JPH09117908A - Device and method of isostatic press molding of beta-alumina pipe - Google Patents

Device and method of isostatic press molding of beta-alumina pipe

Info

Publication number
JPH09117908A
JPH09117908A JP7277541A JP27754195A JPH09117908A JP H09117908 A JPH09117908 A JP H09117908A JP 7277541 A JP7277541 A JP 7277541A JP 27754195 A JP27754195 A JP 27754195A JP H09117908 A JPH09117908 A JP H09117908A
Authority
JP
Japan
Prior art keywords
molding
powder
hydrostatic pressure
pressure
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7277541A
Other languages
Japanese (ja)
Other versions
JP2920098B2 (en
Inventor
Hiromi Shimada
博己 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP7277541A priority Critical patent/JP2920098B2/en
Publication of JPH09117908A publication Critical patent/JPH09117908A/en
Application granted granted Critical
Publication of JP2920098B2 publication Critical patent/JP2920098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Physical Vapour Deposition (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent molding powder from fixing to the surface of a member consisting of a molding space by a method wherein a layer made of chrominum nitride formed by an ion plating treatment is provided on a portion, which at least contacts with the molding powder, of a surface made of a metal mem ber consisting of the molding space of a pipe. SOLUTION: On a portion, which at least contacts with a molding powder A, of a surface made of a metal member consisting of the molding space 8 of a β-alumina pipe, a chromium nitride layer 13 formed by an ion plating treatment is provided. Concretely, the chromium nitride layer 13 is formed at a portion contacting with the molding powder A of the surface of a mandrel 3 and of a bottom punch 9. Thus, the fixing of the molding powder to the surface of the member consisting of the molding space can be suppressed, the cleaning interval of an isostatic press molding device can be prolonged, the running efficiency of the device is improved, the installation of a powder removing device becomes unnecessary and the production cost of the β-alumina pipe can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は、ナトリウム−硫
黄電池に用いられるβ−アルミナ管を成形するための静
水圧加圧成形装置及び静水圧加圧成形方法に関する。
TECHNICAL FIELD The present invention relates to a hydrostatic pressure molding apparatus and a hydrostatic pressure molding method for molding a β-alumina tube used in a sodium-sulfur battery.

【0002】[0002]

【従来の技術】 ナトリウム−硫黄電池に用いられる円
筒状又は有底円筒状のβ−アルミナ管は、一般に、乾式
の静水圧加圧成形(以下CIP成形という。)により成
形される。CIP成形においては、粉末充填、加圧、減
圧、成形体取出しの各工程により成形が実施される。
2. Description of the Related Art Cylindrical or bottomed cylindrical β-alumina tubes used in sodium-sulfur batteries are generally molded by dry hydrostatic pressure molding (hereinafter referred to as CIP molding). In CIP molding, molding is performed by each step of powder filling, pressurization, depressurization, and removal of a molded body.

【0003】 CIP成形による成形工程を、図2〜図
5を用いて説明すると、まず、図2に示すように、セラ
ミック粉末、金属粉末等の成形用粉末Aが、給粉ノズル
1を介して圧力容器2内の成形空間8に挿入・充填され
る。ここで、圧力容器2は、内部に、マンドレル3と円
筒状の成形用ゴム型4、及びマンドレル3を下方から支
持するボトムパンチ9とから形成される成形空間8を有
し、成形用ゴム型4の周方向の外周側には、成形用ゴム
型4を包囲する圧媒シールゴム5が備えられている。な
お、マンドレル3及びボトムパンチ9は、SKD系又は
SKH系の焼入れ鋼から成る。圧力容器2には圧媒出入
口6が設けられている。又、7はシールゴムホルダーで
ある。
The molding process by CIP molding will be described with reference to FIGS. 2 to 5. First, as shown in FIG. 2, a molding powder A such as ceramic powder or metal powder is passed through the powder feeding nozzle 1. The molding space 8 in the pressure vessel 2 is inserted and filled. Here, the pressure vessel 2 has a molding space 8 formed therein from a mandrel 3, a cylindrical molding rubber die 4, and a bottom punch 9 that supports the mandrel 3 from below. A pressure medium seal rubber 5 that surrounds the molding rubber die 4 is provided on the outer peripheral side of the peripheral portion 4 in the circumferential direction. The mandrel 3 and the bottom punch 9 are made of hardened steel of SKD type or SKH type. A pressure medium inlet / outlet 6 is provided in the pressure vessel 2. 7 is a seal rubber holder.

