with the inclined portions Cs.

【0028】柔軟性導電材7は、耐熱性、耐還元性に優
れたNiのフェルト状材、その他適当なものから成り、
気体の通流を許容する状態に形成してある。又、セル保
持部材5及び隔壁部材8は、耐熱性及び電気絶縁性を備
えたセラミック材から成る。又、シール材は、ガラス材
あるいはセラミック材を主成分にして成り、耐熱性及び
電気絶縁性を備え、1000°C程度に加熱することに
より、接着作用するととも気密性を備えるように構成し
てある。
The flexible conductive material 7 is made of Ni felt-like material excellent in heat resistance and reduction resistance, or other suitable material.
It is formed to allow gas flow. The cell holding member 5 and the partition member 8 are made of a ceramic material having heat resistance and electric insulation. The sealing material is composed mainly of a glass material or a ceramic material, has heat resistance and electrical insulation, and is heated to about 1000 ° C. so that it has an adhesive function and airtightness. is there.

【0029】上述のようにして形成したセルユニットU
を、窒素ガス雰囲気にて、1000°C程度に加熱する
ことにより、シール材の接着作用により一体化する。
Cell unit U formed as described above
Is heated to about 1000 ° C. in a nitrogen gas atmosphere to be integrated by the adhesive action of the sealing material.

【0030】つまり、切り込み部51を形成することに
より残されたセル保持部材の厚みが薄い薄肉部分54に
より、前記積層方向に隣接するセルC間の間隔を保持
し、その薄肉部分54により隣接セルC間の両側面を仕
切ることにより、隣接セルC間にセル間流路yを形成
し、柔軟性導電材7により、前記積層方向に隣接するセ
ルCを導電状態に接続している。又、セルCにおけるセ
ル内流路xが開いた開口端部の周部に、そのセルCを入
れているセル保持部材5の薄肉部分54及び一対の当て
付け面53、並びに、隣接するセル保持部材5の裏面を
シール材を介在させた状態で密着させることにより、セ
ル内流路xとセル間流路yとを気密状態に仕切ってあ
る。
That is, the thin portion 54 having a small thickness of the cell holding member left by forming the cut portion 51 maintains the space between the cells C adjacent to each other in the stacking direction, and the thin portion 54 adjoins the adjacent cells. By partitioning both side surfaces between C, an inter-cell flow path y is formed between adjacent cells C, and the flexible conductive material 7 connects the cells C adjacent in the stacking direction in a conductive state. In addition, the thin portion 54 of the cell holding member 5 in which the cell C is inserted, the pair of abutting surfaces 53, and the adjacent cell holding portions are provided around the periphery of the opening end of the cell C in which the in-cell flow path x is opened. By closely contacting the back surface of the member 5 with the seal material interposed, the in-cell flow path x and the inter-cell flow path y are partitioned in an airtight state.

【0031】セル間流路yは、セルCの両方の開口端面
側において閉じてあり、セルCの両方の閉塞端面側にお
いて開けてある。又、セル間流路yは、燃料極3に臨む
ものであり、水素ガスを含有する燃料ガスを通流させる
燃料ガス流路fとして機能する。セル保持部材5夫々の
孔52及び隔壁部材8の孔81がセルCの積層方向に一
連に連なった通路が二つ形成され、一方の通路をセル内
流路x夫々に連通する供給用セル内流路用ガス通路X1
として使用し、他方の通路をセル内流路x夫々に連通す
る排出用セル内流路用ガス通路X2として使用する。
The inter-cell flow path y is closed on both open end faces of the cell C, and is open on both closed end faces of the cell C. Further, the inter-cell flow path y faces the fuel electrode 3 and functions as a fuel gas flow path f for allowing the fuel gas containing hydrogen gas to flow therethrough. In the supply cell in which two holes 52 each of the cell holding member 5 and the hole 81 of the partition member 8 are connected in series in the stacking direction of the cells C, and one of the passages communicates with each in-cell flow path x Flow path gas passage X1
And the other passage is used as a gas passage X2 for the in-cell flow passage for discharge, which communicates with each in-cell flow passage x.

【0032】次に、上述のようにして形成したセルユニ
ットUのガス漏洩検査を行う手順について説明する。図
3に示すように、隔壁板9を、一対の隔壁部材8に対し
て、隔壁部材8夫々の孔81を閉塞する状態で架け渡し
て設ける。尚、一対の隔壁部材8の間に、セル間流路y
と同様に、セルCの両方の開口端面側において閉じ、セ
ルCの両方の閉塞端面側において開いた流路が形成され
るが、この流路を、付加セル間流路yaと称する。そし
て、セルユニットUを基台10に載置した状態で、酸素
含有ガスを、供給用セル内流路用ガス通路X1から各セ
ル内流路xに供給して、ガス漏洩検査を行う。セルCと
セル保持部材5及び隔壁部材8夫々との間、セル保持部
材5同士の間、及び、セル保持部材5と隔壁部材8との
間の夫々のシール部分を石鹸水等を用いて観察すること
により、容易に漏洩箇所を検査することができる。尚、
ガス漏洩検査が終了すると、セルユニットUから、隔壁
板9及び基台10を取り外す。
Next, a procedure for inspecting the cell unit U formed as described above for gas leakage will be described. As shown in FIG. 3, the partition plate 9 is provided so as to bridge the pair of partition members 8 in a state in which the holes 81 of the partition members 8 are closed. In addition, between the pair of partition members 8, the inter-cell flow path y
Similarly to, a flow path that is closed on both open end surfaces of the cell C and open on both closed end surfaces of the cell C is formed. This flow path is referred to as an additional inter-cell flow path ya. Then, with the cell unit U placed on the base 10, an oxygen-containing gas is supplied from the gas passage X1 for the supply cell flow passage to each cell flow passage x to perform a gas leak inspection. Observing the sealing portions between the cell C and the cell holding member 5 and the partition wall member 8, between the cell holding members 5 and between the cell holding member 5 and the partition wall member 8 using soapy water or the like. By doing so, the leaked portion can be easily inspected. still,
When the gas leakage inspection is completed, the partition plate 9 and the base 10 are removed from the cell unit U.

【0033】続いて、図4に示すように、セルユニット
Uの複数を、それらの間に柔軟性導電材7を充填した状
態で並置し、その並置方向の両端部夫々に、一対の集電
板保持部材12を配置して、セル集積体NCを形成す
る。集電板保持部材12は、前記並置方向視における外
形形状を、隔壁部材8と同様に形成してあり、一方の一
対の集電板保持部材12には、図6に示すように、厚さ
方向に貫通する孔12aを形成してある。セルユニット
Uの複数を並置するときには、セル保持部材5の溝56
内、隔壁部材8の溝82内、セル保持部材5と隔壁部材
8との間、集電板保持部材12とセル保持部材5との
間、及び、集電板保持部材12と隔壁部材8との間に、
シール材を充填する。そして、上述のようにして形成し
たセル集積体NCを、窒素ガス雰囲気にて、1000°
C程度に加熱することにより、シール材の接着作用によ
り一体化する。
Then, as shown in FIG. 4, a plurality of cell units U are juxtaposed with the flexible conductive material 7 filled between them, and a pair of current collectors are provided at both ends in the juxtaposition direction. The plate holding member 12 is arranged to form the cell assembly NC. The current collecting plate holding member 12 has an outer shape as viewed in the juxtaposed direction similar to that of the partition member 8, and one of the pair of current collecting plate holding members 12 has a thickness as shown in FIG. A hole 12a penetrating in the direction is formed. When a plurality of cell units U are juxtaposed, the groove 56 of the cell holding member 5
Inside, in the groove 82 of the partition member 8, between the cell holding member 5 and the partition member 8, between the current collector plate holding member 12 and the cell holding member 5, and between the current collector plate holding member 12 and the partition member 8. Between,
Fill with sealing material. Then, the cell assembly NC formed as described above was subjected to 1000 ° in a nitrogen gas atmosphere.
When heated to about C, they are integrated by the adhesive action of the sealing material.

【0034】前記並置方向に隣接するセルユニットU
を、一方のセルユニットUの一対のセル保持部材5の間
に充填した柔軟性導電材7と、他方のセルユニットUの
一対の隔壁部材8の間に充填した柔軟性導電材7とによ
り、導電状態に接続している。そして、一対の集電板保
持部材12の間に、集電板13を柔軟性導電材7に接触
させた状態で配置して、両側の集電板13により、出力
電力を取り出すように構成してある。
Cell units U adjacent to each other in the juxtaposed direction
By the flexible conductive material 7 filled between the pair of cell holding members 5 of one cell unit U and the flexible conductive material 7 filled between the pair of partition wall members 8 of the other cell unit U, Connected to conductive state. The current collector plate 13 is arranged between the pair of current collector plate holding members 12 in contact with the flexible conductive material 7, and the output power is taken out by the current collector plates 13 on both sides. There is.

