JPH09117166A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH09117166A
JPH09117166A JP7264245A JP26424595A JPH09117166A JP H09117166 A JPH09117166 A JP H09117166A JP 7264245 A JP7264245 A JP 7264245A JP 26424595 A JP26424595 A JP 26424595A JP H09117166 A JPH09117166 A JP H09117166A
Authority
JP
Japan
Prior art keywords
elastic body
piezoelectric
piezoelectric element
sliding members
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7264245A
Other languages
Japanese (ja)
Inventor
Kazumoto Abe
千幹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7264245A priority Critical patent/JPH09117166A/en
Publication of JPH09117166A publication Critical patent/JPH09117166A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To freely set a drive thrust to be generated while optimally maintaining traveling characteristics when slightly moving by forming a piezoelectric body with a plurality of systems, constituting each system with a plurality of piezoelectric element groups, and at the same time using at least the same number of sliding members as the number of piezoelectric element groups for constituting each system. SOLUTION: Sliding members 31 and 32 are provided on the bottom surface of an elastic body 1, two lamination-type piezoelectric bodies 21 and 22 for constituting a first system and two lamination-type piezoelectric bodies 23 and 24 for constituting a second system are provided in parallel on the bottom surface of the elastic body 1, and a pin 4 is planted and fixed at the center of the side surface of the elastic body 1, thus supporting the pin 4 so that it can freely rotate for the support body. Then, two burst waves whose phases are shifted by 90 degrees are applied to the first and second systems and two vibrations of vertical and flex vibrations are generated at the elastic body 1 for performing the elliptical motion of the two sliding members 31 and 32 and linearly moving a body to be driven, thus selecting the optimum characteristic of fine amount of travel and an arbitrary drive thrust.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気ー機械エネル
ギー変換素子例えば圧電素子を駆動源とする超音波モー
タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor using an electromechanical energy conversion element such as a piezoelectric element as a driving source.

【0002】[0002]

【従来の技術】近年、超音波(リニア)モータは、電磁
型モータに比べて微小な外形寸法でありながら強力な駆
動推力が得られることから、注目を集めている。従来の
超音波モータの一例として、本出願人が先に出願した明
細書(特願平4ー321096号)に記載されたものが
あり、以下これについて図4〜図7を参照して説明す
る。
2. Description of the Related Art In recent years, ultrasonic (linear) motors have been attracting attention because they have a smaller outer size than electromagnetic type motors and can provide a strong driving thrust. As an example of a conventional ultrasonic motor, there is one described in the specification (Japanese Patent Application No. 4-321096) filed previously by the present applicant, which will be described below with reference to FIGS. 4 to 7. .

【0003】図4は、圧電素子を駆動源とした並進運動
可能とする超音波リニアモータの原理を説明するための
図である。すなわち、超音波振動子は、弾性体1、積層
型圧電体(圧電素子群)2、摺動部材3からなり、直方
体形状の弾性体1の上端面であって長手方向に、2個の
積層型圧電体2が挟み込まれ、弾性体1の下端面であっ
て振動の腹となる部分に複数の摺動部材3が固定されて
いる。
FIG. 4 is a diagram for explaining the principle of an ultrasonic linear motor which uses a piezoelectric element as a drive source and is capable of translational movement. That is, the ultrasonic transducer is composed of an elastic body 1, a laminated piezoelectric body (piezoelectric element group) 2 and a sliding member 3, and two laminated bodies are formed on the upper end surface of the rectangular parallelepiped elastic body 1 in the longitudinal direction. The piezoelectric body 2 is sandwiched, and a plurality of sliding members 3 are fixed to the lower end surface of the elastic body 1 which is an antinode of vibration.

【0004】このような構成の超音波振動子において、
積層型圧電体2に正弦波電圧を印加すると、弾性体1に
は、図5に示すような2種類の振動、つまり、図5
(A)に示すような弾性体1の長手方向に沿った単純な
伸縮運動と、図5(B)に示すような長手方向に伝播す
る2次の定在波となる横波の弾性波(屈曲振動)と、同
時に励起される。
In the ultrasonic vibrator having such a structure,
When a sinusoidal voltage is applied to the laminated piezoelectric body 2, the elastic body 1 receives two kinds of vibrations as shown in FIG.
As shown in FIG. 5A, a simple elastic movement along the longitudinal direction of the elastic body 1 and a transverse standing wave as a secondary standing wave propagating in the longitudinal direction as shown in FIG. Vibration) and excited at the same time.

