JPH09118943A - Oxygen free copper alloy for vacuum device - Google Patents

Oxygen free copper alloy for vacuum device

Info

Publication number
JPH09118943A
JPH09118943A JP27424695A JP27424695A JPH09118943A JP H09118943 A JPH09118943 A JP H09118943A JP 27424695 A JP27424695 A JP 27424695A JP 27424695 A JP27424695 A JP 27424695A JP H09118943 A JPH09118943 A JP H09118943A
Authority
JP
Japan
Prior art keywords
oxygen
free copper
copper alloy
vacuum
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27424695A
Other languages
Japanese (ja)
Inventor
Yasumutsu Nagai
康睦 永井
Kazuo Sugaya
和雄 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27424695A priority Critical patent/JPH09118943A/en
Publication of JPH09118943A publication Critical patent/JPH09118943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silver-zirconium oxygen free copper alloy optimum as the structural material for vacuum devices having an excellent softening temp. characteristic and little gas discharge. SOLUTION: This oxygen free copper alloy is composed of, by wt. <=0.001% oxygen, 0.01-1% silver or 0.005-0.5% zirconium and the balance <=0.02% impurities. This alloy is used as the optimum material for constructing vacuum devices such as a cooling channel 1 of a beam duct and a beam channel 2 or a pump channel 3 or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は粒子加速器用の真空
ビームダクトや加速空洞などの各種真空装置の構成材と
して使用される無酸素銅合金に関し、より詳しくはこれ
ら真空装置の構成材料にとって特に重要な特性となる高
い軟化温度特性と少ないガス放出性とを備えた無酸素銅
合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen-free copper alloy used as a constituent material of various vacuum devices such as a vacuum beam duct for particle accelerators and an acceleration cavity, and more particularly, it is particularly important for constituent materials of these vacuum devices. The present invention relates to an oxygen-free copper alloy having high softening temperature characteristics and low gas releasing characteristics.

【0002】[0002]

【従来の技術】例えば、粒子の蓄積を目的として使用さ
れるストレージリングのビームダクトとして図5に示さ
れるようなダクトが知られている。このダクトは冷却チ
ャンネル1と、ビームチャンネル2と、ポンプチャンネ
ル3とから構成され、多くの場合その構成材料としては
アルミニウム或いはアルミニウム合金が使用される。ア
ルミニウム系の金属は相当程度の高い熱伝導性を備えて
いることと、何よりも優れた押出加工性を有しているこ
とから、形状の複雑なこの種ダクト構成材料としては最
適であり、過去この材料がビームダクト構成材の主流と
して使用されてきている。
2. Description of the Related Art For example, as a beam duct of a storage ring used for the purpose of accumulating particles, a duct as shown in FIG. 5 is known. This duct is composed of a cooling channel 1, a beam channel 2 and a pump channel 3, and in many cases aluminum or aluminum alloy is used as its constituent material. Since aluminum-based metals have considerably high thermal conductivity and, above all, have excellent extrudability, they are optimal as materials for ducts of this type with complicated shapes. This material has been used as the mainstream of beam duct components.

【0003】しかし、近年の加速器は益々高エネルギー
化しつゝあり、従って加速器が発生する放射光もこれに
伴って当然ながら強力化していると共にビームダクトへ
の熱負荷も著しく増大していることから、アルミニウム
系の金属でビームダクトを構成することは、発生熱を効
率排除するための熱伝導性や機械的強度の面において限
界に達しており、従って如何にしてこの熱負荷に対処す
るかがこの種ビーム類にとっての極めて重要な課題とな
っている。この課題を解決するための最も有効な対応策
として有力視されているのが、無酸素銅の活用である。
However, since the accelerators in recent years are becoming more and more energetic, the radiant light generated by the accelerators is naturally strengthened accordingly, and the heat load on the beam duct is significantly increased. However, the construction of the beam duct with aluminum-based metal has reached the limit in terms of thermal conductivity and mechanical strength for efficiently eliminating generated heat, and therefore, how to deal with this heat load. This is a very important issue for these types of beams. The most effective measure to solve this problem is considered to be the utilization of oxygen-free copper.

【0004】周知のように銅はアルミニウムの約2倍の
熱伝導性と機械的強度とを備えており、そして無酸素銅
はその名の通り普通のタフピッチ銅などに比べると酸素
含有量が極端に少ないために当然含有ガス量が少ないこ
ともあって、構成材からのガス放出を嫌う真空装置の構
成材料としては最適の材料と云える。このことは例えば
『Proceeding of the 8th Me
et−ing on Ultra Vacum Tec
hniques for Accelerators
and Storage Rigs( KEK Pro
ceedings 92−4 ). P.213(19
92)』の論文にも述べられているところでもあり、今
後無酸素銅がこの種高真空装置の構成材として多用され
ることは明らかである。
As is well known, copper has about twice the thermal conductivity and mechanical strength of aluminum, and oxygen-free copper, as its name implies, has an extremely high oxygen content compared to ordinary tough pitch copper. Since it is very small, the amount of contained gas is naturally small, so it can be said that it is an optimum material as a constituent material of a vacuum device which does not like to release gas from constituent materials. This is, for example, “Proceeding of the 8th Me
et-ing on Ultra Vacuum Tec
hnies for Accelerators
and Storage Rigs (KEK Pro
ceedings 92-4). P. 213 (19
92) ”, and it is clear that oxygen-free copper will be frequently used as a constituent material of this kind of high vacuum device in the future.