【0035】次に、図4ないし図7に基づいて、燃料電
池の全体構成について説明する。上述のように構成した
セル集積体NCを基台14上に載置し、更に、セル集積
体NCを内装する状態で、角筒状体15を基台14上に
載置してある。尚、基台14により、角筒状体15の下
部開口、並びに、供給用セル内流路用ガス通路X1及び
排出用セル内流路用ガス通路X2夫々の下部開口を閉塞
している。又、蓋体16により、角筒状体15の上部開
口を閉塞する。つまり、基台14、角筒状体15及び蓋
体16により箱状体Bを形成してあり、セル集積体NC
を箱状体Bの内部に設けてある。セル集積体NCにおけ
るセルのセル間流路yの開口部(即ち、セルCの閉塞端
面)が臨む一対の側面(以下、開放側面と略記する)
は、箱状体Bの内部に臨む状態であり、換言すれば、セ
ル間流路yは箱状体Bの内部に対して開いた状態となっ
ている。
Next, the overall structure of the fuel cell will be described with reference to FIGS. The cell assembly NC configured as described above is placed on the base 14, and the square tubular body 15 is placed on the base 14 in a state where the cell assembly NC is installed. The base 14 closes the lower opening of the rectangular tubular body 15 and the lower openings of the gas passage X1 for the supply cell internal flow passage and the discharge cell internal flow passage gas passage X2. Further, the lid body 16 closes the upper opening of the rectangular tubular body 15. That is, the box-shaped body B is formed by the base 14, the rectangular tube-shaped body 15, and the lid body 16.
Is provided inside the box-shaped body B. A pair of side surfaces (hereinafter, abbreviated as open side surfaces) facing the opening (that is, the closed end surface of the cell C) of the inter-cell flow path y of the cells in the cell assembly NC.
Is a state of facing the inside of the box-shaped body B, in other words, the inter-cell flow path y is open to the inside of the box-shaped body B.

【0036】更に、一方の隔壁板17を、一方の積層状
態のセル保持部材5、隔壁部材8及び集電板保持部材1
2夫々の端面にて形成される壁面Sと、箱状体Bの内
面、即ち、基台14の内面と角筒状体15の内面と蓋体
16の内面とに接続する状態で設け、又、他方の隔壁体
17を、他方の積層状態のセル保持部材5、隔壁部材8
及び集電板保持部材12夫々の端面にて形成される壁面
Sと、箱状体Bの内面、即ち、基台14の内面と角筒状
体15の内面と蓋体16の内面とに接続する状態で設け
てあり、これによって、箱状体Bの内部を二つに区画し
てある。セル集積体NCの一対の開放側面のうちの一方
の開放側面は、二つの区画部分のうちの一方に臨み、他
方の開放側面は、二つの区画部分のうちの他方に臨む状
態となるので、二つの区画部分のうちの一方を供給用セ
ル間流路用ガス通路Y1として、及び、他方を排出用セ
ル間流路用ガス通路Y2として夫々使用する。
Further, one partition plate 17 is used as one of the cell holding member 5, the partition member 8 and the current collecting plate holding member 1 in the laminated state.
The wall surface S formed by the two end surfaces and the inner surface of the box-shaped body B, that is, the inner surface of the base 14, the inner surface of the rectangular tubular body 15, and the inner surface of the lid 16 are connected to each other. , The other partition member 17, the other stacked cell holding member 5, the partition member 8
And the wall surface S formed by the end faces of the current collector holding members 12 and the inner surface of the box-shaped body B, that is, the inner surface of the base 14, the inner surface of the rectangular tubular body 15, and the inner surface of the lid 16. The box-shaped body B is divided into two parts. Since one open side surface of the pair of open side surfaces of the cell assembly NC faces one of the two partition portions and the other open side surface faces the other of the two partition portions, One of the two partition portions is used as the supply inter-cell flow passage gas passage Y1, and the other is used as the discharge inter-cell flow passage gas passage Y2.

【0037】供給用セル内流路用ガス通路X1にはセル
内流路用ガス供給管18を、排出用セル内流路用ガス通
路X2にはセル内流路用ガス排出管19を夫々連通接続
してある。又、供給用セル間流路用ガス通路Y1にはセ
ル間流路用ガス供給管20を、排出用セル間流路用ガス
通路Y2にはセル間流路用ガス排出管21を夫々連通接
続してある。
An in-cell flow passage gas supply pipe 18 is connected to the supply cell flow passage gas passage X1, and an in-cell flow passage gas discharge pipe 19 is connected to the discharge cell flow passage gas passage X2. It is connected. An inter-cell flow path gas supply pipe 20 is connected to the supply inter-cell flow path gas passage Y1, and an inter-cell flow path gas exhaust pipe 21 is connected to the discharge inter-cell flow path gas passage Y2. I am doing it.

【0038】〔第2実施形態〕以下、図9ないし図12
に基づいて、本発明の第2の実施の形態を説明する。セ
ルCは、上述の第1実施形態と同様に構成してあるので
説明を省略する。以下、燃料電池の製造方法について説
明する。セル保持部材5は、切り込み部51を1個設け
た端用保持部材5Aと、切り込み部51をセル保持部材
5の厚さ方向視において対向する一対の端縁夫々に1個
ずつ設け、且つ、それら一対の切り込み部51を連通さ
せる連通接続部57を設けた間用保持部材5Bにて構成
してある。間用保持部材5Bについて更に説明を加える
と、間用保持部材5Bには、その厚さ方向視において、
対向する一対の端縁間にわたる溝を形成し、その溝によ
って、一対の切り込み部51及びそれらを連通させる連
通接続部57を形成してある。
[Second Embodiment] Hereinafter, FIGS. 9 to 12 will be described.
A second embodiment of the present invention will be described based on FIG. The cell C has the same configuration as that of the first embodiment described above, and thus the description thereof will be omitted. Hereinafter, a method of manufacturing a fuel cell will be described. The cell holding member 5 is provided with one end holding member 5A provided with one notch 51 and one notch 51 provided at each of a pair of end edges facing each other in the thickness direction view of the cell holding member 5, and It is configured by the inter-holding member 5B provided with a communication connecting portion 57 for communicating the pair of cut portions 51. To further describe the inter-holding member 5B, the inter-holding member 5B has a
A groove extending between a pair of opposing edges is formed, and the groove forms a pair of notches 51 and a communication connecting portion 57 for communicating them.

【0039】端用保持部材5Aの切り込み部51、及
び、間用保持部材5Bの一対の切り込み部51夫々に
は、第1実施形態と同様に、一対の当て付け面53を備
えさせてある。端用保持部材5Aには、第1実施形態と
同様に、切り込み部51に臨み、且つ、端用保持部材5
Aの厚さ方向に貫通する孔52を形成してある。又、端
用保持部材5Aには、第1実施形態と同様の溝55及び
溝56を形成してある。間用保持部材5Bには、第1実
施形態と同様の溝55及び溝56を、一対の切り込み部
51夫々に対して形成してある。つまり、間用保持部材
5Bには、溝55及び溝56を夫々一対ずつ形成してあ
る。
Similar to the first embodiment, the notch 51 of the end holding member 5A and the pair of notches 51 of the inter-holding member 5B are provided with a pair of abutting surfaces 53, respectively. As in the first embodiment, the end holding member 5A faces the notch 51 and the end holding member 5A.
A hole 52 penetrating in the thickness direction A is formed. Further, the groove 55 and the groove 56 similar to those of the first embodiment are formed in the end holding member 5A. In the inter-holding member 5B, the groove 55 and the groove 56 similar to those of the first embodiment are formed for each of the pair of cut portions 51. That is, a pair of the groove 55 and the groove 56 is formed in the inter-holding member 5B.

【0040】隔壁部材8は、端用保持部材5Aに重ねる
端用隔壁部材8Aと、間用保持部材5Bに重ねる間用隔
壁部材8Bにて構成してある。
The partition wall member 8 is composed of an end partition wall member 8A which is superposed on the end holding member 5A and an inter-part partition wall member 8B which is superposed on the inter-part holding member 5B.

【0041】2枚のセルCを、夫々の開口端面を互いに
向かい合わせた状態でセルCの面方向に列状に並置し、
列状に並置した2枚のセルCを、セルC夫々における列
方向外側の開口端縁を端用保持部材5Aの切り込み部5
1に入れ、且つ、セルC夫々における列方向内側の開口
端縁夫々を間用保持部材5Bの一対の切り込み部51夫
々に入れた状態で、端用保持部材5A及び間用保持部材
5Bにより保持させることにより、セル列nCを形成す
る。
Two cells C are arranged side by side in a row in the surface direction of the cells C with their respective open end faces facing each other.
The two cells C arranged side by side in a row are provided with notches 5 of the end holding member 5A at the opening edges of the cells C on the outer side in the row direction.
In the state of being put in No. 1 and each of the opening edges on the inner side in the column direction in each of the cells C is put in each of the pair of notches 51 of the inter-holding member 5B, the end-holding member 5A and the inter-holding member 5B By doing so, the cell column nC is formed.