【0004】 圧力容器2内の成形空間8に挿入・充填
された成形用粉末Aは、圧力容器2の上部に、トップゴ
ム栓10を備えたトップパンチ11を挿入した後、図3
に示すように、高圧ポンプ(図示せず。)から増圧機
(図示せず。)を経て圧媒出入口6から流入する圧力媒
体により加圧することにより、圧媒シールゴム5及び成
形用ゴム型4を介して圧縮成形される。圧縮成形が終了
した後、図4に示すように、圧力媒体を圧媒出入口6よ
り流出させて、成形用ゴム型4を復元させ、次いで、図
5のように、トップパンチ11を上昇させるとともにボ
トムパンチ9を下降させることにより、有底円筒成形体
12を圧力容器2から取り出す。
The molding powder A inserted and filled in the molding space 8 in the pressure container 2 is obtained by inserting the top punch 11 having the top rubber stopper 10 into the upper part of the pressure container 2 and then, as shown in FIG.
As shown in FIG. 3, the pressure medium seal rubber 5 and the molding rubber mold 4 are pressurized by the pressure medium flowing from the pressure medium inlet / outlet 6 from the high pressure pump (not shown) via the pressure booster (not shown). Via compression molding. After the compression molding is completed, as shown in FIG. 4, the pressure medium is caused to flow out from the pressure medium inlet / outlet 6 to restore the molding rubber die 4, and then the top punch 11 is raised as shown in FIG. The bottomed cylindrical molded body 12 is taken out of the pressure container 2 by lowering the bottom punch 9.

【0005】 上記のような工程で行われるCIP成形
において、従来、マンドレル3及びボトムパンチ9の表
面には、SKD系等の合金工具鋼若しくはSKH等の高
速度工具鋼のような焼き入れ鋼の母材単体に、硬質クロ
ムによるメッキ処理を施したり、又は化学的蒸着処理
(以下CVD処理という。)により窒化チタンから成る
層を形成していた。
In the CIP forming performed in the above process, conventionally, the surfaces of the mandrel 3 and the bottom punch 9 are made of hardened steel such as alloy tool steel such as SKD type or high speed tool steel such as SKH. The base material itself is plated with hard chromium, or a layer made of titanium nitride is formed by chemical vapor deposition (hereinafter referred to as CVD).

【0006】[0006]

【発明が解決しようとする課題】 しかしながら、上述
のような表面層を有するマンドレル及びボトムパンチを
使用してβ−アルミナ管の成形を行うと、それらの表面
に成形用粉末が固着して、成形したβ−アルミナ管の表
面に凹凸が生じるという問題があった。マンドレル表面
への成形用粉末の固着により、β−アルミナ管の内周面
に凹凸がある場合は、ナトリウム−硫黄電池の劣化が早
まるという不都合がある。又、ボトムパンチ上面への成
形用粉末の固着により、β−アルミナ管の開口端面に凹
凸がある場合は、開口端を下にして焼成を行うため、焼
成時に変形を生じやすく、寸法精度を維持する上で好ま
しくない。
However, when a β-alumina tube is molded using a mandrel and a bottom punch having a surface layer as described above, the molding powder adheres to the surface of the β-alumina tube, and the molding powder is molded. There was a problem that the surface of the β-alumina tube was uneven. If the molding powder adheres to the surface of the mandrel and the β-alumina tube has an uneven inner surface, the sodium-sulfur battery deteriorates quickly. Also, if there is unevenness on the open end surface of the β-alumina tube due to the sticking of the molding powder to the upper surface of the bottom punch, baking is performed with the open end facing down, so deformation is likely to occur during baking and dimensional accuracy is maintained. It is not preferable for doing.

【0007】 又、マンドレル及びボトムパンチの表面
に固着した成形用粉末は、5回から10回の成形で積層
化し、その場合は、装置を停止して固着した粉末を除去
しなければならず、CIP成形装置の運転効率の向上を
図れないという問題もあった。さらに、粉末を除去する
ための装置が必要となりβ−アルミナ管の生産コストの
低減が図れないという問題もあった。
Further, the molding powder adhered to the surfaces of the mandrel and the bottom punch is laminated by molding 5 to 10 times, and in that case, the apparatus must be stopped to remove the adhered powder. There is also a problem that the operation efficiency of the CIP molding apparatus cannot be improved. Further, there is a problem that a device for removing the powder is required and the production cost of the β-alumina tube cannot be reduced.