【0005】なお、弾性体1の長さと幅は、伸縮運動の
1次共振周波数と横波の2次の定在波の周波数が一致す
るように設定してある。図4の超音波振動子において、
定在波の振動の腹の位置では、前記2種類の振動の変位
が合成されて、弾性体1の質点が楕円形の軌跡に沿って
振動する。そこで、その振動の腹の位置に前記摺動部材
3を配設し、摺動部材3に例えば図7に示すように被駆
動体8を押圧すると、被駆動体8が前述のように楕円振
動の作用を受けて並進運動する。
The length and width of the elastic body 1 are set so that the primary resonance frequency of the stretching motion and the frequency of the secondary standing wave of the transverse wave match. In the ultrasonic transducer of FIG. 4,
At the antinode position of the vibration of the standing wave, the displacements of the two types of vibrations are combined, and the mass point of the elastic body 1 vibrates along an elliptical locus. Therefore, when the sliding member 3 is disposed at the antinode of the vibration and the driven body 8 is pressed against the sliding member 3 as shown in FIG. 7, the driven body 8 causes the elliptical vibration as described above. Moves in translation under the action of.

【0006】図6は以上述べた超音波振動子を備えた実
際の超音波リニアモータの全体の構成を示すものである
が、図4とは異なる点は、摺動部材3が弾性体1の下端
面の両端部に固定されている点である。
FIG. 6 shows the entire structure of an actual ultrasonic linear motor equipped with the ultrasonic vibrator described above. However, the difference from FIG. 4 is that the sliding member 3 is made of the elastic body 1. It is a point fixed to both ends of the lower end surface.

【0007】弾性体1は、2次の定在波の節となる位置
で係止部材4により支持されると共に、係止部材4を枠
体5で支持された押圧力調整ねじ6により押圧力調整可
能なコイルばね7により付勢して超音波振動子を被駆動
体8へ押圧している。そして、の下端部にはリニアガイ
ド9が設けられていて、ガイドレール8aと係合して前
記押圧力を受けながら左右方向に直線移動可能に保持さ
れている。
The elastic body 1 is supported by the locking member 4 at a position that serves as a node of the secondary standing wave, and the locking member 4 is pressed by the pressing force adjusting screw 6 supported by the frame body 5. The ultrasonic transducer is pressed against the driven body 8 by being biased by the adjustable coil spring 7. A linear guide 9 is provided at the lower end of the linear guide 9 and is held so as to be linearly movable in the left-right direction while engaging with the guide rail 8a and receiving the pressing force.

【0008】このような構成の超音波モータの積層型圧
電体2に対してバースト波(連続波をある範囲で切った
もの)を印加すると、超音波モータは微小量移動する。
この場合の微小移動量と単位面積当りの押圧力の関係
は、図7に示すようになる。図7から明らかなように、
被駆動体8と摺動部材3とが接触している被駆動体8の
部分の単位面積当りの押圧力が変化することにより、破
線で示す移動量ならびに実線で示す駆動推力も変化す
る。
When a burst wave (continuous wave cut in a certain range) is applied to the laminated piezoelectric body 2 of the ultrasonic motor having such a structure, the ultrasonic motor moves a minute amount.
The relationship between the minute movement amount and the pressing force per unit area in this case is as shown in FIG. As is clear from FIG.
By changing the pressing force per unit area of the portion of the driven body 8 where the driven body 8 and the sliding member 3 are in contact with each other, the movement amount shown by the broken line and the driving thrust shown by the solid line also change.

【0009】[0009]

【発明が解決しようとする課題】以上述べた従来の超音
波モータにあっては、次のような問題点がある。前述し
た超音波振動子の大きさを変えずに、超音波振動子によ
り得られる駆動推力を大きくするには、図7に示すよう
に押圧力を図7のB点側に大きくすることにより可能で
あるが、この場合には微小移動特性が最適な特性となく
なることがある。
The conventional ultrasonic motor described above has the following problems. To increase the driving thrust obtained by the ultrasonic vibrator without changing the size of the ultrasonic vibrator described above, it is possible to increase the pressing force to the point B side of FIG. 7 as shown in FIG. However, in this case, the minute movement characteristic may not be the optimum characteristic.