【0042】そして、5列のセル列nCを、積層方向に
隣接するセルC間に柔軟性導電材7を充填した状態で、
積層状態に並置し、且つ、その積層方向における燃料電
極3が露出する端面部に、端用隔壁部材8Aを端用保持
部材5Aに、及び、間用隔壁部材8Bを間用保持部材5
Bに夫々重ねた状態で設けて、セルユニットUを形成す
る。
Then, the five cell rows nC are filled with the flexible conductive material 7 between the adjacent cells C in the stacking direction,
The end partition members 8A are arranged side by side in a stacked state and the fuel electrode 3 is exposed in the stacking direction, the end partition member 8A is mounted on the end holding member 5A, and the inter-partition partition member 8B is mounted on the end holding member 5.
The cell units U are formed in the state of being stacked on B respectively.

【0043】第1実施形態と同様に、端用隔壁部材8A
は、前記積層方向視における外形形状が端用保持部材5
Aの外形形状と同様の板状に形成し、間用隔壁部材8B
は、前記積層方向視における外形形状が間用保持部材5
Bの外形形状と同様の板状に形成してある。更に、端用
隔壁部材8Aには、第1実施形態と同様に、前記積層方
向視において、端用保持部材5Aの孔52と同一形状で
且つ重なる状態で、孔81を形成してある。端用隔壁部
材8Aには、第1実施形態と同様の溝82,83を形成
し、又、間用隔壁部材8Bには、第1実施形態と同様の
溝82,83を夫々一対ずつ形成してある。セルユニッ
トUを形成する際には、図9中において破線6にて示す
如く、第1実施形態と同様にシール材を充填する。そし
て、第1実施形態と同様に、窒素ガス雰囲気にて、10
00°C程度に加熱することにより、シール材の接着作
用により一体化する。
Similar to the first embodiment, the end partition member 8A.
Is the end holding member 5 having an outer shape as viewed in the stacking direction.
It is formed in a plate shape similar to the outer shape of A, and an inter-partition partition member 8B
The holding member 5 has an outer shape in the stacking direction view.
It is formed in a plate shape similar to the outer shape of B. Further, similarly to the first embodiment, the end partition wall member 8A has a hole 81 formed in the same shape as and overlapping with the hole 52 of the end holding member 5A when viewed in the stacking direction. Grooves 82 and 83 similar to those in the first embodiment are formed in the end partition member 8A, and a pair of grooves 82 and 83 similar to those in the first embodiment are formed in the inter-partition partition member 8B. There is. When forming the cell unit U, as shown by a broken line 6 in FIG. 9, the sealing material is filled as in the first embodiment. Then, as in the first embodiment, in a nitrogen gas atmosphere, 10
When heated to about 00 ° C, they are integrated by the adhesive action of the sealing material.

【0044】つまり、端用保持部材5A及び間用保持部
材5B夫々の薄肉部分54により、前記積層方向に隣接
するセルC間の間隔を保持し、その薄肉部分54により
隣接セルC間の両側面を仕切ることにより、隣接セルC
間にセル間流路yを形成し、柔軟性導電材7により、前
記積層方向に隣接するセルCを導電状態に接続してい
る。又、セルユニットUにおいては、セル列nCにおけ
る2個のセルC夫々のセル内流路xを連通接続部57に
よって連通接続し、第1実施形態と同様に、セル内流路
xとセル間流路yとを気密状態に仕切ってある。セル間
流路yは、セルCの両方の開口端面側において閉じてあ
り、セルCの両方の閉塞端面側において開けてある。
That is, the thin portions 54 of the end holding member 5A and the inter-holding member 5B hold the space between the cells C adjacent to each other in the stacking direction, and the thin portions 54 hold both side surfaces between the adjacent cells C. By partitioning the adjacent cell C
An inter-cell flow path y is formed therebetween, and a flexible conductive material 7 connects the cells C adjacent in the stacking direction in a conductive state. Further, in the cell unit U, the in-cell flow passage x of each of the two cells C in the cell row nC is connected and connected by the communication connecting portion 57. The flow path y is partitioned into an airtight state. The inter-cell flow path y is closed on both open end face sides of the cell C, and is open on both closed end face sides of the cell C.

【0045】端用保持部材5A夫々の孔52及び端用隔
壁部材8A夫々の孔81が前記積層方向に一連に連なっ
た通路が二つ形成され、一方の通路を供給用セル内流路
用ガス通路X1として使用し、他方の通路を排出用セル
内流路用ガス通路X2として使用する。上述のように形
成したセルユニットUは、第1実施形態と同様に、ガス
漏洩検査を行う。
Two passages in which the holes 52 of each of the end holding members 5A and the holes 81 of each of the end partition members 8A are connected in series in the stacking direction are formed, and one of the passages is formed into a gas for the supply cell flow passage gas. It is used as the passage X1, and the other passage is used as the gas passage X2 for the discharge cell internal passage. The cell unit U formed as described above performs a gas leakage inspection as in the first embodiment.

【0046】続いて、セルユニットUの複数を、それら
の間に柔軟性導電材7を充填した状態で並置し、その並
置方向の両端部夫々において、端用集電板保持部材12
Aを端用保持部材5Aや端用隔壁部材8Aに重ねた状態
で設け、間用集電板保持部材12Bを間用保持部材5B
や間用隔壁部材8Bに重ねた状態で設けて、セル集積体
NCを形成する。端用集電板保持部材12Aは、前記積
層方向における外形形状を端用保持部材5Aと同様に形
成し、間用集電板保持部材12Bは、前記積層方向にお
ける外形形状を間用保持部材5Bと同様に形成してあ
り、更に、端用保持部材5Aに重ねた状態で設けた端用
集電板保持部材12Aには、厚さ方向に貫通する孔12
aを形成してある。尚、セルユニットUの複数を並置す
るときには、第1実施形態と同様にシール材を充填し、
このように形成したセル集積体NCを、第1実施形態と
同様に、窒素ガス雰囲気にて、1000°C程度に加熱
することにより、シール材の接着作用により一体化す
る。
Subsequently, a plurality of the cell units U are juxtaposed with the flexible conductive material 7 filled between them, and the end collector plate holding member 12 is provided at each end of the juxtaposed direction.
A is provided in a state of being overlapped with the end holding member 5A and the end partition wall member 8A, and the intercurrent collecting plate holding member 12B is provided between the end holding member 5B.
The cell integrated body NC is formed by providing the cell integrated body NC in a state where the cell integrated body is overlapped with the partition wall member 8B. The end current collector holding member 12A has the same outer shape in the stacking direction as the end holding member 5A, and the inter-electrode current collector holding member 12B has the outer shape in the stacking direction. A hole 12 penetrating in the thickness direction is formed in the end current collector holding member 12A that is formed in the same manner as above
a is formed. When a plurality of cell units U are arranged side by side, the sealing material is filled as in the first embodiment,
As in the first embodiment, the cell assembly NC thus formed is heated to about 1000 ° C. in a nitrogen gas atmosphere to be integrated by the adhesive action of the sealing material.

【0047】端用集電板保持部材12Aと間用集電板保
持部材12Bとの間夫々には、集電板13を柔軟性導電
材7に接触させた状態で配置してある。
A collector plate 13 is arranged in contact with the flexible conductive material 7 between the end collector plate holding member 12A and the end collector plate holding member 12B.

【0048】そして、第1実施形態と同様に、上述のよ
うに構成したセル集積体NCを、基台14、角筒状体1
5及び蓋体16から成る箱状体Bの内部に設けるととも
に、一対の隔壁板17によって、箱状体Bの内部を二つ
に区画して、供給用セル間流路用ガス通路Y1及び排出
用セル間流路用ガス通路Y2を形成してある。又、供給
用セル内流路用ガス通路X1にはセル内流路用ガス供給
管18を、排出用セル内流路用ガス通路X2にはセル内
流路用ガス排出管19を夫々連通接続してある。又、供
給用セル間流路用ガス通路Y1にはセル間流路用ガス供
給管20を、排出用セル間流路用ガス通路Y2にはセル
間流路用ガス排出管21を夫々連通接続してある。
Then, as in the first embodiment, the cell assembly NC having the above-described structure is provided with the base 14 and the rectangular tubular body 1.
5 and the lid 16 are provided inside the box-shaped body B, and the inside of the box-shaped body B is divided into two by a pair of partition plates 17, and the gas passage Y1 for the inter-supply flow passage and the discharge are provided. An inter-cell channel gas passage Y2 is formed. Further, an in-cell flow passage gas supply pipe 18 is connected to the supply cell flow passage gas passage X1, and an in-cell flow passage gas discharge pipe 19 is connected to the discharge cell flow passage gas passage X2. I am doing it. An inter-cell flow path gas supply pipe 20 is connected to the supply inter-cell flow path gas passage Y1, and an inter-cell flow path gas exhaust pipe 21 is connected to the discharge inter-cell flow path gas passage Y2. I am doing it.