【0005】ところで、無酸素銅を、例えば、図5のよ
うなビームダクトの構成材料として適用することを考え
た場合、これに押出方式を採用することは困難である。
周知のように無酸素銅はアルミニウムのような良好な熱
間押出成型性を備えておらず、従って若しこの材料をも
って図5のような複雑な形状のダクトを製造するために
は、各構成チャンネル1、2、3の接合方式に依存せざ
るを得ない。即ち、先ず冷却チャンネル1と、ビームチ
ャンネル2と、ポンプチャンネル3とを夫々無酸素銅の
素管から冷間加工によって各独立に成型し、次にこのよ
うにして得られたチャンネル1、2、3を接合部におい
て接合一体化させ、これにより所定のビームダクトを構
成する方式が採用されることになる。
By the way, when it is considered to apply oxygen-free copper as a constituent material of a beam duct as shown in FIG. 5, it is difficult to adopt an extrusion method for this.
As is well known, oxygen-free copper does not have a good hot-extrudability like aluminum, and therefore, in order to manufacture a duct having a complicated shape as shown in FIG. There is no choice but to depend on the bonding method of channels 1, 2, and 3. That is, first, the cooling channel 1, the beam channel 2, and the pump channel 3 are independently molded by cold working from a blank tube of oxygen-free copper, and then the channels 1, 2 thus obtained, A method of forming a predetermined beam duct by joining and integrating 3 at the joining portion will be adopted.

【0006】この方式の場合、チャンネル1、2、3は
冷間加工される過程においてその機械的強度を大きく向
上されられることになることから、寧ろ熱間加工に比べ
てこの種用途にとっては適しているとも云えるが、一方
で接合部4を接合するときの熱の影響がひとつの大きな
問題として浮上してくることになる。接合部分の接合手
段としては、色々ある接合方法の中から特に熱入力が局
部的であり従って溶接対象へ与える熱歪も小さいとされ
る電子ビーム溶接が採用されているが、しかし現実には
この接合法をもってしても溶接時の熱の影響を実害なく
排除することは困難であることが経験上確認されてい
る。
In this system, the channels 1, 2 and 3 are much improved in mechanical strength in the process of cold working, so that they are more suitable for this kind of use than hot working. However, on the other hand, the influence of heat when joining the joining portion 4 comes up as one big problem. As the joining means for the joining portion, electron beam welding is adopted, which is said to have a local heat input among various joining methods, and therefore a small thermal strain is applied to the welding target, but in reality, this method is used. It has been confirmed from experience that it is difficult to eliminate the influence of heat at the time of welding without actually harming even with the joining method.

【0007】[0007]

【発明が解決しようとする課題】この接合部の接合熱に
よる影響は放射光直射部の軟化となって現れ、発明者の
実験によれば接合部から離れている筈のこの直射部のビ
ッカース硬度が50〜60程度にまで低下することが確
認されており、これは当該部分が300〜350°C程
度まで温度上昇したことを推定させるものである。軟化
は即ち当該部分の機械的強度の低下を意味するものであ
るが、この熱軟化の問題に対する対策としては無酸素銅
を合金化することが有効であり、そしてこの合金化のた
めの添加元素としては銀又はジルコニウムが特に有効で
ある。これら両元素は何れも無酸素銅の良好な熱伝導性
を損なうことなく軟化温度を上昇させ、同時に機械的強
度を向上させる性質を備えている理想的な元素と云え、
無酸素銅製ビームダクトをより高い熱負荷に耐えられる
ように構成するうえで極めて有意義な元素である。
The effect of the joining heat of this joining portion appears as a softening of the radiated light direct irradiation portion, and according to the inventor's experiment, the Vickers hardness of this direct irradiation portion which should be away from the joining portion. Has been confirmed to decrease to about 50 to 60, which suggests that the temperature of the relevant part has risen to about 300 to 350 ° C. Softening means a decrease in the mechanical strength of the relevant part, but alloying oxygen-free copper is effective as a measure against the problem of thermal softening, and the additive element for this alloying is effective. For this, silver or zirconium is particularly effective. It can be said that both of these elements are ideal elements that have the property of increasing the softening temperature without impairing the good thermal conductivity of oxygen-free copper, and at the same time improving the mechanical strength,
It is an extremely significant element in constructing an oxygen-free copper beam duct so as to withstand a higher heat load.