【0008】[0008]

【課題を解決するための手段】 本発明は、このような
状況に鑑みてなされたものであり、その目的とするとこ
ろは、成形空間を構成する部材表面への成形用粉末の固
着が起こらない静水圧加圧成形装置及び静水圧加圧成形
方法を提供することにある。
Means for Solving the Problems The present invention has been made in view of such circumstances, and an object of the present invention is to prevent sticking of molding powder to the surface of a member forming a molding space. An object of the present invention is to provide a hydrostatic pressure molding apparatus and a hydrostatic pressure molding method.

【0009】 即ち、本発明によれば、円筒状又は有底
円筒状の成形空間に成形用粉末を充填した後、圧力媒体
により静水圧加圧を施すことによりβ−アルミナ管の成
形を行う静水圧加圧成形装置であって、成形空間を構成
する部材で金属から成るものの表面のうち、少なくとも
成形用粉末と接触する部分が、イオンプレーティング処
理によって形成された、窒化クロムから成る層を有する
静水圧加圧成形装置が提供される。
That is, according to the present invention, after a molding powder having a cylindrical or bottomed cylindrical shape is filled with molding powder, hydrostatic pressure is applied by a pressure medium to mold a β-alumina tube. A hydraulic pressure molding apparatus, wherein at least a portion of a surface of a member forming a molding space which is made of metal and which is in contact with a molding powder has a layer made of chromium nitride formed by ion plating. A hydrostatic pressure molding apparatus is provided.

【0010】 又、本発明によれば、上記の静水圧加圧
成形装置を用いてβ−アルミナ管の成形を行う静水圧加
圧成形方法が提供される。
Further, according to the present invention, there is provided a hydrostatic pressure molding method for molding a β-alumina tube by using the above hydrostatic pressure molding apparatus.

【0011】[0011]

【発明の実施の形態】 本発明においては、成形空間を
構成する部材で金属から成るものの表面に、イオンプレ
ーティング処理により窒化クロムから成る層が形成され
ている。円筒状又は有底円筒状成形体のCIP成形にお
いては、通常金属から成るマンドレル、ボトムパンチ等
が用いられるため、これらの表面に上記の窒化クロム層
が形成されることになる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a layer made of chromium nitride is formed by ion plating on the surface of a member forming a molding space and made of metal. In the CIP molding of a cylindrical or bottomed cylindrical molded body, a mandrel, a bottom punch and the like which are usually made of metal are used, so that the chromium nitride layer is formed on the surface thereof.

【0012】 ここで、イオンプレーティング処理とは
PVD(Physical VaporDeposition、物理的蒸着)処理
の一種であり、本発明においては、マンドレル等の基体
及び窒化クロムを不活性ガス雰囲気中に置き、気相中で
発生したイオンをそのまま基体表面に蒸着させる。即
ち、真空容器中の基体に負の高電位をかけて窒化クロム
と基体との間にグロー放電を発生させることにより、不
活性ガスをイオン化し、窒化クロムに衝突させる。そう
することにより、窒化クロムから原子が飛び出し、この
原子もイオン化される。イオンは、基体にかけた負電荷
によって生じた電界によって加速され、高いエネルギー
で基体に衝突し蒸着される。イオンプレーティング処理
による蒸着は、真空蒸着、スパッタ蒸着等の他のPVD
処理による蒸着に比べ、基体との密着性に優れている。
The ion plating treatment is a type of PVD (Physical Vapor Deposition) treatment. Ions generated therein are directly deposited on the surface of the substrate. That is, by applying a negative high potential to the substrate in the vacuum container to generate glow discharge between the chromium nitride and the substrate, the inert gas is ionized and collides with the chromium nitride. By doing so, atoms are ejected from the chromium nitride and these atoms are also ionized. The ions are accelerated by the electric field generated by the negative charge applied to the substrate, and collide with the substrate with high energy to be deposited. Vapor deposition by ion plating is used for other PVD such as vacuum vapor deposition and sputter vapor deposition.
Excellent adhesion to the substrate compared to vapor deposition by treatment.