【0049】従って、セル内流路用ガス供給管18から
供給用セル内流路用ガス通路X1に供給された酸素含有
ガスは、各セル列nCのセルC夫々のセル内流路xを連
通接続部57を経由して通流して、排出用セル内流路用
ガス通路X2に流出し、セル内流路用ガス排出管19を
通じて排出される。又、セル間流路用ガス供給管20か
ら供給用セル間流路用ガス通路Y1に供給された燃料ガ
スはセル間流路y夫々を通流して、排出用セル間流路用
ガス通路Y2に流出し、セル間流路用ガス排出管21を
通じて排出される。
Therefore, the oxygen-containing gas supplied from the gas supply pipe 18 for the in-cell channel to the gas passage X1 for the in-cell channel for communication communicates with the in-cell channel x of each cell C of each cell row nC. The gas flows through the connecting portion 57, flows out into the gas passage X2 for the in-cell flow passage, and is discharged through the gas discharge pipe 19 for the in-cell flow passage. Further, the fuel gas supplied from the inter-cell flow path gas supply pipe 20 to the inter-cell flow path gas passage Y1 for supply flows through the inter-cell flow paths y, respectively, and the inter-cell flow path gas passage Y2 for discharge is provided. And is discharged through the gas discharge pipe 21 for the inter-cell flow path.

【0050】〔第3実施形態〕以下、図13ないし図1
6に基づいて、本発明の第3の実施の形態を説明する。
下記に説明する点で異なる以外は、上述の第2実施形態
と同様に、セルユニットUを形成するとともに、セル集
積体NCを形成する。即ち、間用保持部材5Bに、連通
接続部57に連通し、且つ、切り込み部51に臨む状態
で、前記積層方向に貫通する孔52を形成している点、
間用隔壁部材8Bに、前記積層方向視において間用保持
部材5Bの孔52に重なる状態で、前記積層方向に貫通
する孔81を形成している点、及び、間用保持部材5B
に重ねた状態で設けた間用集電板保持部材12Bにも、
厚さ方向に貫通する孔12aを形成してある点におい
て、上述の第2実施形態と異なる。
[Third Embodiment] Hereinafter, FIG. 13 to FIG.
A third embodiment of the present invention will be described based on 6.
The cell unit U is formed and the cell integrated body NC is formed in the same manner as in the second embodiment described above except that it is different in the points described below. That is, the inter-holding member 5B is formed with a hole 52 that communicates with the communication connecting portion 57 and that faces the cut portion 51 and that penetrates in the stacking direction.
The partition wall member 8B for space has a hole 81 penetrating in the stacking direction in the state of being overlapped with the hole 52 of the space holding member 5B when viewed in the stacking direction, and the space holding member 5B.
The current collecting plate holding member 12B provided in the state of being overlapped with
It differs from the above-described second embodiment in that a hole 12a penetrating in the thickness direction is formed.

【0051】そして、間用保持部材5B夫々の孔52、
及び、間用隔壁部材8B夫々の孔81により、連通接続
部57夫々を通じてセル内流路x夫々に連通する供給用
内部ガス通路I1を形成してある。又、端用保持部材5
A夫々の孔52及び端用隔壁部材8A夫々の孔81にて
形成される二つの通路を排出用セル内流路用ガス通路X
2として使用する。
Then, the holes 52 of each of the inter-holding members 5B,
Further, the holes 81 of the inter-partition partition members 8B form the supply internal gas passages I1 communicating with the in-cell flow passages x through the communication connecting portions 57. Also, the end holding member 5
The two passages formed by the holes 52 of each A and the holes 81 of each partition member 8A for the end are connected to the gas passage X for the passage in the discharge cell.
Used as 2.

【0052】下記に説明する点で異なる以外は、上述の
第2実施形態と同様の全体構成にて、燃料電池を構成し
てある。即ち、供給用内部ガス通路I1にはセル内流路
用ガス供給管18を、二つの排出用セル内流路用ガス通
路X2夫々にはセル内流路用ガス排出管19を夫々連通
接続してある。従って、セル内流路用ガス供給管18か
ら供給用内部ガス通路I1に供給された酸素含有ガス
は、両側の排出用セル内流路用ガス通路X2夫々に向か
って、各セル列nCのセルC夫々のセル内流路xを通流
して、排出用セル内流路用ガス通路X2夫々に流出し、
セル内流路用ガス排出管19を通じて排出される。
A fuel cell is constructed with the same overall construction as that of the second embodiment described above except that it is different in the points described below. That is, the gas supply pipe 18 for the in-cell flow passage is connected to the supply internal gas passage I1, and the gas discharge pipe 19 for the in-cell flow passage is connected to each of the two discharge cell flow passage gas passages X2. There is. Therefore, the oxygen-containing gas supplied from the in-cell flow passage gas supply pipe 18 to the supply internal gas passage I1 is directed toward the exhaust cell flow passage gas passages X2 on both sides of the cells of each cell row nC. C through each in-cell flow path x and outflow into each discharge cell flow path gas passage X2,
The gas is discharged through the gas discharge pipe 19 for the in-cell flow path.

【0053】〔第4実施形態〕以下、図17ないし図2
0に基づいて、本発明の第4の実施の形態を説明する。
セルCは、上述の第1実施形態と同様に構成してあるの
で説明を省略する。以下、燃料電池の製造方法について
説明する。セル保持部材5は、上述の第2実施形態と同
様の端用保持部材5A及び間用保持部材5Bにて構成し
てある。隔壁部材8も、第2実施形態と同様の端用隔壁
部材8A及び間用隔壁部材8Bにて構成してある。
[Fourth Embodiment] Hereinafter, FIG. 17 to FIG.
A fourth embodiment of the present invention will be described based on 0.
The cell C has the same configuration as that of the first embodiment described above, and thus the description thereof will be omitted. Hereinafter, a method of manufacturing a fuel cell will be described. The cell holding member 5 is composed of an end holding member 5A and an inter-holding member 5B similar to those of the above-described second embodiment. The partition member 8 is also composed of the end partition member 8A and the inter-part partition member 8B similar to those in the second embodiment.

【0054】3枚のセルCを、夫々の開口端面を互いに
向かい合わせた状態でセルCの面方向に列状に並置し、
列状に並置した3枚のセルCを、列方向両端部夫々のセ
ルCにおける外側の開口端縁を端用保持部材5Aの切り
込み部51に入れ、且つ、列方向に隣接するセルCにお
ける互いに対向する開口端縁夫々を間用保持部材5Bの
一対の切り込み部51夫々に入れた状態で、端用保持部
材5A及び間用保持部材5Bにより保持させることによ
り、セル列nCを形成する。
The three cells C are juxtaposed in a row in the surface direction of the cells C with their respective open end faces facing each other.
Three cells C arranged side by side in a row are inserted into the notch 51 of the end holding member 5A at the outer opening edges of the cells C at both ends in the row direction, and the cells C adjacent to each other in the row direction are adjacent to each other. The cell rows nC are formed by holding the facing opening edges in the pair of notches 51 of the inter-holding member 5B by the end holding member 5A and the inter-holding member 5B.

【0055】そして、5列のセル列nCを、積層方向に
隣接するセルC間に柔軟性導電材7を充填した状態で、
積層状態に並置し、且つ、その積層方向における燃料電
極3が露出する端面部に、端用隔壁部材8Aを端用保持
部材5Aに、及び、間用隔壁部材8Bを間用保持部材5
Bに夫々重ねた状態で設けて、セルユニットUを形成す
る。セルユニットUを形成する際には、図示はしない
が、第1実施形態と同様にシール材を充填する。そし
て、第1実施形態と同様に、窒素ガス雰囲気にて、10
00°C程度に加熱することにより、シール材の接着作
用により一体化する。
Then, the five cell rows nC are filled with the flexible conductive material 7 between the cells C adjacent in the stacking direction,
The end partition members 8A are arranged side by side in a stacked state and the fuel electrode 3 is exposed in the stacking direction, the end partition member 8A is mounted on the end holding member 5A, and the inter-partition partition member 8B is mounted on the end holding member 5.
The cell units U are formed in the state of being stacked on B respectively. When forming the cell unit U, although not shown, the sealing material is filled in the same manner as in the first embodiment. Then, as in the first embodiment, in a nitrogen gas atmosphere, 10
When heated to about 00 ° C, they are integrated by the adhesive action of the sealing material.