【0010】一方、微小移動特性を最適特性のとき(図
7のA点)は、駆動推力は一意に決定され、必要な駆動
推力が得られない場合がある。このようなことから、駆
動推力と微小移動量を同時に満足させる超音波モータの
構成としては、超音波振動子の大きさを変える方法が考
えられるが、この場合でも図4に示す構成から分かるよ
うに、圧電体2の外形寸法により制限を受けるので、超
音波振動子の形状を任意に決めることができない。
On the other hand, when the minute movement characteristic is the optimum characteristic (point A in FIG. 7), the driving thrust is uniquely determined, and the required driving thrust may not be obtained. From this, a method of changing the size of the ultrasonic transducer can be considered as a configuration of the ultrasonic motor that simultaneously satisfies the drive thrust and the minute movement amount, but even in this case, it can be seen from the configuration shown in FIG. In addition, the shape of the ultrasonic transducer cannot be arbitrarily determined because it is limited by the outer dimensions of the piezoelectric body 2.

【0011】ここで、超音波振動子の大きさを変える方
法で、図4の紙面上の高さと、幅寸法を変えると、超音
波振動子の振動周波数が変化してしまう。このようなこ
とから、図4の紙面の法線方向である超音波振動子の厚
さを変えることが望ましい。
If the height and width of the sheet of FIG. 4 are changed by the method of changing the size of the ultrasonic vibrator, the vibration frequency of the ultrasonic vibrator will change. For this reason, it is desirable to change the thickness of the ultrasonic transducer in the direction normal to the paper surface of FIG.

【0012】しかしながら、超音波振動子の厚さを変え
た場合には、適当な寸法の圧電体が市販されていないた
め、その入手が困難である他、特別に圧電体を注文する
と高価になるという問題点がある。
However, when the thickness of the ultrasonic transducer is changed, it is difficult to obtain a piezoelectric body having an appropriate size, and it is expensive to order a special piezoelectric body. There is a problem.

【0013】本発明は、以上のような従来の問題点を除
去するためなされたもので、微小移動する際に、その移
動特性を最適に保ちつつ発生する駆動推力を自在に設定
でき、簡単な構成で安価な超音波モータを提供すること
を目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional problems, and when a minute movement is performed, the driving thrust generated while keeping its movement characteristics optimal can be freely set, which is simple. An object is to provide an inexpensive ultrasonic motor having a configuration.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、直方体形状をなす弾性
体の底面側に、複数の摺動部材をそれぞれ所定位置に配
設し、前記弾性体であって前記摺動部材の配設されてい
る位置と対向する面側に圧電体を配設し、この圧電体に
正弦波電圧を印加することにより、前記弾性体の長手方
向に沿って伸縮振動及び前記弾性体の長手方向に伝播す
る屈曲振動をそれぞれ合成して楕円振動を発生させる超
音波モータにおいて、前記圧電体を複数系統とし、各々
の系統は複数の圧電素子群から構成し、前記摺動部材は
少なくとも前記圧電素子群と同じ数としたことを特徴と
する超音波モータである。
In order to achieve the above object, the invention according to claim 1 provides a plurality of sliding members at predetermined positions on the bottom surface side of an elastic body having a rectangular parallelepiped shape, By disposing a piezoelectric body on the surface side of the elastic body facing the position where the sliding member is disposed, and applying a sinusoidal voltage to the piezoelectric body, the piezoelectric body is moved in the longitudinal direction of the elastic body. In an ultrasonic motor for generating an elliptic vibration by synthesizing a stretching vibration along with a bending vibration propagating in the longitudinal direction of the elastic body, the piezoelectric body has a plurality of systems, and each system includes a plurality of piezoelectric element groups. However, the number of the sliding members is at least the same as that of the piezoelectric element group, which is an ultrasonic motor.

【0015】請求項1に対応する発明によれば、圧電体
を複数系統とし、かつ摺動部材は少なくとも各系統を構
成する圧電素子群と同じ数としたことにより、摺動部材
と被駆動体との接触面積が大きくなり、単位面積当りの
押圧力により、高い駆動推力を得ることができる。従っ
て、微小移動する際に、その移動特性を最適に保ちつつ
発生する駆動推力を自在に設定でき、簡単な構成で安価
となる。
According to the invention corresponding to claim 1, the piezoelectric members are provided in a plurality of systems, and the number of the sliding members is at least the same as the number of piezoelectric element groups constituting each system. The contact area with and becomes large, and a high driving thrust can be obtained by the pressing force per unit area. Therefore, when a minute movement is performed, the drive thrust generated while keeping the movement characteristics optimal can be freely set, and the cost is simple and the cost is low.