【0013】 本発明において、マンドレル及びボトム
パンチ等の金属部材の表面のうち、成形用粉末と接触す
る部分は、窒化クロムから成る層を有する必要がある
が、全表面に窒化クロム層を形成することがより好まし
い。成形用ゴム型及びトップゴム栓も成形の際に成形用
粉末と接触するが、これらはゴムから成り、金属製のマ
ンドレルやボトムパンチ等とは異なり、粉末の固着とい
う問題が無いため、窒化クロム層を形成する必要は無
い。
In the present invention, a portion of the surface of a metal member such as a mandrel or a bottom punch that comes into contact with the molding powder needs to have a layer made of chromium nitride, but a chromium nitride layer is formed on the entire surface. Is more preferable. The molding rubber mold and top rubber plug also come into contact with the molding powder during molding, but these are made of rubber, and unlike metal mandrels or bottom punches, there is no problem of powder sticking, so chromium nitride is used. There is no need to form layers.

【0014】[0014]

【実施例】 以下、本発明を図示の実施例を用いてさら
に詳しく説明するが、本発明はこれらの実施例に限られ
るものではない。
Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments, but the present invention is not limited to these embodiments.

【0015】(実施例1) SKH51の焼き入れ鋼か
ら成るマンドレル及びボトムパンチの表面に、イオンプ
レーティング処理により窒化クロム層を形成した乾式C
IP成形装置を用いて、ナトリウム−硫黄電池用のβ−
アルミナ管を成形した。図1に示すように、窒化クロム
層13はマンドレル3及びボトムパンチ9の表面のう
ち、成形用粉末Aと接触する部分に形成した。
(Example 1) A dry C in which a chromium nitride layer was formed by ion plating on the surfaces of a mandrel and a bottom punch made of hardened steel of SKH51.
Β-for sodium-sulfur batteries using IP molding equipment
An alumina tube was molded. As shown in FIG. 1, the chromium nitride layer 13 was formed on the surface of the mandrel 3 and the bottom punch 9 in the portion in contact with the molding powder A.

【0016】 まず、成形用ゴム型4、マンドレル3、
及びボトムパンチ9により形成される空間8内に、給粉
ノズル1により成形用粉末Aを充填した。次に、トップ
パンチ11により空間8を閉じ、圧力容器2をプレスフ
レーム(図示せず。)内に収納した。なお、プレスフレ
ームは、加圧時の軸方向の反力を受けるために設置され
る。
First, the molding rubber die 4, the mandrel 3,
The space A formed by the bottom punch 9 was filled with the molding powder A by the powder supply nozzle 1. Next, the space 8 was closed by the top punch 11, and the pressure vessel 2 was housed in a press frame (not shown). The press frame is installed to receive a reaction force in the axial direction when pressure is applied.

【0017】 次に、高圧ポンプ(図示せず。)及び増
圧機(図示せず。)により、圧媒入出口6より圧力容器
2内部に圧力媒体を注入し、2000kgf/cm2
圧力で3秒間保持し、成形を行った。圧力媒体は、圧媒
シールゴム5及び成形用ゴム型4を介して粉末Aを加圧
し、その際、圧媒出口6は高圧弁(図示せず。)で閉じ
られる。
Next, a pressure medium is injected into the pressure vessel 2 from the pressure medium inlet / outlet 6 by a high pressure pump (not shown) and a pressure booster (not shown), and the pressure medium of 3 kg is supplied at a pressure of 2000 kgf / cm 2. It was held for a second and molded. The pressure medium pressurizes the powder A through the pressure medium seal rubber 5 and the molding rubber die 4, and the pressure medium outlet 6 is closed by a high pressure valve (not shown).

【0018】 次に、昇圧回路の高圧弁(図示せず。)
を閉じたまま、減圧回路の高圧弁(図示せず。)を解放
することにより減圧を行い、成形用ゴム型4の復元を行
った。
Next, a high pressure valve (not shown) of the booster circuit.
The pressure was reduced by releasing the high pressure valve (not shown) of the pressure reducing circuit while the above was closed to restore the rubber mold 4 for molding.