【0056】続いて、セルユニットUの複数を、それら
の間に柔軟性導電材7を充填した状態で前記積層方向に
並置し、且つ、前記積層方向の各段において、セルユニ
ットUの3個を、セル間流路yが開いた側面を互いに対
向させた状態で並置することにより、3個のセル集積体
NCを並置した状態で形成する。
Subsequently, a plurality of cell units U are juxtaposed in the stacking direction with the flexible conductive material 7 filled between them, and three cell units U are arranged at each stage in the stacking direction. Are arranged side by side with the open side surfaces of the inter-cell flow path y facing each other, thereby forming the three cell aggregates NC side by side.

【0057】尚、セルユニットUの複数を前記積層方向
に並置するときには、第1実施形態と同様にシール材を
充填する。又、前記積層方向の各段において、セルユニ
ットUの3個をセル間流路yが開いた側面を互いに対向
させた状態で並置するときには、互いに対向する、積層
状態の端用保持部材5A及び端用隔壁部材8A夫々の端
面にて形成される壁面T同士の間にシール材を充填す
る。
When a plurality of cell units U are arranged side by side in the stacking direction, the sealing material is filled as in the first embodiment. In addition, when three cell units U are juxtaposed with each other in the stacking direction with their side surfaces where the inter-cell flow path y is open facing each other, the stacking end holding members 5A and The sealing material is filled between the wall surfaces T formed by the end faces of the end partition members 8A.

【0058】各セル集積体NCにおいては、第2実施例
と同様に、端用集電板保持部材12A及び間用集電板保
持部材12Bを設けてある。更に、端用保持部材5Aに
重ねた状態で設けた端用集電板保持部材12A、及び、
間用保持部材5Bに重ねた状態で設けた端用集電板保持
部材12B夫々に、厚さ方向に貫通する孔12aを形成
してある。各セル集積体NCにおいて、端用集電板保持
部材12Aと間用集電板保持部材12Bとの間夫々、及
び、間用集電板保持部材12Bと間用集電板保持部材1
2Bとの間には、集電板13を柔軟性導電材7に接触さ
せた状態で配置してある。
In each cell assembly NC, similarly to the second embodiment, the end collector plate holding member 12A and the inter-plate collector plate holding member 12B are provided. Further, an end current collector holding member 12A provided in a state of being superposed on the end holding member 5A, and
A hole 12a penetrating in the thickness direction is formed in each of the end current collector holding members 12B provided in a state of being stacked on the space holding member 5B. In each of the cell aggregates NC, between the end current collector holding member 12A and the intercurrent collector holding member 12B, and between the end current collector holding member 12B and the intercurrent collector holding member 1 respectively.
A collector plate 13 is disposed between the flexible conductor 7 and 2B so as to be in contact therewith.

【0059】各セル集積体NCにおいて、間用保持部材
5B夫々の孔52、及び、間用隔壁部材8B夫々の孔8
1により、連通接続部57夫々を通じてセル内流路x夫
々に連通する通路が二つ形成されるが、それらのうちの
一方を供給用内部ガス通路I1とし、他方を排出用内部
ガス通路I2として使用する。又、端用保持部材5A夫
々の孔52及び端用隔壁部材8A夫々の孔81にて形成
される二つの通路のうち、供給用内部ガス通路I1に隣
接する方を排出用セル内流路用ガス通路X2として使用
し、排出用内部ガス通路I2に隣接する方を供給用セル
内流路用ガス通路X1として使用する。
In each cell assembly NC, the hole 52 in each of the inter-holding members 5B and the hole 8 in each of the inter-partition wall members 8B.
1 forms two passages that communicate with the in-cell flow passages x through the communication connecting portions 57, one of which is the supply internal gas passage I1 and the other is the discharge internal gas passage I2. use. Further, of the two passages formed by the holes 52 of each of the end holding members 5A and the holes 81 of each of the end partition members 8A, the one adjacent to the supply internal gas passage I1 is used for the discharge cell internal flow path. The gas passage X2 is used, and the one adjacent to the discharge internal gas passage I2 is used as the supply cell internal flow passage gas passage X1.

【0060】そして、第1実施形態と同様に、上述のよ
うに構成した3個のセル集積体NCを、基台14、角筒
状体15及び蓋体16から成る箱状体Bの内部に設ける
とともに、一対の隔壁板17によって、箱状体Bの内部
を二つに区画して、供給用セル間流路用ガス通路Y1及
び排出用セル間流路用ガス通路Y2を形成してある。供
給用セル内流路用ガス通路X1及び供給用内部ガス通路
I1夫々にはセル内流路用ガス供給管18を、排出用セ
ル内流路用ガス通路X2及び排出用内部ガス通路I2夫
々にはセル内流路用ガス排出管19を夫々連通接続して
ある。又、供給用セル間流路用ガス通路Y1にはセル間
流路用ガス供給管20を、排出用セル間流路用ガス通路
Y2にはセル間流路用ガス排出管21を夫々連通接続し
てある。
Then, as in the first embodiment, the three cell integrated bodies NC configured as described above are placed inside the box-shaped body B composed of the base 14, the rectangular tubular body 15 and the lid 16. While being provided, the inside of the box-shaped body B is divided into two by a pair of partition plates 17 to form a gas passage Y1 for the inter-cell flow passage for supply and a gas passage Y2 for the inter-cell flow passage for discharge. . A gas supply pipe 18 for the in-cell flow passage is provided in each of the gas passage X1 for the in-supply cell flow passage and the supply internal gas passage I1, and each of the in-cell flow passage gas passage X2 and the discharge internal gas passage I2 is provided. Are connected in communication with the gas discharge pipes 19 for the in-cell channels. An inter-cell flow path gas supply pipe 20 is connected to the supply inter-cell flow path gas passage Y1, and an inter-cell flow path gas exhaust pipe 21 is connected to the discharge inter-cell flow path gas passage Y2. I am doing it.

【0061】従って、各セル集積体NCにおいて、供給
用内部ガス通路I1に供給された酸素含有ガスは、各セ
ル列nCのセルC夫々のセル内流路xを通流して、排出
用セル内流路用ガス通路X2及び排出用内部ガス通路I
2夫々に流出する。並びに、供給用セル内流路用ガス通
路X1に供給された酸素含有ガスは、各セル列nCのセ
ルC夫々のセル内流路xを通流して、排出用内部ガス通
路I2に流出する。又、供給用セル間流路用ガス通路Y
1に供給された燃料ガスは、セル集積体NC夫々のセル
間流路yを順次通流して、排出用セル間流路用ガス通路
Y2に流出する。
Therefore, in each cell assembly NC, the oxygen-containing gas supplied to the supply internal gas passage I1 flows through the in-cell flow path x of each cell C of each cell row nC, and the inside of the discharge cell. Flow path gas passage X2 and exhaust internal gas passage I
It leaks to each two. In addition, the oxygen-containing gas supplied to the supply cell internal flow passage gas passage X1 flows through the internal cell flow passage x of each cell C of each cell row nC and flows out to the exhaust internal gas passage I2. Also, the gas passage Y for the flow path between the supply cells
The fuel gas supplied to No. 1 sequentially flows through the inter-cell flow path y of each of the cell integrated bodies NC and flows out into the discharge inter-cell flow path gas passage Y2.

【0062】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 上述の第1実施形態では、セル保持部材5に、
その厚さ方向に貫通する孔52を形成する場合について
例示したが、図21に示すように、孔52は形成しなく
ても良い。この場合、隔壁部材8及び集電板保持部材1
2は、セルCの積層方向視における外形形状が、セル保
持部材5の外形形状と同様の板状に形成し、第1実施形
態において形成した隔壁部材8の孔81及び集電板保持
部材12の孔12aは形成しない。そして、第1実施形
態と同様に、セルユニットUを形成するとともに、第1
実施形態と同様に、図22に示すように、セル集積体N
Cを形成する。
Another Embodiment Next, another embodiment will be described. (A) In the above-described first embodiment, the cell holding member 5 is
Although the case where the hole 52 penetrating in the thickness direction is formed has been exemplified, as shown in FIG. 21, the hole 52 may not be formed. In this case, the partition member 8 and the collector holding member 1
In No. 2, the outer shape of the cell C when viewed in the stacking direction is formed in the same plate shape as the outer shape of the cell holding member 5, and the hole 81 of the partition member 8 and the current collecting plate holding member 12 formed in the first embodiment. Hole 12a is not formed. Then, similarly to the first embodiment, the cell unit U is formed and the first unit is formed.
As in the embodiment, as shown in FIG. 22, the cell integrated body N
Form C.