【0016】前記目的を達成するため、請求項2に対応
する発明は、前記各系統毎の圧電素子群を前記弾性体の
厚さ方向又は高さ方向に並設したことを特徴とする請求
項1記載の超音波モータである。
In order to achieve the above object, the invention according to claim 2 is characterized in that the piezoelectric element groups for each system are arranged in parallel in the thickness direction or the height direction of the elastic body. It is the ultrasonic motor according to 1.

【0017】請求項2に対応する発明によれば、請求項
1の作用に加えて弾性体の厚さ方向に対応する寸法に余
裕があるものに使用するのに適している。前記目的を達
成するため、請求項3に対応する発明は、前記各系統の
圧電素子群を、前記弾性体の長手方向に一直線状であっ
て、異なる系統の圧電素子群が互い違いになるように配
置したことを特徴する請求項1記載の超音波モータであ
る。請求項3に対応する発明によれば、請求項1の作用
に加えて弾性体の長手方向に対応する寸法に余裕がある
ものに使用するのに適している。
According to the invention corresponding to claim 2, in addition to the effect of claim 1, it is suitable for use in an elastic body having a margin in the dimension corresponding to the thickness direction. In order to achieve the above object, the invention according to claim 3 is such that the piezoelectric element groups of each system are linear in the longitudinal direction of the elastic body, and the piezoelectric element groups of different systems are staggered. The ultrasonic motor according to claim 1, wherein the ultrasonic motor is arranged. According to the invention corresponding to claim 3, in addition to the effect of claim 1, it is suitable for use in an elastic body having a margin in a dimension corresponding to the longitudinal direction.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。 <第1の実施の形態>図1は第1の実施の形態の要部、
すなわち超音波振動子のみを示す斜視図であり、直方体
状の弾性体1に、積層型圧電体(圧電素子群)21,2
2,23,24と、摺動部材31,32(図では2つし
か示されていないが、実際には4個ある)およびピン4
が次のように設けられている。すなわち、弾性体1の底
面に弾性体1が屈曲振動したとき腹となる位置にそれぞ
れ摺動部材31,32が配設され、前記弾性体1の底面
と対向する上面であって、該弾性体1の長手方向(振動
方向)と直交する厚さ方向に、第1系統を構成する2個
の積層型圧電体21,22が並設され、また前記弾性体
1の長手方向であって前記圧電体21,22に近接した
位置にその厚さ方向に第2系統を構成する2個の積層型
圧電体23,24が並設されている。弾性体1の側面
(上面と底面に対して直交する面)の中央部にはピン4
が植立固定され、ピン4が図示しない挾持体に対して回
動自在に支持される。そして、図示しない押圧機構によ
り以上のような超音波振動子が押圧され、摺動部材3
1,32が、この下部に配設される図示しない被駆動体
に接触するように構成されている。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> FIG. 1 shows the essential parts of the first embodiment.
That is, it is a perspective view showing only an ultrasonic transducer, in which a laminated piezoelectric body (piezoelectric element group) 21, 2 is attached to a rectangular parallelepiped elastic body 1.
2, 23, 24, sliding members 31, 32 (only two are shown in the figure, but actually four) and a pin 4
Are provided as follows. That is, the sliding members 31 and 32 are arranged on the bottom surface of the elastic body 1 at positions where the elastic body 1 is antinode when the elastic body 1 is flexurally vibrated. In the thickness direction orthogonal to the longitudinal direction (vibration direction) of 1, the two laminated piezoelectric bodies 21 and 22 forming the first system are arranged side by side, and the longitudinal direction of the elastic body 1 is the piezoelectric body. Two laminated piezoelectric bodies 23 and 24 forming a second system are arranged in parallel in the thickness direction at positions close to the bodies 21 and 22. A pin 4 is provided at the center of the side surface of the elastic body 1 (the surface orthogonal to the top and bottom surfaces)
Is fixed by being planted, and the pin 4 is rotatably supported with respect to a holding body (not shown). Then, the ultrasonic transducer as described above is pressed by a pressing mechanism (not shown), and the sliding member 3
The reference numerals 1 and 32 are configured to come into contact with a driven body (not shown) disposed below this.