【0019】 加圧レベルが0kgf/cm2となった
後、プレスフレームから圧力容器2を引き出し、ボトム
パンチ9を引き下げることにより成形体を取り出し、外
径47.0mm、内径43.0mm、高さ435mmの
β−アルミナ管を製造した。
After the pressure level reaches 0 kgf / cm 2 , the pressure vessel 2 is pulled out from the press frame and the bottom punch 9 is pulled down to take out the molded body, and the outer diameter is 47.0 mm, the inner diameter is 43.0 mm, and the height is 43.0 mm. A 435 mm β-alumina tube was manufactured.

【0020】 上記の成形を8000回繰り返した結
果、成形用粉末の固着によるマンドレル及びボトムパン
チ表面の清掃は、100〜110回毎に必要であり、こ
の頻度は8000回の成形を通じて一定であった。
As a result of repeating the above molding 8000 times, it was necessary to clean the surfaces of the mandrel and the bottom punch by fixing the molding powder every 100 to 110 times, and this frequency was constant throughout the 8000 times of molding. .

【0021】(実施例2) SKD11の焼き入れ鋼か
ら成るマンドレル及びボトムパンチの表面に、イオンプ
レーティング処理により窒化クロム層を形成した乾式C
IP成形装置を用いて、実施例1と同様に、β−アルミ
ナ管の成形を繰り返し行った。マンドレル及びボトムパ
ンチ表面の清掃が必要になる程度にまで粉末が固着する
のに要した成形回数(固着成形回数)を、表1に示す。
(Embodiment 2) A dry C in which a chromium nitride layer is formed on the surfaces of a mandrel and a bottom punch made of hardened steel of SKD11 by an ion plating treatment.
The β-alumina tube was repeatedly molded using the IP molding device in the same manner as in Example 1. Table 1 shows the number of moldings (fixing moldings) required for the powder to adhere to the extent that cleaning of the surfaces of the mandrel and the bottom punch is required.

【0022】(参考例1〜9) 種々の材質から成るマ
ンドレル及びボトムパンチに種々の表面処理を施して、
実施例1と同様に、ナトリウム−硫黄電池用のβ−アル
ミナ管の成形を繰り返し行った。マンドレル及びボトム
パンチ(母材)の材質、表面処理素材、表面処理の種
類、並びに固着成形回数を、表1に示す。
Reference Examples 1 to 9 Mandrels and bottom punches made of various materials were subjected to various surface treatments,
As in Example 1, the β-alumina tube for a sodium-sulfur battery was repeatedly molded. Table 1 shows the materials of the mandrel and the bottom punch (base material), the surface treatment material, the type of surface treatment, and the number of times of fixation molding.

【0023】[0023]

【表1】 [Table 1]

【0024】 表1より、イオンプレーティング処理に
より窒化クロム層を形成したマンドレル及びボトムパン
チを用いた場合は、100〜110回の成形毎に清掃を
行えば十分であるのに対し、他の処理を行った場合は、
1〜12回毎に清掃を行わなければならないことがわか
る。なお、参考例8においては、表面処理素材に含まれ
るNiが成形体に付着するという不都合も生じた。
From Table 1, when the mandrel and the bottom punch in which the chromium nitride layer is formed by the ion plating treatment is used, it is sufficient to perform cleaning every 100 to 110 times of molding, whereas other treatments are performed. If you do
It turns out that cleaning must be done every 1 to 12 times. In addition, in Reference Example 8, there was a disadvantage that Ni contained in the surface-treated material adhered to the molded body.

【0025】[0025]

【発明の効果】 本発明においては、成形空間を構成す
る部材で金属から成るものの表面が、イオンプレーティ
ング処理によって形成された窒化クロムから成る層を有
するため、これらの表面への成形用粉末の固着を抑制す
ることができる。従って、CIP成形装置の清掃間隔を
長くすることができ、CIP成形装置の運転効率を向上
させることができる。又、粉末除去装置の設置が不要と
なり、β−アルミナ管の生産コストの低減を図ることが
できる。さらに、β−アルミナ管の表面を平滑に仕上げ
ることができるため、β−アルミナ管表面の微細な凹凸
に起因する、β−アルミナ管焼成時の変形、及び電池の
早期劣化を防ぐことができる。
EFFECTS OF THE INVENTION In the present invention, since the surface of the member forming the molding space, which is made of metal, has a layer made of chromium nitride formed by the ion plating treatment, the powder for molding on these surfaces is It is possible to suppress sticking. Therefore, the cleaning interval of the CIP molding device can be lengthened, and the operating efficiency of the CIP molding device can be improved. Further, it is not necessary to install a powder removing device, and the production cost of the β-alumina tube can be reduced. Furthermore, since the surface of the β-alumina tube can be finished to be smooth, it is possible to prevent deformation during firing of the β-alumina tube and early deterioration of the battery due to fine irregularities on the surface of the β-alumina tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のCIP成形装置の一例を示す断面説
明図である。
FIG. 1 is a cross-sectional explanatory view showing an example of a CIP molding apparatus of the present invention.