【0063】又、積層状態のセル保持部材5、隔壁部材
8及び集電板保持部材12夫々の端面にて形成される壁
面Sに、前記積層方向の全長にわたって延びる一対の凹
溝Mが形成されるように、セル保持部材5に一対の凹溝
5mを、隔壁部材8に一対の凹溝8mを、集電板保持部
材12に一対の凹溝12mを夫々形成してある。コの字
形状に形成した隔壁板22を、その一対の端縁部を一対
の凹溝Mに各別に嵌め込んだ状態で設けてあり、一方の
隔壁板22の内部を供給用セル内流路用ガス通路X1と
して使用し、他方の隔壁板22の内部を排出用セル内流
路用ガス通路X2として使用するように構成してある。
そして、上述のように形成したセル集積体NCを、第1
実施形態と同様に、箱状体Bの内部に設けて燃料電池を
構成する。
A pair of concave grooves M extending over the entire length in the stacking direction are formed on the wall surface S formed by the end faces of the cell holding member 5, the partition wall member 8 and the current collector plate holding member 12 in the stacked state. As described above, the cell holding member 5 is formed with a pair of concave grooves 5m, the partition member 8 is formed with a pair of concave grooves 8m, and the current collector plate holding member 12 is formed with a pair of concave grooves 12m. The partition plate 22 formed in a U-shape is provided such that the pair of edge portions are individually fitted into the pair of concave grooves M, and the inside of one partition plate 22 is provided in the supply cell flow path. It is configured such that it is used as the gas passage X1 for the gas and the inside of the other partition plate 22 is used as the gas passage X2 for the in-cell channel for the discharge.
Then, the cell aggregate NC formed as described above is
Similar to the embodiment, the fuel cell is formed by being provided inside the box-shaped body B.

【0064】(ロ) 上述の各実施形態、及び、図21
及び図22に示す別実施形態においては、隔壁部材8
と、それを重ねるセル保持部材5とを別体に構成する場
合について例示したが、一体的に構成してもよい。
(B) Each of the above embodiments and FIG.
And in another embodiment shown in FIG. 22, the partition member 8
Although the case where the cell holding member 5 and the cell holding member 5 which overlaps with each other are separately configured has been illustrated, they may be integrally configured.

【0065】(ハ) 上述の各実施形態、及び、図21
及び図22に示す別実施形態においては、一対の当て付
け面53の両方を傾斜状に形成する場合について例示し
たが、これに代えて、いずれか一方のみを傾斜状に形成
しても良い。この場合、傾斜状ではない当て付け面53
に対応するセルCの閉塞端面には、傾斜部Csは形成し
なくても良い。又、一対の当て付け面53を互いに平行
に形成してもよい。この場合は、セルCの閉塞端面に
は、傾斜部Csは形成しなくても良い。
(C) Each of the above-described embodiments and FIG.
Further, in another embodiment shown in FIG. 22, the case where both the pair of abutting surfaces 53 are formed in an inclined shape is illustrated, but instead of this, only one of them may be formed in an inclined shape. In this case, the contact surface 53 that is not inclined
The inclined portion Cs may not be formed on the closed end surface of the cell C corresponding to. Further, the pair of abutting surfaces 53 may be formed parallel to each other. In this case, the inclined portion Cs does not have to be formed on the closed end surface of the cell C.

【0066】(ニ) 上述の第1実施形態において、セ
ルユニットUを構成するセルCの枚数は、5枚に限定さ
れるものではなく適宜変更可能である。又、上述の第
2、第3及び第4の各実施形態において、セルユニット
Uを構成するセル列nCの列数は、5列に限定されるも
のではなく適宜変更可能である。
(D) In the above-described first embodiment, the number of cells C constituting the cell unit U is not limited to five, and can be changed as appropriate. In each of the second, third, and fourth embodiments described above, the number of cell columns nC forming the cell unit U is not limited to five, and can be changed as appropriate.

【0067】(ホ) 上述の第1、第2又は第3の各実
施形態におけるセルユニットUの複数を、それらの間に
柔軟性導電材7を充填した状態で前記積層方向に並置
し、且つ、前記積層方向の各段において、セルユニット
Uの複数を、セル間流路yが開いた側面を互いに対向さ
せた状態で並置することにより、複数のセル集積体NC
を並置した状態で形成してもよい。
(E) A plurality of cell units U in the above-described first, second or third embodiments are juxtaposed in the stacking direction while the flexible conductive material 7 is filled between them, and , In each stacking direction, a plurality of cell units U are juxtaposed in a state in which the side surfaces where the inter-cell flow path y is open face each other, whereby a plurality of cell aggregates NC are arranged.
May be formed side by side.

【0068】(ヘ) 端用保持部材5A及び間用保持部
材5Bを用いてセル列nCを形成する際のセルの枚数は
不問である。又、孔52を形成した間用保持部材5B、
及び、孔52を形成していない間用保持部材5Bを混在
させてセル列nCを形成してもよい。
(F) The number of cells when forming the cell row nC using the end holding member 5A and the inter-holding member 5B is not limited. In addition, the inter-holding member 5B having the holes 52 formed therein,
Alternatively, the inter-holding members 5B in which the holes 52 are not formed may be mixed to form the cell row nC.

【0069】(ト) 上述の各実施形態、及び、図21
及び図22に示す別実施形態においては、セル集積体N
Cを、セルCの積層方向を上下方向に向けた状態で、箱
状体Bの内部に設ける場合について例示したが、セルC
の積層方向を横方向に向けた状態で、箱状体Bの内部に
設けてもよい。
(G) Each of the above embodiments and FIG.
22 and another embodiment shown in FIG.
The case where C is provided inside the box-shaped body B in the state where the stacking direction of the cell C is oriented in the vertical direction has been illustrated.
It may be provided inside the box-shaped body B in a state where the stacking direction is directed to the lateral direction.

【0070】(チ) セルユニットUのガス漏洩検査を
行う際に、上記の発明の実施形態の構成に以下の構成を
追加してもよい。セルユニットUを基台10に載置した
状態で、セルユニットUにおける、セル間流路yの開口
部(即ち、セルCの閉塞端面)が臨む一対の側面部の夫
々に対して、一側面が開口した箱状体を、その開口部を
前記側面部に向けた状態で設ける。そして、一方の箱状
体の内部を、セル間流路y夫々に連通する検査用の供給
用セル間流路用ガス通路Y1として使用し、他方の箱状
体の内部を、セル間流路y夫々に連通する検査用の排出
用セル間流路用ガス通路Y2として使用する。そして、
燃料ガスを、供給用セル間流路用ガス通路Y1から各セ
ル間流路yに供給する。
(H) When performing a gas leak inspection of the cell unit U, the following configuration may be added to the configuration of the above-described embodiment of the invention. In a state where the cell unit U is mounted on the base 10, one side surface of each of the pair of side surface portions of the cell unit U facing the opening portion of the inter-cell flow path y (that is, the closed end surface of the cell C). A box-shaped body having an opening is provided with the opening facing the side surface. The inside of one box-shaped body is used as the gas passage Y1 for the inter-cell channel for supply for inspection that communicates with each of the inter-cell channels y, and the inside of the other box-shaped body is used as the inter-cell channel. y Used as the gas passage Y2 for the inter-cell channel for discharge for inspection, which communicates with each other. And
Fuel gas is supplied to each inter-cell flow path y from the supply inter-cell flow path gas passage Y1.

【0071】(リ) 上記の発明の実施の形態では、導
電性セパレータ4を三層板状体の酸素極2に臨む側に付
設してセルCを構成する場合について例示したが、これ
に代えて、導電性セパレータ4を三層板状体の燃料極3
に臨む側に付設してしても良い。この場合は、セル内流
路xは燃料極3に臨むものであるので、セル内流路xは
燃料ガス流路fとして機能させる。一方、セル間流路y
は酸素極2に臨むものであるので、セル間流路yは酸素
含有ガス流路sとして機能させる。
(I) In the embodiment of the invention described above, the case where the conductive separator 4 is attached to the side of the three-layer plate facing the oxygen electrode 2 to form the cell C has been described as an example. The conductive separator 4 to the three-layer plate-shaped fuel electrode 3
It may be attached to the side facing. In this case, since the in-cell flow path x faces the fuel electrode 3, the in-cell flow path x functions as the fuel gas flow path f. On the other hand, the flow path between cells y
Faces the oxygen electrode 2, so that the inter-cell flow path y functions as the oxygen-containing gas flow path s.

【0072】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態における燃料電池のセルの構成を
示す斜視図
FIG. 1 is a perspective view showing a configuration of a cell of a fuel cell according to a first embodiment.

【図2】第1実施形態におけるセルユニットの構成を示
す分解斜視図
FIG. 2 is an exploded perspective view showing a configuration of a cell unit according to the first embodiment.

【図3】第1実施形態におけるセルユニットのガス漏洩
検査を行う際の構成を示す斜視図
FIG. 3 is a perspective view showing a configuration for performing a gas leakage inspection of the cell unit according to the first embodiment.

【図4】第1実施形態における燃料電池の全体構成を示
す斜視図
FIG. 4 is a perspective view showing the overall configuration of the fuel cell according to the first embodiment.