【0019】なお、弾性体1は、従来のものに比べて厚
さ方向寸法が2倍くらい厚く形成されている点が異なっ
ている。以上のように構成された第1の実施の形態にお
いて、積層型圧電体21,22の組からなる第1系統
と、積層型圧電体23,24の組からなる第2系統に、
それぞれ位相が90度ずれた2つのバースト波を印加す
る。この場合、各系統内においては、同相のバースト波
となるようになっている。
The elastic body 1 is different in that the dimension in the thickness direction is twice as thick as the conventional one. In the first embodiment configured as described above, a first system including a set of laminated piezoelectric bodies 21 and 22 and a second system including a set of laminated piezoelectric bodies 23 and 24 are provided.
Two burst waves whose phases are shifted by 90 degrees are applied. In this case, in each system, in-phase burst waves are generated.

【0020】その結果、図5に示すように、弾性体に縦
振動と屈曲振動の2つの振動が発生し、2つの摺動部材
が楕円振動することで、被駆動体が直線移動する。この
時、単一バースト波での移動量は、図7に示すように被
駆動体と摺動部材の間の単位面積当りの押圧力により決
定される。但し、移動量は被駆動体の慣性負荷や図示し
ないリニアガイドのころがり負荷等に左右されるのはも
ちろんである。
As a result, as shown in FIG. 5, two vibrations, that is, a longitudinal vibration and a bending vibration are generated in the elastic body, and the two sliding members vibrate in an elliptical manner, so that the driven body moves linearly. At this time, the amount of movement in a single burst wave is determined by the pressing force per unit area between the driven body and the sliding member, as shown in FIG. However, it goes without saying that the amount of movement depends on the inertial load of the driven body and the rolling load of the linear guide (not shown).

【0021】このようなことから、弾性体の厚さ方向寸
法を増し、かつ圧電体21,22からなる第1系統と2
3,24からなる第2系統を構成したことにより、微小
移動量の最適な特性と任意の駆動推力を選択することが
可能であり、圧電体の印加電圧が下げられる。
From the above, the thickness of the elastic body in the thickness direction is increased, and the first system and the second system which are composed of the piezoelectric bodies 21 and 22 are used.
By configuring the second system composed of 3, 24, it is possible to select the optimum characteristic of the minute movement amount and an arbitrary driving thrust, and the applied voltage to the piezoelectric body can be lowered.

【0022】これを、仮に従来の技術のままで、積層型
圧電体の寸法より弾性体寸法をむやみに大きくすると、
弾性体の可撓性が小さく(剛性が高く)なり、圧電体に
より得られる伸縮力が大きなものが要求され、このため
圧電体に高電圧を印加しなければならなくなり、高電圧
を印加すると圧電体の破壊を招くことがあり、弾性体の
振動が不安定になるおそれがある。
Assuming that the conventional technique is used and the elastic body dimension is unnecessarily increased from the dimension of the laminated piezoelectric body,
The elastic body is required to have a small flexibility (high rigidity) and a large expansion and contraction force obtained by the piezoelectric body. Therefore, it is necessary to apply a high voltage to the piezoelectric body. The body may be destroyed, and the vibration of the elastic body may become unstable.

【0023】第1の実施の形態によれば、圧電体21〜
24に正弦波低電圧を印加するだけで、弾性体に安定し
た振動を発生することができ、さらにモータとして組み
上げたときに、最適な微小移動特性を維持し、かつ高い
駆動推力を発生させることができる。また、従来の駆動
回路を流用することができので、特別の駆動回路を使用
する場合に比べて安価となり、簡単な構成で済む。さら
に、弾性体1の厚さ方向に対応する寸法に余裕があるも
のに使用するのに適している。
According to the first embodiment, the piezoelectric bodies 21-
A stable vibration can be generated in the elastic body by simply applying a sinusoidal low voltage to 24, and further, when assembled as a motor, the optimum minute movement characteristics are maintained and a high driving thrust is generated. You can Further, since the conventional drive circuit can be used, the cost is lower than that in the case of using a special drive circuit, and the simple configuration is sufficient. Further, the elastic body 1 is suitable for being used for those having a margin in the dimension corresponding to the thickness direction.