【0008】ところで、以上のビームダクトのような装
置は極めて高い真空下において使用されるが、これら超
真空装置の構成材料に要求される一つの特性として低ガ
ス放出性がある。この特性は加速器の性能維持に必要な
もので、若しガス放出の多い材料を使用する場合には、
ビームダクト中で加速すべき粒子を散乱させたり、或い
は放電の原因となるなど、加速器の性能を大きく低下さ
せることになる。このためダクトを構成する材料として
はガス放出の少ないものが必要であり、この意味で無酸
素銅は最適な材料であることは前述した通りであるが、
これは飽くまでもタフピッチ銅などに比べてのことであ
り、今後益々高い性能が要求されるこの種真空装置にと
って、現状の無酸素銅のガス放出レベルで満足できると
は云えない。
By the way, although the above-mentioned device such as the beam duct is used under an extremely high vacuum, one characteristic required for the constituent materials of these ultra-vacuum devices is low gas emission. This property is necessary for maintaining the performance of the accelerator, and when using a material that emits a lot of gas,
The performance of the accelerator is greatly deteriorated by scattering particles to be accelerated in the beam duct or causing electric discharge. For this reason, it is necessary to use a material that emits little gas as a material for forming the duct. In this sense, oxygen-free copper is the optimum material, as described above.
This is even compared to tough-pitch copper and the like, and it cannot be said that the present gas release level of oxygen-free copper is satisfactory for this type of vacuum device, which is required to have higher performance in the future.

【0009】無酸素銅がガス放出性を有している一つの
理由は、溶解・鋳造における溶湯が還元性ガス被覆によ
って大気に対して遮断されているとはいえ、これらの工
程が大気圧下において進められることから、大気中の水
蒸気の影響を受けて水素が溶湯に侵入しやすいこと、そ
してこの水素ガス等が残存ガスとして無酸素銅中に残留
することが原因として考えられる。
One of the reasons why oxygen-free copper has a gas releasing property is that although the molten metal in melting / casting is shielded from the atmosphere by the reducing gas coating, these processes are performed under atmospheric pressure. It is considered that hydrogen is likely to enter the molten metal under the influence of water vapor in the atmosphere and that hydrogen gas and the like remain as residual gas in oxygen-free copper.

【0010】本発明の目的とするところは、優れた軟化
温度特性と少ないガス放出とを備え、従って真空装置の
構成材として最適な銀、ジルコニウム系無酸素銅合金を
提供することにある。
An object of the present invention is to provide a silver-zirconium-based oxygen-free copper alloy which has excellent softening temperature characteristics and a small amount of gas emission, and is therefore optimum as a constituent material of a vacuum apparatus.

【0011】[0011]

【課題を解決するための手段】本発明は前記の目的を達
成するため、酸素濃度が0.001重量%以下の無酸素
銅に銀或いはジルコニウムの少なくとも1つを添加した
無酸素銅合金において、銀の添加量を0.01〜1重量
%とし、ジルコニウムの添加量を0.005〜0.5重
量%とし、不純物を0.02重量%未満としたことを特
徴とする真空装置用無酸素銅合金を提供するものであ
る。
In order to achieve the above object, the present invention provides an oxygen-free copper alloy in which at least one of silver and zirconium is added to oxygen-free copper having an oxygen concentration of 0.001% by weight or less, Oxygen-free for vacuum equipment, characterized in that the amount of silver added is 0.01 to 1% by weight, the amount of zirconium added is 0.005 to 0.5% by weight, and impurities are less than 0.02% by weight. A copper alloy is provided.

【0012】接合部の溶接熱を原因とした軟化を防止す
るために無酸素銅の軟化温度を高める目的で添加される
銀とジルコニウムは、その添加量が多いほど無酸素銅の
軟化温度を上昇させることができるが、一定の量に達す
るとそれ以上添加しても軟化温度の上昇が鈍化するよう
になると共に、一方では導電率の低下が大きくなること
が本発明の過程において確認されている。従ってこのよ
うな傾向に配慮する場合には、これら元素の添加量を最
適な範囲内に設定することが重要であり、この意味から
前記した銀の添加量0.01〜1重量%と、ジルコニウ
ムの添加量0.005〜0.5重量%とは、何れも本発
明においては重要な構成要素となる。
Silver and zirconium added for the purpose of increasing the softening temperature of oxygen-free copper in order to prevent the softening due to the welding heat of the joint, the higher the addition amount, the higher the softening temperature of oxygen-free copper. However, it has been confirmed in the course of the present invention that when the amount reaches a certain level, the softening temperature rises slowly even if it is added more, while the electrical conductivity decreases greatly. . Therefore, when considering such a tendency, it is important to set the addition amount of these elements within the optimum range. From this point, the addition amount of silver is 0.01 to 1% by weight, and zirconium is added. The addition amount of 0.005 to 0.5% by weight is an important constituent element in the present invention.

【0013】又、銅マトリックス中の不純物が銀、ジル
コニウム両添加物と化合すると、軟化温度上昇作用に悪
影響を及ぼすことも本発明において確認されており、こ
のためベースとなる無酸素銅としては、添加元素以外の
不純物濃度が0.02重量%未満、そして酸素濃度が
0.01重量%以下の無酸素銅を使用することが重要に
なると共に、以上の不純物量の設定がガス放出の少ない
合金構成のための欠くことのできない要因ともなって作
用してくることが確認されている。そして本発明によっ
て製造される真空装置用無酸素銅合金の水素含有量は
0.5重量ppm以下にあることが望ましく、この量は
真空装置の高度化に対応するうえにおいて、より好まし
い水準であると云える。
It has also been confirmed in the present invention that when impurities in the copper matrix are combined with both silver and zirconium additives, it adversely affects the softening temperature increasing action. Therefore, as the base oxygen-free copper, It is important to use oxygen-free copper in which the concentration of impurities other than the additive elements is less than 0.02% by weight and the concentration of oxygen is 0.01% by weight or less. It has been confirmed that it also acts as an indispensable factor for the configuration. The hydrogen content of the oxygen-free copper alloy for vacuum equipment manufactured by the present invention is preferably 0.5 ppm by weight or less, and this quantity is a more preferable level in order to cope with the sophistication of vacuum equipment. Can be said.

【0014】溶融状態の無酸素銅に対して真空処理を施
す場合の具体的な方法としては、例えば、真空排気に使
用される油回転ポンプやメカニカルブースータポンプ等
が使用され、その真空の度合は真空処理時間や真空に曝
される無酸素銅溶融物の表面積、或いは溶融物の量など
のファクターによって左右されるが、基本的には10T
orr以下に設定することが望ましい。無酸素銅合金の
溶融物に対して真空脱ガス処理を施すことによって特徴
づけられる形式の本発明無酸素銅合金は、銀、ジルコニ
ウム含有無酸素銅合金をビームダクト等の構成材料とし
て使用する場合に、ガス放出性を調整できる点でより実
際的であり、更にはジルコニウム含有無素銅合金におけ
る塑性加工性の改善効果をも得られる点で有意義であ
る。
As a specific method for performing vacuum treatment on molten oxygen-free copper, for example, an oil rotary pump or mechanical booster pump used for vacuum exhaust is used. The degree depends on factors such as the vacuum treatment time, the surface area of the oxygen-free copper melt exposed to the vacuum, and the amount of the melt, but basically 10T
It is desirable to set it to or or less. The oxygen-free copper alloy of the present invention of the type characterized by subjecting the melt of the oxygen-free copper alloy to vacuum degassing treatment is used when the oxygen-free copper alloy containing silver and zirconium is used as a constituent material for a beam duct or the like. In addition, it is more practical in that the gas releasing property can be adjusted, and is also significant in that the effect of improving the plastic workability in the zirconium-containing non-copper alloy can be obtained.

【0015】即ち、ジルコニウム含有無酸素銅合金にお
いては、ジルコニウムが化学的に活性な物質であること
から、これを無酸素銅に添加する際にジルコニウム酸化
物を生成させやすく、そのためこの異物的生成物の存在
が塑性加工性に悪影響を与え、押出成型時などに割れ等
の不具合現象を発生させることがあるが、本発明におけ
る真空脱ガス処理はこの酸化物の生成を防止するように
作用することから、結果としてジルコニウム含有無酸素
銅合金にとっての問題であった塑性加工性の問題を効果
的に解決できるという副次的な効果をもたらすものであ
る。尚、この無酸素銅溶融物に対する真空脱ガス処理
は、銀やジルコニウム添加物自体の中に含まれるガス成
分をも排除する意味から、無酸素銅溶融物に対してこれ
ら添加物を投入すると同時に、或いは添加後に行うこと
が望ましい。
That is, in the zirconium-containing oxygen-free copper alloy, since zirconium is a chemically active substance, it is easy to form zirconium oxide when it is added to oxygen-free copper. The presence of the substance adversely affects the plastic workability and may cause a defective phenomenon such as cracking at the time of extrusion molding, but the vacuum degassing treatment in the present invention acts to prevent the formation of this oxide. Therefore, as a result, a secondary effect that the problem of plastic workability, which was a problem for the zirconium-containing oxygen-free copper alloy, can be effectively solved is brought about. The vacuum degassing treatment for the oxygen-free copper melt is performed at the same time when the additives are added to the oxygen-free copper melt in the sense that the gas components contained in the silver or zirconium additive itself are also excluded. Alternatively, it is desirable to perform after addition.

【0016】不純物の量を特定の解明された水準に設定
し、更に銀、ジルコニウムの添加量をも最適な範囲内に
設定することによって、少ないガス放出性と高い軟化温
度とを備えた真空装置構成材用無酸素銅合金を提供す
る。
By setting the amount of impurities to a specific elucidated level and further setting the addition amounts of silver and zirconium within the optimum range, a vacuum device having a low gas releasing property and a high softening temperature can be obtained. An oxygen-free copper alloy for components is provided.

【0017】[0017]

【発明の実施の形態】図1は無酸素銅合金のビームダク
トを示し、冷却チャンネル1,ビームチャンネル2,お
よびポンプチャンネル3を有し、各チャンネルは接合部
4によって接合され、ビームチャンネル2の内壁に放射
光直射部5が位置する。無酸素銅合金の実施例として、
連続鋳造炉において真空処理を実施することにより、酸
素濃度0.001重量%以下、不純物0.02重量%未
満の銀入無酸素銅合金を製造した。真空処理装置として
は特願昭60−61667号に示されたのと同様の真空
脱ガス装置を使用し、真空度0.3〜0.5Torr、
真空処理時間3分の条件で真空処理を施した。無酸素銅
に対する銀の添加は、鋳型の直前に設けられた保持炉に
おいて純銀線を定速で無酸素銅溶湯へ連続投入すること
により実施した。以上のようにして製造された無酸素銅
合金の鋳造インゴット(直径200mm)における銀含
有量は0.21重量%であり、水素含有濃度は0.3重
量ppmであった(実施例1)。
1 shows a beam duct of oxygen-free copper alloy, which has a cooling channel 1, a beam channel 2 and a pump channel 3, each channel being joined by a joint 4 and a beam channel 2. The radiated light direct-radiation unit 5 is located on the inner wall. As an example of oxygen-free copper alloy,
By performing vacuum treatment in a continuous casting furnace, a silver-containing oxygen-free copper alloy having an oxygen concentration of 0.001 wt% or less and impurities of less than 0.02 wt% was manufactured. As the vacuum processing apparatus, the same vacuum degassing apparatus as shown in Japanese Patent Application No. 60-61667 is used, and the degree of vacuum is 0.3 to 0.5 Torr.
The vacuum treatment was performed under the condition that the vacuum treatment time was 3 minutes. The addition of silver to the oxygen-free copper was carried out by continuously feeding a pure silver wire into the oxygen-free copper melt at a constant rate in a holding furnace provided immediately before the mold. In the cast ingot (diameter 200 mm) of the oxygen-free copper alloy produced as described above, the silver content was 0.21% by weight and the hydrogen content concentration was 0.3 ppm by weight (Example 1).

【0018】又、上記実施例において真空処理を停止し
た場合(実施例2)と、真空処理及び純銀線添加の双方
を停止した場合(比較例1)の二通りのケースについて
も製造を実施し、夫々のインゴットを製作した。このう
ち、前者の水素含有量は0.8重量ppmであった。次
に以上のようにして製造された各インゴットから熱間押
出機によって外径140mm、肉厚15mmの管を作
り、引き続きこれに冷間引抜加工を施すことによって外
径117mm、肉厚7.5mmの冷間加工材(冷間加工
度56%)を製作し、然る後この加工材を対象に更に引
抜加工を加えることによって図1に示されるような寸
法、形状のビームチャンネル2のための素管を製造し
た。
In addition, the manufacturing is carried out in two cases, that is, when the vacuum treatment is stopped in the above embodiment (Example 2) and when both the vacuum treatment and the addition of pure silver wire are stopped (Comparative Example 1). , Produced each ingot. Among these, the former hydrogen content was 0.8 weight ppm. Next, a tube having an outer diameter of 140 mm and a wall thickness of 15 mm is made from each ingot manufactured as described above by a hot extruder, and subsequently cold drawn to give an outer diameter of 117 mm and a wall thickness of 7.5 mm. Of the cold-worked material (cold-working degree of 56%), and then by subjecting this worked material to a drawing process, a beam channel 2 having a size and shape as shown in FIG. A blank tube was manufactured.

【0019】他の構成要素である冷却チャンネル1及び
ポンプチャンネル3についても同様の手順を経て夫々素
管を製作し、最後にこれらチャンネル1、2、3の各素
管相互間の接合部4を電子ビーム溶接をもって溶接する
ことにより、所定のビームダクトを製造した。ビームチ
ャンネル2の素管を対象に加熱時間を1分間に設定した
ときの軟化温度を調査した結果、本実施例銀含有無酸素
銅合金(実施例1、2)から作られたものは真空処理の
有無に関係なく420°Cの軟化温度を示し、一方銀を
添加しない比較例1のインゴットから作られた素管の軟
化温度は260°Cであり、両者間には明白な差が認め
られた。尚、この本実施例銀入無酸素銅合金製の素管は
75KW/mの熱入力まで対応可能であると推算され
る。又、銀入無酸素銅合金(実施例1、2)から構成さ
れたビームダクトの放射光直射部5における実測ビッカ
ース硬度は95〜100であり、何れも軟化が認められ
なかった。
With respect to the other components, that is, the cooling channel 1 and the pump channel 3, the element pipes are manufactured through the same procedure, and finally, the joint portion 4 between the element pipes of the channels 1, 2, 3 is formed. A predetermined beam duct was manufactured by welding with electron beam welding. As a result of investigating the softening temperature of the elementary tube of the beam channel 2 when the heating time was set to 1 minute, the sample prepared from the silver-containing oxygen-free copper alloy of this example (Examples 1 and 2) was vacuum treated. The softening temperature of the raw tube made from the ingot of Comparative Example 1 without addition of silver was 260 ° C, showing a softening temperature of 420 ° C regardless of the presence or absence of the above. It was It is estimated that the raw tube made of the silver-containing oxygen-free copper alloy of this embodiment can handle a heat input of 75 KW / m. Further, the measured Vickers hardness of the radiant light direct-irradiation part 5 of the beam duct made of the silver-containing oxygen-free copper alloy (Examples 1 and 2) was 95 to 100, and no softening was observed in any of them.

【0020】実施例1と同様に真空処理を施し、酸素濃
度0.001重量%以下、不純物0.02重量%未満の
ジルコニウム含有無酸素銅合金製のインゴットを製造
し、このインゴットから所定のビームダクトを製作し
た。この実施例の前述実施例1と異なる点は、無酸素銅
の熔融物へのジルコニウム添加の際に母合金を使用した
ことと、銀に比べてジルコニウムの飽和蒸気圧が低いた
めに真空処理時の蒸発ロスが無視できるほどに小さく従
って添加量設定に際してはこの点に配慮したことの2点
である。得られた無酸素銅合金のジルコニウム含有量は
0.02重量%であり、水素濃度は0.4重量ppmで
あった(実施例3)。又、真空処理なしで且つ実施例3
と同量のジルコニウムを含むところの無酸素銅合金イン
ゴット(実施例4)と、ジルコニウム添加処置も真空処
理もしないインゴット(比較例2)についても製造し
た。尚、実施例4における水素濃度は1.0重量ppm
であった。
Vacuum treatment was performed in the same manner as in Example 1 to produce an ingot made of a zirconium-containing oxygen-free copper alloy having an oxygen concentration of 0.001% by weight or less and impurities of less than 0.02% by weight, and a predetermined beam was produced from this ingot. I made a duct. This example is different from Example 1 described above in that the mother alloy was used when zirconium was added to the melt of oxygen-free copper and that the saturated vapor pressure of zirconium was lower than that of silver during vacuum treatment. The evaporation loss is so small that it can be neglected. Therefore, there are two points in consideration of this point when setting the addition amount. The zirconium content of the obtained oxygen-free copper alloy was 0.02% by weight, and the hydrogen concentration was 0.4% by weight (Example 3). In addition, without vacuum treatment, Example 3
An oxygen-free copper alloy ingot containing the same amount of zirconium (Example 4) and an ingot not subjected to zirconium addition treatment or vacuum treatment (Comparative Example 2) were also manufactured. The hydrogen concentration in Example 4 was 1.0 ppm by weight.
Met.

【0021】実施例1と同様、ビームチャンネル2の素
管を対象に測定した軟化温度は実施例3、4とも600
°Cの高温を示し、銀添加の場合よりも更に高い水準の
軟化温度を確認することができた。又、これら実施例
3、4から製造されたビームダクトの電子ビーム溶接後
における放射光直射部5のビッカース硬度は110〜1
20であり、何れも充分な硬度を保持していることが認
められた。次に以上の実施例により製造された各ビーム
ダクトを対象に行ったガス放出測定結果について説明す
る。
Similar to the first embodiment, the softening temperature measured for the tube of the beam channel 2 is 600 in the third and fourth embodiments.
The temperature was as high as ° C, and it was possible to confirm a higher level of softening temperature than that in the case of adding silver. Further, the Vickers hardness of the radiated light direct-irradiation part 5 after the electron beam welding of the beam ducts manufactured from these Examples 3 and 4 is 110-1.
It was 20 and it was confirmed that all of them had sufficient hardness. Next, the results of gas release measurement performed on each of the beam ducts manufactured according to the above examples will be described.

【0022】先ず、実施例1〜4の各ビームダクトから
20mm×80mmの試験片を採取してアセトン中で超
音波洗浄脱脂を施し、次いでこれを希硝酸で酸洗し、純
水で洗浄し、更に熱風で乾燥した後、これを図2に示す
ような試験装置の中に入れた。 図2において6は試験
片、7はこれを収納する透明石英チャンバー、8はこの
チャンバー7の周囲に設けられた赤外線加熱ヒータ、9
はガス分析チャンバーを示す。試験片6はヒータ8から
の輻射熱によって20°C/分の昇温速度で室温から8
00°Cまで加熱され、決められた温度において放出さ
れるガスの量がガス放出率q(Torr・L/sec/
cm2)として把握される。ガス放出率qはスルーブッ
ト法と呼ばれる以下の方法で算出した。
First, 20 mm × 80 mm test pieces were taken from each beam duct of Examples 1 to 4 and subjected to ultrasonic cleaning degreasing in acetone, and then pickled with dilute nitric acid and washed with pure water. After further drying with hot air, this was placed in a test apparatus as shown in FIG. In FIG. 2, 6 is a test piece, 7 is a transparent quartz chamber for containing the test piece, 8 is an infrared heater provided around the chamber 7, and 9 is a heater.
Indicates a gas analysis chamber. The test piece 6 is heated from room temperature to 8 at a heating rate of 20 ° C./min by the radiant heat from the heater 8.
The amount of gas that is heated to 00 ° C and released at a predetermined temperature is the gas release rate q (Torr · L / sec /
It is understood as cm2). The gas release rate q was calculated by the following method called the slew butt method.

【0023】即ち、表面積A(cm2)の試験片から毎
秒放出量Q(Torr・L/sec9)にて放出された
ガスはターボ分子ポンプ10によって排気されるが、途
中に設けられたオリフィス11を通過する際にエリフィ
ス11前後で差圧が発生する。この発生した差圧P1−
P2(Torr)を二つの真空計12、12によって測
定し、更にオリフィスのコンダクタンスC(L/s)か
らガス放出率qをQ=C(P1−P2)=qAの式に基づ
いて算出するもので、実施例1〜4の何れもが少ないガ
ス放出性を有していることが確認された。尚、図3と図
4のグラフは、本発明の一方の形式である真空脱ガス処
理を施したものと、これを施さないものとのガス放出率
の差を比較したものである。図3のグラフは銀含有無酸
素銅合金製のビームダクトから採取された試験片を対象
に測定算出した結果であり、夫々●が実施例1、○が実
施例2を示す。
That is, the gas released from the test piece having the surface area A (cm 2) at the release rate Q (Torr · L / sec 9) per second is exhausted by the turbo molecular pump 10, but the orifice 11 provided on the way is used. When passing, a differential pressure is generated before and after Elyphis 11. This generated differential pressure P1−
P2 (Torr) is measured by two vacuum gauges 12 and 12, and the gas release rate q is calculated from the conductance C (L / s) of the orifice based on the formula Q = C (P1-P2) = qA. Then, it was confirmed that all of Examples 1 to 4 had a small gas releasing property. The graphs of FIG. 3 and FIG. 4 are comparisons of the difference in the gas release rate between the case where the vacuum degassing treatment, which is one type of the present invention, is performed and the case where it is not performed. The graph of FIG. 3 shows the results of measurement and calculation for test pieces taken from a beam duct made of a silver-containing oxygen-free copper alloy, and ● indicates Example 1 and ○ indicates Example 2, respectively.

【0024】又、図4は同様にジルコニウム含有無酸素
銅合金の場合の測定算出結果であり、△が実施例3を、
×が実施例4を示す。何れのグラフにおいても溶融状態
の無酸素銅合金に対して真空処理を施した実施例1及び
2が、そうでない実施例3及び4よりも明らかにガス放
出率が少ないことが認められ、このことは真空脱ガス処
理を施して得られる無酸素銅合金が真空装置用構成材料
としてより実際的であることを示すものである。
Similarly, FIG. 4 shows the measurement and calculation results in the case of a zirconium-containing oxygen-free copper alloy, where Δ indicates Example 3 and
X shows Example 4. In any of the graphs, it was observed that Examples 1 and 2 in which the oxygen-free copper alloy in the molten state was subjected to the vacuum treatment had a significantly lower gas release rate than Examples 3 and 4 in which the vacuum treatment was not performed. Shows that the oxygen-free copper alloy obtained by performing the vacuum degassing treatment is more practical as a constituent material for a vacuum device.

【0025】[0025]

【発明の効果】以上説明したように本発明真空装置用無
酸素銅合金によれば、酸素濃度を0.001重量%以下
に設定し、更に銀の添加量を0.01〜1重量%に設定
するか或いはジルコニウムの添加量を0.005〜0.
5重量%に設定し、同時に不純物を0.02重量%未満
に設定した結果、軟化温度が高く、しかもガス放出の少
ない真空装置用構成材料として最適な無酸素銅合金を提
供することができ、更に溶融状態下において真空脱ガス
処理を施すことによってこのガス放出性をより低いレベ
ルに調整した無酸素銅合金をも提供できるものであり、
無酸素銅をビームダクト等の真空装置の構成材料として
適用するうえにおいて、本発明のもたらす効果は極めて
大きなものである。
As described above, according to the oxygen-free copper alloy for a vacuum apparatus of the present invention, the oxygen concentration is set to 0.001% by weight or less, and the addition amount of silver is set to 0.01 to 1% by weight. Either set or the amount of zirconium added is 0.005 to 0.
As a result of setting the content to 5% by weight and simultaneously setting the impurities to less than 0.02% by weight, it is possible to provide an optimum oxygen-free copper alloy as a constituent material for a vacuum device having a high softening temperature and less gas emission, It is also possible to provide an oxygen-free copper alloy in which this gas releasing property is adjusted to a lower level by performing vacuum degassing treatment under a molten state,
In applying oxygen-free copper as a constituent material of a vacuum device such as a beam duct, the effect of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】無酸素銅製ビームダクトの説明図。FIG. 1 is an explanatory diagram of an oxygen-free copper beam duct.

【図2】ガス放出率測定のための試験装置説明図。FIG. 2 is an explanatory view of a test apparatus for measuring a gas release rate.

【図3】銀含有無酸素銅合金を対象とした実施例1及び
2におけるガス放出率。
FIG. 3 is a gas release rate in Examples 1 and 2 for a silver-containing oxygen-free copper alloy.

【図4】ジルコニウム含有無酸素銅合金を対象とした実
施例3及び4におけるガス放出率。
FIG. 4 shows gas release rates in Examples 3 and 4 targeting a zirconium-containing oxygen-free copper alloy.

【図5】従来のアルミニウム製ビームダクトの説明図。FIG. 5 is an explanatory view of a conventional aluminum beam duct.

【符号の説明】[Explanation of symbols]

1 冷却チャンネル 3 ポンプチャンネル 5 放射光直射部 2 ビームチャンネル 4 接合部 1 Cooling channel 3 Pump channel 5 Direct radiation part 2 Beam channel 4 Junction part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素濃度が0.001重量%以下の無酸素
銅に銀或いはジルコニウムの少なくとも1つを添加した
無酸素銅合金において、銀の添加量を0.01〜1重量
%とし、ジルコニウムの添加量を0.005〜0.5重
量%とし、不純物を0.02%未満としたことを特徴と
する真空装置用無酸素銅合金。
1. An oxygen-free copper alloy in which at least one of silver and zirconium is added to oxygen-free copper having an oxygen concentration of 0.001% by weight or less, and the amount of silver added is 0.01 to 1% by weight. An oxygen-free copper alloy for a vacuum device, characterized in that the amount added is 0.005 to 0.5% by weight and the amount of impurities is less than 0.02%.
【請求項2】前記不純物は0.5重量ppm以下の水素
を含む請求項第1項記載の真空装置用無酸素銅合金。
2. The oxygen-free copper alloy for a vacuum apparatus according to claim 1, wherein the impurities include hydrogen in an amount of 0.5 ppm by weight or less.
【請求項3】前記不純物は前記無酸素銅合金が溶融状態
で10Torr以下の低圧雰囲気下において真空脱ガス
処理を受けることにより濃度調整される構成の請求項第
1項記載の真空装置用無酸素銅合金。
3. The oxygen-free for a vacuum apparatus according to claim 1, wherein the concentration of the impurities is adjusted by subjecting the oxygen-free copper alloy to a vacuum degassing treatment under a low-pressure atmosphere of 10 Torr or less in a molten state. Copper alloy.
JP27424695A 1995-10-23 1995-10-23 Oxygen free copper alloy for vacuum device Pending JPH09118943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27424695A JPH09118943A (en) 1995-10-23 1995-10-23 Oxygen free copper alloy for vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27424695A JPH09118943A (en) 1995-10-23 1995-10-23 Oxygen free copper alloy for vacuum device

Publications (1)

Publication Number Publication Date
JPH09118943A true JPH09118943A (en) 1997-05-06

Family

ID=17539042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27424695A Pending JPH09118943A (en) 1995-10-23 1995-10-23 Oxygen free copper alloy for vacuum device

Country Status (1)

Country Link
JP (1) JPH09118943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148749A (en) * 2013-01-11 2014-08-21 Sh Copper Products Corp Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148749A (en) * 2013-01-11 2014-08-21 Sh Copper Products Corp Copper alloy material, power distribution member for electric car, and power distribution member for hybrid car

Similar Documents

Publication Publication Date Title
JPH01127228A (en) Manufacture of electric discharge machining electrode and electric discharge machining electrode
US3728144A (en) Method for coating metal substrates with molten metal
JPS6296603A (en) Production of structural member made of heat-resistant high-strength al sintered alloy
US20090007993A1 (en) Aluminum Alloy pipe and method of manufacturing same
JP2007000875A (en) Method for joining metal surfaces
JPH09118943A (en) Oxygen free copper alloy for vacuum device
US4925741A (en) Getter wire
US20050194075A1 (en) Method of hardening a beta titanium member
HU214381B (en) Copper pipe with oxidized inside and method for producing thereof
JPS58185761A (en) Diffusion bonding method for material comprising aluminum mainly
JPS6140747B2 (en)
US2995479A (en) Degassing aluminum articles
CN113838594B (en) Copper core kovar alloy composite wire for electronic packaging
JPH0568540B2 (en)
JPS62292216A (en) Manufacture of superconductive wire billet
JP2000144369A (en) Oxidation treatment of inside face of stainless steel tube
EP0463167A1 (en) Method of making electrode
US2995478A (en) Degassing aluminum articles
JPH01133696A (en) Vacuum brazing method
Zenin et al. The Effect of Temperature on Electron Beam Brazing of Titanium to Alumina Ceramic
JPH09148100A (en) Manufacture of copper-made vacuum chamber
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPS62211392A (en) Method for removing internal gas from aluminum material
JPS60200938A (en) Wall material for high vacuum apparatus
SU860625A1 (en) Method of producing superconductive coating based on intermetallic compound