【図5】第1実施形態における燃料電池の全体構成を示
す横断平面図
FIG. 5 is a cross-sectional plan view showing the overall configuration of the fuel cell according to the first embodiment.

【図6】図5におけるイ−イ矢視図FIG. 6 is a view on arrow EE in FIG.

【図7】図5におけるロ−ロ矢視図FIG. 7 is a view on arrow in FIG.

【図8】第1実施形態における燃料電池の要部の縦断側
面図
FIG. 8 is a vertical sectional side view of a main part of the fuel cell according to the first embodiment.

【図9】第2実施形態におけるセルユニットの構成を示
す分解斜視図
FIG. 9 is an exploded perspective view showing the configuration of a cell unit according to the second embodiment.

【図10】第2実施形態における燃料電池の全体構成を
示す横断平面図
FIG. 10 is a cross-sectional plan view showing the overall configuration of the fuel cell according to the second embodiment.

【図11】図10におけるハ−ハ矢視図FIG. 11 is a view taken in the direction of the arrow C-H in FIG. 10;

【図12】図10におけるニ−ニ矢視図FIG. 12 is a view as seen from the direction of the arrows in FIG.

【図13】第3実施形態におけるセルユニットの構成を
示す分解斜視図
FIG. 13 is an exploded perspective view showing a configuration of a cell unit according to a third embodiment.

【図14】第3実施形態における燃料電池の全体構成を
示す横断平面図
FIG. 14 is a cross-sectional plan view showing the overall configuration of the fuel cell according to the third embodiment.

【図15】図14におけるホ−ホ矢視図FIG. 15 is a view on arrow in FIG.

【図16】図14におけるヘ−ヘ矢視図FIG. 16 is a view as seen from an arrow in FIG.

【図17】第4実施形態におけるセルユニットの構成を
示す斜視図
FIG. 17 is a perspective view showing the configuration of a cell unit according to the fourth embodiment.

【図18】第4実施形態における燃料電池の全体構成を
示す横断平面図
FIG. 18 is a cross-sectional plan view showing the overall configuration of the fuel cell according to the fourth embodiment.

【図19】図18におけるト−ト矢視図FIG. 19 is a view as seen from the arrow direction in FIG.

【図20】図18におけるチ−チ矢視図FIG. 20 is a view on arrow in FIG.

【図21】別実施形態におけるセルユニットの構成を示
す分解斜視図
FIG. 21 is an exploded perspective view showing a configuration of a cell unit in another embodiment.

【図22】別実施形態におけるセル集積体を示す分解斜
視図
FIG. 22 is an exploded perspective view showing a cell assembly according to another embodiment.

【符号の説明】[Explanation of symbols]

1 電解質層 2 酸素極 3 燃料極 4 流路構成部材 5 保持部材 5A 端用保持部材 5B 間用保持部材 7 柔軟性導電材 8 隔壁部材 8A 端用隔壁部材 8B 間用隔壁部材 51 切り込み部 52 孔 53 当て付け面 57 連通接続部 81 孔 x セル内流路 y セル間流路 C セル I1,I2 内部ガス通路 U セルユニット X1,X2 セル内流路用ガス通路 DESCRIPTION OF SYMBOLS 1 Electrolyte layer 2 Oxygen electrode 3 Fuel electrode 4 Flow path constituent member 5 Holding member 5A End holding member 5B Inter-holding member 7 Flexible conductive material 8 Partition member 8A End partition member 8B Inter-part partition member 51 Notch 52 hole 53 abutting surface 57 communication connection part 81 hole x cell flow path y cell flow path C cell I1, I2 internal gas passage U cell unit X1, X2 gas flow passage for cell inside