【図2】 CIP成形方法における粉末充填工程を示す
断面説明図である。
FIG. 2 is a sectional explanatory view showing a powder filling step in the CIP molding method.

【図3】 CIP成形方法における加圧工程を示す断面
説明図である。
FIG. 3 is an explanatory cross-sectional view showing a pressing step in the CIP molding method.

【図4】 CIP成形方法における減圧工程を示す断面
説明図である。
FIG. 4 is a cross-sectional explanatory view showing a pressure reducing step in the CIP molding method.

【図5】 CIP成形方法における成形体取り出し工程
を示す断面説明図である。
FIG. 5 is a cross-sectional explanatory view showing a molded body taking-out step in the CIP molding method.

【符号の説明】[Explanation of symbols]

1・・・給粉ノズル、2・・・圧力容器、3・・・マンドレル、
4・・・成形用ゴム型、5・・・圧媒シールゴム、6・・・圧媒
出入口、7・・・シールゴムホルダー、8・・・成形空間、9
・・・ボトムパンチ、10・・・トップゴム栓、11・・・トッ
プパンチ、12・・・成形体、13・・・窒化クロム層。
1 ... powder feeding nozzle, 2 ... pressure vessel, 3 ... mandrel,
4 ... molding rubber mold, 5 ... pressure medium sealing rubber, 6 ... pressure medium inlet / outlet, 7 ... seal rubber holder, 8 ... molding space, 9
・ ・ ・ Bottom punch, 10 ・ ・ ・ Top rubber plug, 11 ・ ・ ・ Top punch, 12 ・ ・ ・ Molded body, 13 ・ ・ ・ Chromium nitride layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 円筒状又は有底円筒状の成形空間に成形
用粉末を充填した後、圧力媒体により静水圧加圧を施す
ことによりβ−アルミナ管の成形を行う静水圧加圧成形
装置であって、 当該成形空間を構成する部材で金属から成るものの表面
のうち、少なくとも当該成形用粉末と接触する部分が、
イオンプレーティング処理によって形成された、窒化ク
ロムから成る層を有することを特徴とする静水圧加圧成
形装置。
1. A hydrostatic pressure molding apparatus for molding a β-alumina tube by filling a cylindrical or bottomed cylindrical molding space with molding powder and applying hydrostatic pressure with a pressure medium. Then, of the surface of the member that constitutes the molding space and is made of metal, at least the portion that comes into contact with the molding powder is
A hydrostatic pressure forming apparatus having a layer made of chromium nitride formed by an ion plating process.
【請求項2】 当該金属がSKD系又はSKH系の焼入
れ鋼である請求項1に記載の静水圧加圧成形装置。
2. The hydrostatic pressure forming apparatus according to claim 1, wherein the metal is SKD type or SKH type hardened steel.
【請求項3】 当該成形空間が成形用ゴム型と、その内
部に配置された柱状のマンドレルと、当該成形用ゴム型
の下部に配設されるボトムパンチから構成され、当該マ
ンドレル及びボトムパンチが金属から成り、当該成形用
ゴム型の外周側から圧力媒体により静水圧加圧を施す請
求項1又は2に記載の静水圧加圧成形装置。
3. The molding space is composed of a molding rubber die, a columnar mandrel disposed inside thereof, and a bottom punch disposed below the molding rubber die, and the mandrel and the bottom punch are formed. The hydrostatic pressure molding apparatus according to claim 1 or 2, which is made of metal and is subjected to hydrostatic pressure pressurization by a pressure medium from the outer peripheral side of the molding rubber die.
【請求項4】 当該成形用ゴム型と当該マンドレルを収
容する圧力容器、及び当該成形用ゴム型の上部に配設さ
れるトップパンチとを備えた請求項3に記載の静水圧加
圧成形装置。
4. The hydrostatic pressure molding apparatus according to claim 3, further comprising: the molding rubber die, a pressure container accommodating the mandrel, and a top punch disposed above the molding rubber die. .
【請求項5】 請求項1、2、3又は4のいずれかの請
求項に記載の静水圧加圧成形装置を用いてβ−アルミナ
管の成形を行うことを特徴とする静水圧加圧成形方法。
5. A hydrostatic pressure molding process for molding a β-alumina tube by using the hydrostatic pressure molding device according to claim 1. Description: Method.
JP7277541A 1995-10-25 1995-10-25 Apparatus and method for isostatic pressing of β-alumina pipe Expired - Lifetime JP2920098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7277541A JP2920098B2 (en) 1995-10-25 1995-10-25 Apparatus and method for isostatic pressing of β-alumina pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7277541A JP2920098B2 (en) 1995-10-25 1995-10-25 Apparatus and method for isostatic pressing of β-alumina pipe

Publications (2)

Publication Number Publication Date
JPH09117908A true JPH09117908A (en) 1997-05-06
JP2920098B2 JP2920098B2 (en) 1999-07-19

Family

ID=17584991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7277541A Expired - Lifetime JP2920098B2 (en) 1995-10-25 1995-10-25 Apparatus and method for isostatic pressing of β-alumina pipe

Country Status (1)

Country Link
JP (1) JP2920098B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234061A (en) * 2008-03-27 2009-10-15 Ngk Insulators Ltd Mandrel for dry type hydrostatic pressure pressurization shaping
JP2009241451A (en) * 2008-03-31 2009-10-22 Ngk Insulators Ltd Hydrostatic-pressure press molding die
KR20160001083A (en) * 2014-06-26 2016-01-06 (주) 화인테크 Apparatus and method for manufacturing of beta-alumina electrolyte

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234061A (en) * 2008-03-27 2009-10-15 Ngk Insulators Ltd Mandrel for dry type hydrostatic pressure pressurization shaping
JP2009241451A (en) * 2008-03-31 2009-10-22 Ngk Insulators Ltd Hydrostatic-pressure press molding die
KR20160001083A (en) * 2014-06-26 2016-01-06 (주) 화인테크 Apparatus and method for manufacturing of beta-alumina electrolyte

Also Published As

Publication number Publication date
JP2920098B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US7762114B2 (en) Flow-formed chamber component having a textured surface
US20070071993A1 (en) Carbon film-coated article and method of producing the same
US6417480B2 (en) Method of processing a surface of a mold using electric discharge, an electrode used in such processing and a method of manufacturing such an electrode
JP2002069611A (en) Method for extending line in re-using treatment kit
JP4774635B2 (en) Thin film deposition apparatus for three-dimensional hollow container and thin film deposition method using the same
JP4168671B2 (en) Thin film deposition system for 3D hollow containers
WO2006008197A1 (en) Cylindrical target obtained by hot isostatic pressing
US8017196B2 (en) Method for plasma coating an object of elastomeric material
EP1935005B1 (en) Positive displacement pumping chamber
JPH09117908A (en) Device and method of isostatic press molding of beta-alumina pipe
US20080006964A1 (en) Method of producing dies for extrusion molding of honeycomb structure bodies
CN115044880B (en) Coating jig and coating method
JPH11277160A (en) Diamond-coated drawing die for press
US7407146B2 (en) Composite material and resin mold
CN218146929U (en) Atomic deposition modification equipment for treating hard carbon particles
JP4541182B2 (en) Molding method and molding apparatus for molded product having thin film on surface
CN105408081A (en) Compression molding die, method for manufacturing compression molding die, and method for manufacturing compression molded body
JP3125572B2 (en) Plasma equipment
JP5147484B2 (en) Mandrel for dry hydrostatic pressure molding
JP2007186763A (en) Method for restoring metal mold for molding honeycomb structure and metal mold restored thereby
JP2006173343A (en) Plasma cvd system and electrode for cvd system
JPH061622A (en) Method for working forming die of glass forming machine
CN117066508A (en) Anti-seepage cold isostatic pressing rubber sleeve and application thereof
WO1991018425A1 (en) A method of manufacturing a graphite foil coating for use in an alkali metal energy conversion device
JP2007185889A (en) Method of repairing mold for molding honeycomb-structured body and repaired mold

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 15

EXPY Cancellation because of completion of term