【0024】<第2の実施の形態>図2は、第2の実施
の形態の超音波振動子のみを示す斜視図であり、図1の
実施の形態と異なる点は、弾性体1の厚さ寸法が薄く図
1の半分で、この上面には圧電体21〜24が一直線状
に配列され、第1系統を構成する圧電体21,22と、
第2系統を構成する圧電体23,24が互い違いに配設
されている。弾性体1の底面には4個の摺動部材31〜
34が、所定位置に互いに間隔を存して配設されてい
る。この場合、摺動部材31〜34の配置位置は、弾性
体1が屈曲振動の腹の位置である。これ以外の構成は、
第1の実施の形態と同じである。
<Second Embodiment> FIG. 2 is a perspective view showing only the ultrasonic transducer of the second embodiment. The difference from the embodiment of FIG. 1 is that the thickness of the elastic body 1 is different. The thickness is thin and is half of that in FIG. 1. Piezoelectric bodies 21 to 24 are arranged in a straight line on this upper surface, and piezoelectric bodies 21 and 22 constituting the first system,
The piezoelectric bodies 23 and 24 forming the second system are arranged alternately. On the bottom surface of the elastic body 1, four sliding members 31 to
34 are arranged at predetermined positions with a space therebetween. In this case, the arrangement positions of the sliding members 31 to 34 are positions where the elastic body 1 is the antinode of bending vibration. Other configurations are
This is the same as the first embodiment.

【0025】以上のように構成された第2の実施の形態
において、積層型圧電体21,22の組からなる第1系
統と、積層型圧電体23,24の組からなる第2系統
に、それぞれ位相が90度ずれた2つのバースト波を印
加する。
In the second embodiment configured as described above, a first system including a set of laminated piezoelectric bodies 21 and 22 and a second system including a set of laminated piezoelectric bodies 23 and 24 are provided. Two burst waves whose phases are shifted by 90 degrees are applied.

【0026】その結果、図5に示すように、弾性体1に
長手方向の伸縮振動と屈曲振動が同時に励起される。こ
の2つの振動の合成として4つの摺動部材31,32、
33,34が楕円振動することになる。
As a result, as shown in FIG. 5, stretching vibration and bending vibration in the longitudinal direction are simultaneously excited in the elastic body 1. As a combination of these two vibrations, four sliding members 31, 32,
33 and 34 will be elliptically vibrated.

【0027】ここで、屈曲振動の腹の位置に設けられて
いる摺動部材31,32の組と、33,34の組とは位
相が180度ずれた振動をする。この結果、図示しない
4つの摺動部材31〜34に接触される被駆動体が直線
移動する。
Here, the set of the sliding members 31, 32 and the set of 33, 34 provided at the antinode of the bending vibration vibrate with a phase difference of 180 degrees. As a result, the driven body that comes into contact with the four sliding members 31 to 34 (not shown) moves linearly.

【0028】以上述べた第2の実施の形態によれば、微
小移動特性の最適押圧力のときでも、摺動部材31〜3
4と被駆動体の接触面積が増大することから、大きな駆
動推力が発生する。但し、移動量は被駆動体の慣性負荷
や図示しないリニアガイドのころがり負荷等に左右され
るのはもちろんである。
According to the second embodiment described above, the sliding members 31 to 3 are even under the optimum pressing force of the minute movement characteristic.
Since the contact area between 4 and the driven body is increased, a large driving thrust is generated. However, it goes without saying that the amount of movement depends on the inertial load of the driven body and the rolling load of the linear guide (not shown).

【0029】このようなことから、弾性体1の長手方向
寸法を増し、かつ圧電体21〜24を一直線状に配設
し、かつ摺動部材31〜34を屈曲振動の腹の位置に配
設したので、モータとして最適な微小移動特性を維持
し、かつ高い駆動推力を発生させることができる。ま
た、弾性体1の長手方向に対応する寸法に余裕があるも
のに使用するのに適している。
From the above, the length of the elastic body 1 in the longitudinal direction is increased, the piezoelectric bodies 21 to 24 are arranged in a straight line, and the sliding members 31 to 34 are arranged at the antinodes of bending vibration. As a result, it is possible to maintain the optimum micromovement characteristics as a motor and generate a high driving thrust. Further, it is suitable for use in the elastic body 1 having a sufficient dimension corresponding to the longitudinal direction.

【0030】<変形例>図1の実施の形態では、弾性体
1の上面の厚さ方向に、圧電体21,22、23,24
を並設したが、これを図3のように弾性体1の上面側に
上下に重ねるようにしてもよい。
<Modification> In the embodiment of FIG. 1, the piezoelectric bodies 21, 22, 23, 24 are arranged in the thickness direction of the upper surface of the elastic body 1.
Although they are arranged side by side, they may be vertically stacked on the upper surface side of the elastic body 1 as shown in FIG.

【0031】また、前述の実施の形態では、4つ積層型
圧電体により第1および第2系統を構成した例をあげた
が、これ以外に6つや8つ等の偶数個であれば何個でも
よい。
Further, in the above-mentioned embodiment, an example in which the first and second systems are constituted by four laminated piezoelectric materials has been given. However, in addition to this, if the number is an even number such as six or eight, then how many But it's okay.

【0032】さらに、前述の実施の形態では積層型圧電
体(21〜24)の数と、摺動部材(31〜34)の数
を同一としたものをあげて説明したが、これを積層型圧
電体の数よりも摺動部材の数を多く配設するようにして
もよい。
Further, in the above-described embodiment, the case where the number of the laminated piezoelectric bodies (21 to 24) and the number of the sliding members (31 to 34) are the same has been described. The number of sliding members may be greater than the number of piezoelectric bodies.

【0033】[0033]

【発明の効果】本発明によれば、微小移動する際に、そ
の移動特性を最適に保ちつつ発生する駆動推力を自在に
設定でき、簡単な構成で安価な超音波モータを提供する
ことができる。
As described above, according to the present invention, it is possible to provide an inexpensive ultrasonic motor with a simple structure, in which the driving thrust generated while maintaining the optimum movement characteristics can be set freely during a minute movement. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超音波モータの第1の実施の形態の超
音波振動子を示す斜視図。
FIG. 1 is a perspective view showing an ultrasonic transducer according to a first embodiment of an ultrasonic motor of the present invention.

【図2】本発明の超音波モータの第2の実施の形態の超
音波振動子を示す斜視図。
FIG. 2 is a perspective view showing an ultrasonic oscillator according to a second embodiment of the ultrasonic motor of the present invention.

【図3】図1の超音波振動子の変形例を示す斜視図。FIG. 3 is a perspective view showing a modified example of the ultrasonic transducer of FIG.

【図4】従来の超音波モータの1例の超音波振動子を示
す正面図。
FIG. 4 is a front view showing an ultrasonic transducer as an example of a conventional ultrasonic motor.

【図5】図3の超音波振動子の動作説明図。5 is an operation explanatory view of the ultrasonic transducer of FIG.

【図6】図3の超音波振動子を使用した従来の超音波モ
ータの全体構成を示す正面図。
6 is a front view showing the overall configuration of a conventional ultrasonic motor using the ultrasonic vibrator of FIG.

【図7】図5の超音波モータの問題点を説明するための
微小移動量および駆動推力と単位面積当りの押圧力の関
係を示す図。
FIG. 7 is a diagram showing a relationship between a minute movement amount and a driving thrust force and a pressing force per unit area for explaining problems of the ultrasonic motor of FIG.

【符号の説明】[Explanation of symbols]

1…弾性体、2,21,22,23,24…積層型圧電
体(圧電素子群)、3,31,32,33,34…摺動
部材、4…ピン、8…被駆動体。
1 ... Elastic body, 2, 21, 22, 23, 24 ... Laminated piezoelectric body (piezoelectric element group), 3, 31, 32, 33, 34 ... Sliding member, 4 ... Pin, 8 ... Driven body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直方体形状をなす弾性体の底面側に、複
数の摺動部材をそれぞれ所定位置に配設し、前記弾性体
であって前記摺動部材の配設されている位置と対向する
面側に圧電体を配設し、この圧電体に正弦波電圧を印加
することにより、前記弾性体の長手方向に沿って伸縮振
動及び前記弾性体の長手方向に伝播する屈曲振動をそれ
ぞれ合成して楕円振動を発生させる超音波モータにおい
て、 前記圧電体を複数系統とし、各々の系統は複数の圧電素
子群から構成し、前記摺動部材は少なくとも前記圧電素
子群と同じ数としたことを特徴とする超音波モータ。
1. A plurality of sliding members are respectively arranged at predetermined positions on the bottom surface side of an elastic body having a rectangular parallelepiped shape, and are opposed to the positions of the elastic body where the sliding members are arranged. By disposing a piezoelectric body on the surface side and applying a sinusoidal voltage to the piezoelectric body, the stretching vibration along the longitudinal direction of the elastic body and the bending vibration propagating in the longitudinal direction of the elastic body are respectively synthesized. In the ultrasonic motor that generates elliptical vibration, the piezoelectric body is composed of a plurality of systems, each system is composed of a plurality of piezoelectric element groups, and the sliding member is at least the same number as the piezoelectric element group. And ultrasonic motor.
【請求項2】 前記各系統毎の圧電素子群を前記弾性体
の厚さ方向又は高さ方向に並設したことを特徴とする請
求項1記載の超音波モータ。
2. The ultrasonic motor according to claim 1, wherein the piezoelectric element groups for each system are arranged side by side in a thickness direction or a height direction of the elastic body.
【請求項3】 前記各系統の圧電素子群を、前記弾性体
の長手方向に一直線状であって、異なる系統の圧電素子
群が互い違いになるように配置したことを特徴する請求
項1記載の超音波モータ。
3. The piezoelectric element group of each system is arranged in a straight line in the longitudinal direction of the elastic body, and the piezoelectric element groups of different systems are arranged alternately. Ultrasonic motor.
JP7264245A 1995-10-12 1995-10-12 Ultrasonic motor Pending JPH09117166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7264245A JPH09117166A (en) 1995-10-12 1995-10-12 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7264245A JPH09117166A (en) 1995-10-12 1995-10-12 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH09117166A true JPH09117166A (en) 1997-05-02

Family

ID=17400507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7264245A Pending JPH09117166A (en) 1995-10-12 1995-10-12 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH09117166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242493A (en) * 2003-01-14 2004-08-26 Seiko Instruments Inc Piezoelectric actuator and electronic device using the same
JP2007021626A (en) * 2005-07-14 2007-02-01 Fuji Heavy Ind Ltd Press-in device and press-in method
KR101225008B1 (en) * 2011-06-15 2013-01-22 주식회사 삼전 Piezoelectric vibrator of ultrasonic motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242493A (en) * 2003-01-14 2004-08-26 Seiko Instruments Inc Piezoelectric actuator and electronic device using the same
JP4578799B2 (en) * 2003-01-14 2010-11-10 セイコーインスツル株式会社 Piezoelectric actuator and electronic device using the same
JP2007021626A (en) * 2005-07-14 2007-02-01 Fuji Heavy Ind Ltd Press-in device and press-in method
JP4621555B2 (en) * 2005-07-14 2011-01-26 富士重工業株式会社 Press-fitting device and press-fitting method
KR101225008B1 (en) * 2011-06-15 2013-01-22 주식회사 삼전 Piezoelectric vibrator of ultrasonic motor

Similar Documents

Publication Publication Date Title
US5039899A (en) Piezoelectric transducer
US5101132A (en) Linear ultrasonic motor
EP0450919B1 (en) Vibration wave driven motor
EP0598710B1 (en) Vibration driven apparatus and thermal jet type printer incorporating the same
US5852336A (en) Vibration actuator which effectively transmits micro-amplitude vibrations
JPH09182468A (en) Oscillatory actuator
JPS62259485A (en) Piezoelectric driving apparatus
JPH09117166A (en) Ultrasonic motor
JPH03190578A (en) Oscillation wave motor
JP2574577B2 (en) Linear actuator
JPH044772A (en) Ultrasonic motor
JPH08242592A (en) Ultrasonic actuator
JPH08182351A (en) Ultrasonic actuator
JPH10225150A (en) Driver
JPH02202379A (en) Planar ultrasonic actuator
JPH0552137B2 (en)
JP2874174B2 (en) Ultrasonic transducer and ultrasonic motor
JPH03256574A (en) Piezoelectric actuator
JPH04178181A (en) Ultrasonic motor
JP2622286B2 (en) Ultrasonic linear motor
JPH04156282A (en) Ultrasonic motor
JPH06276765A (en) Ultrasonic motor
JPH02228266A (en) Ultrasonic vibrator and ultrasonic motor
JPH01259764A (en) Piezoelectric driving unit
JPH07264885A (en) Ultrasonic actuator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221