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一方の面に酸素極(2)を備え且つ他方
の面に燃料極(3)を備えた電解質層(1)と、前記酸
素極(2)に臨む側と前記燃料極(3)に臨む側のいず
れか一方に、セル内流路(x)を形成すべく配置される
流路構成部材(4)とから矩形板状の燃料電池のセル
(C)が構成され、 そのセル(C)は、前記流路構成部材(4)によって、
前記セル(C)における一方の向かい合う一対の端面
を、前記セル内流路(x)が開いた開口端面となり、他
方の向かい合う一対の端面を、前記セル内流路(x)が
閉じた閉塞端面となるように構成され、 前記セル(C)における前記セル内流路(x)が開いた
一対の開口端縁夫々に配置される一対の保持部材(5)
に、前記セル(C)の厚さと同一又は略同一深さに形成
されて、前記開口端縁が入れられる切り込み部(51)
が設けられ、 前記切り込み部(51)は、その切り込み部(51)に
入れられる前記セル(C)における前記開口端縁の両端
夫々に隣接する前記閉塞端面に夫々密着する当て付け面
(53)を備え、 前記セル(C)の複数が、前記酸素極(2)又は前記燃
料極(3)が露出する面を外側に向けて前記開口端縁を
前記切り込み部(51)に入れた状態で、前記保持部材
(5)に保持されて、セル間流路(y)を形成すべく互
いに間隔を隔てた状態で積層状態に並置され、 前記セル間流路(y)が、前記一対の開口端面側におい
て前記一対の保持部材(5)にて閉じられ、且つ、前記
一対の閉塞端面側において開けられるように構成され、 積層方向に隣接するセル(C)間に、気体の通流を許容
する状態に形成された柔軟性導電材(7)が充填された
燃料電池の製造方法であって、 前記セル(C)の複数を、夫々の間に前記柔軟性導電材
(7)を充填した状態で、前記保持部材(5)に保持さ
せて積層状態に並置し、且つ、その積層方向における前
記酸素極(2)又は前記燃料極(3)が露出する端面部
に、前記一対の開口端縁部を仕切る一対の隔壁部材
(8)を前記一対の保持部材(5)に重ねた状態で設け
て、セルユニット(U)を予め形成し、 前記セルユニット(U)の複数を、それらの間に前記柔
軟性導電材(7)を充填した状態で並置する燃料電池の
製造方法。
1. An electrolyte layer (1) having an oxygen electrode (2) on one surface and a fuel electrode (3) on the other surface, a side facing the oxygen electrode (2) and the fuel electrode (1). A rectangular plate-shaped fuel cell (C) is formed from a flow path forming member (4) arranged to form an in-cell flow path (x) on one of the sides facing 3). The cell (C) is composed of the flow path forming member (4),
One pair of facing end faces of the cell (C) are open end faces where the in-cell flow channel (x) is opened, and the other pair of facing end faces are closed end faces where the in-cell flow channel (x) is closed. And a pair of holding members (5) arranged at each of a pair of opening edges of the cell (C) in which the in-cell flow channel (x) is opened.
And a notch (51) formed in the same or substantially the same depth as the thickness of the cell (C) and into which the opening edge is formed.
Is provided, and the cutout part (51) is in close contact with the closed end faces adjacent to both ends of the opening end edge of the cell (C) to be cut into the cutout part (51), respectively. A plurality of the cells (C) are arranged such that the opening edge is placed in the notch (51) with the surface where the oxygen electrode (2) or the fuel electrode (3) is exposed facing outward. Held by the holding member (5) and juxtaposed in a stacked state in a state of being spaced apart from each other so as to form an inter-cell flow channel (y), and the inter-cell flow channel (y) is formed by the pair of openings. It is configured to be closed on the end face side by the pair of holding members (5) and opened on the pair of closed end face sides, and allows gas flow between the cells (C) adjacent in the stacking direction. Filled with flexible conductive material (7) The method for manufacturing a fuel cell according to claim 1, wherein a plurality of the cells (C) are held in the holding member (5) in a state of being filled with the flexible conductive material (7) between the cells (C), and are stacked. And a pair of partition wall members (8) for partitioning the pair of opening edge portions on the end surface portion where the oxygen electrode (2) or the fuel electrode (3) is exposed in the stacking direction. It is provided in a state of being stacked on the holding member (5) to form the cell unit (U) in advance, and a plurality of the cell units (U) are filled with the flexible conductive material (7) between them. Method for manufacturing juxtaposed fuel cells.
【請求項2】 前記保持部材(5)に、前記切り込み部
(51)に臨み、且つ、前記積層方向に貫通する孔(5
2)が形成され、 前記隔壁部材(8)に、前記積層方向視において前記保
持部材(5)の前記孔(52)に重なる状態で、前記積
層方向に貫通する孔(81)が形成され、 前記保持部材(5)夫々の前記孔(52)及び前記隔壁
部材(8)夫々の前記孔(81)が前記積層方向に一連
に連なって形成される通路を、前記セル内流路(x)夫
々に連通するセル内流路用ガス通路(X1),(X2)
としてある請求項1記載の燃料電池の製造方法。
2. The holding member (5) has a hole (5) which faces the notch (51) and penetrates in the stacking direction.
2) is formed, and a hole (81) penetrating in the stacking direction is formed in the partition member (8) so as to overlap with the hole (52) of the holding member (5) when viewed in the stacking direction, The in-cell flow path (x) is a passage formed by the holes (52) of the holding members (5) and the holes (81) of the partition members (8) in series in the stacking direction. Gas passages (X1) and (X2) for cell flow passages that communicate with each other
The method for manufacturing a fuel cell according to claim 1, wherein
【請求項3】 前記保持部材(5)は、前記切り込み部
(51)が1個設けられた端用保持部材(5A)と、前
記切り込み部(51)が前記積層方向視において対向す
る一対の端縁夫々に1個ずつ設けられ、且つ、それら一
対の切り込み部(51)を連通させる連通接続部(5
7)が設けられた間用保持部材(5B)にて構成され、 前記隔壁部材(8)が、前記端用保持部材(5A)に重
ねられる端用隔壁部材(8A)と、前記間用保持部材
(5B)に重ねられる間用隔壁部材(8B)にて構成さ
れ、 複数の前記セル(C)が、前記開口端面を互いに向かい
合わせた状態で前記セル(C)の面方向に列状に並置さ
れ、 列状に並置された複数の前記セル(C)が、列方向両端
部夫々のセル(C)における外側の開口端縁を前記端用
保持部材(5A)の切り込み部(51)に入れ、且つ、
列方向に隣接する前記セル(C)における互いに対向す
る開口端縁夫々を前記間用保持部材(5B)の一対の切
り込み部(51)夫々に入れた状態で、前記端用保持部
材(5A)及び前記間用保持部材(5B)に保持され、 列方向に隣接する前記セル(C)夫々のセル内流路
(x)が、前記連通接続部(57)によって連通接続さ
れている請求項1記載の燃料電池の製造方法。
3. The holding member (5) includes a pair of end holding members (5A) provided with one notch (51) and a pair of the notches (51) facing each other in the stacking direction. A communication connecting portion (5) provided one at each of the end edges and communicating the pair of notches (51).
7) is provided in the inter-holding member (5B), and the partition member (8) is an end partition member (8A) overlaid on the end holding member (5A), and the inter-holding member. The partition wall member (8B) for stacking is stacked on the member (5B), and the plurality of cells (C) are arranged in a line in the surface direction of the cells (C) with the opening end faces facing each other. A plurality of the cells (C) juxtaposed and juxtaposed in a row form the outside opening edge of each cell (C) in the row direction at the notch (51) of the end holding member (5A). Put and
The end holding members (5A) in a state in which the opening end edges of the cells (C) that are adjacent to each other in the column direction are opposed to each other in the pair of cut portions (51) of the inter-holding member (5B). And the in-cell flow passage (x) of each of the cells (C) that are held by the inter-holding member (5B) and are adjacent in the column direction are communicatively connected by the communication connecting portion (57). A method for manufacturing the fuel cell described.
【請求項4】 前記端用保持部材(5A)に、前記切り
込み部(51)に臨み、且つ、前記積層方向に貫通する
孔(52)が形成され、 前記端用隔壁部材(8A)に、前記積層方向視において
前記端用保持部材(5A)の前記孔(52)に重なる状
態で、前記積層方向に貫通する孔(81)が形成され、 前記端用保持部材(5A)夫々の前記孔(52)及び前
記端用隔壁部材(8A)夫々の前記孔(81)が前記積
層方向に一連に連なって形成される通路を、前記セル内
流路(x)夫々に連通するセル内流路用ガス通路(X
1),(X2)としてある請求項3記載の燃料電池の製
造方法。
4. The end holding member (5A) is formed with a hole (52) which faces the cut portion (51) and penetrates in the stacking direction, and the end partition member (8A) includes: A hole (81) penetrating in the stacking direction is formed so as to overlap with the hole (52) of the end holding member (5A) when viewed in the stacking direction, and the hole of each of the end holding member (5A) is formed. (52) and the end partition wall member (8A), the holes (81) are formed in series in the stacking direction to form a continuous passage formed in the cell passage (x) Gas passage (X
4. The method for producing a fuel cell according to claim 3, wherein the fuel cell is formed as 1) or (X2).
【請求項5】 前記間用保持部材(5B)に、前記連通
接続部(57)に連通し、且つ、前記切り込み部(5
1)に臨む状態で、前記積層方向に貫通する孔(52)
が形成され、 前記間用隔壁部材(8B)に、前記積層方向視において
前記間用保持部材(5B)の前記孔(52)に重なる状
態で、前記積層方向に貫通する孔(81)が形成され、 前記間用保持部材(5B)夫々の前記孔(52)、及
び、前記間用隔壁部材(8B)夫々の前記孔(81)に
より、前記連通接続部(57)夫々を通じて前記セル内
流路(x)夫々に連通する内部ガス通路(I1),(I
2)が形成されている請求項3又は4記載の燃料電池の
製造方法。
5. The inter-holding member (5B) communicates with the communication connecting portion (57), and the cut portion (5).
Hole (52) penetrating in the stacking direction while facing 1)
And a hole (81) penetrating in the stacking direction is formed in the space partition member (8B) so as to overlap with the hole (52) of the space holding member (5B) when viewed in the stacking direction. By the holes (52) of each of the inter-holding members (5B) and the holes (81) of each of the inter-partition partition members (8B), the internal flow of the cells is passed through each of the communication connection parts (57). Internal gas passages (I1), (I
2. The method for producing a fuel cell according to claim 3, wherein 2) is formed.
【請求項6】 前記セルユニット(U)の複数を、それ
らの間に前記柔軟性導電材(7)を充填した状態で前記
積層方向に並置し、且つ、前記積層方向の各段におい
て、前記セルユニット(U)の複数を、前記セル間流路
(y)が開いた側面を互いに対向させた状態で並置する
請求項1、2、3、4又は5記載の燃料電池の製造方
法。
6. A plurality of the cell units (U) are juxtaposed in the stacking direction with the flexible conductive material (7) filled between them, and at each stage in the stacking direction, The method for producing a fuel cell according to claim 1, 2, 3, 4, or 5, wherein a plurality of cell units (U) are juxtaposed in such a manner that side surfaces where the inter-cell flow passages (y) are open face each other.
【請求項7】 前記保持部材(5)と前記隔壁部材
(8)が一体的に構成されている請求項1、2、3、
4、5又は6記載の燃料電池の製造方法。
7. The holding member (5) and the partition member (8) are integrally formed.
4. The method for producing a fuel cell according to 4, 5, or 6.
JP8011390A 1995-08-22 1996-01-26 Fuel cell manufacturing method Expired - Fee Related JP3059929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8011390A JP3059929B2 (en) 1995-08-22 1996-01-26 Fuel cell manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-213086 1995-08-22
JP21308695 1995-08-22
JP8011390A JP3059929B2 (en) 1995-08-22 1996-01-26 Fuel cell manufacturing method

Publications (2)

Publication Number Publication Date
JPH09120832A true JPH09120832A (en) 1997-05-06
JP3059929B2 JP3059929B2 (en) 2000-07-04

Family

ID=26346804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011390A Expired - Fee Related JP3059929B2 (en) 1995-08-22 1996-01-26 Fuel cell manufacturing method

Country Status (1)

Country Link
JP (1) JP3059929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055705A (en) * 2004-08-18 2006-03-02 Toyota Motor Corp Hydrogen separation substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006055705A (en) * 2004-08-18 2006-03-02 Toyota Motor Corp Hydrogen separation substrate
JP4622383B2 (en) * 2004-08-18 2011-02-02 トヨタ自動車株式会社 Hydrogen separation substrate

Also Published As

Publication number Publication date
JP3059929B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US8323845B2 (en) Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JP3101464B2 (en) Fuel cell
JP3007814B2 (en) Fuel cell
US6649296B1 (en) Unitized cell solid oxide fuel cells
JPH084008B2 (en) Separator for fuel cell
JP2768698B2 (en) Internal manifold type molten carbonate fuel cell
JPH11224684A (en) Fuel cell
JPH09120832A (en) Manufacture of fuel cell
JP3007823B2 (en) Fuel cell
JPH0421988B2 (en)
JP3007813B2 (en) Fuel cell
JPH07245115A (en) Solid electrolyte fuel cell
JPH0613099A (en) Fuel cell
CN109478660B (en) Fuel cell
JP6452516B2 (en) Separator for solid oxide fuel cell and solid oxide fuel cell
JPH01183070A (en) Separator for fuel cell
JPH08273695A (en) Fuel cell
JP3111166B2 (en) Fuel cell
WO2021221077A1 (en) Cell, cell stack device, module, and module accommodating device
JP7159126B2 (en) Electrochemical reaction cell stack
JPH08273693A (en) Fuel cell and its assembling method
TW202408059A (en) Electrochemical cell assembly with recessed plate
JPH117973A (en) Fuel cell
JPH08273694A (en) Fuel cell
JPH0997623A (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees