JPH09113868A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH09113868A
JPH09113868A JP7270830A JP27083095A JPH09113868A JP H09113868 A JPH09113868 A JP H09113868A JP 7270830 A JP7270830 A JP 7270830A JP 27083095 A JP27083095 A JP 27083095A JP H09113868 A JPH09113868 A JP H09113868A
Authority
JP
Japan
Prior art keywords
liquid crystal
color
color signal
signal
achromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7270830A
Other languages
Japanese (ja)
Inventor
Hisahide Wakita
尚英 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7270830A priority Critical patent/JPH09113868A/en
Publication of JPH09113868A publication Critical patent/JPH09113868A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make many color displays with a small number of pixels by generating the hue of plural subordinate pixels, pixel by pixel, as desired, displaying the remaining subordinate pixels colorlessly or with the complementary hue, and adjusting the chroma. SOLUTION: A color signal, a pure-color signal, and an achromatic signal are separated by a signal separation part 40. A comparator 41 detects data having a minimum value among respective components of the primary colors Er, Eg, and Eb and a subtracter 42 calculates the differences from the respective components. Then a voltage source 42 generates gradation voltages corresponding to the separated pure-color signal and achromatic signal and the respective gradation voltages are applied by allotting the subordinate pixels to the pure- color signal and achromatic signal by a switch part 48. Then a comparator 49 detects the intensity of the pure-color signal, switches 51 and 52 are switched with the output of a decoder 50, and a switch part 53 is controlled to connect the subordinate pixels to a terminal Vh of the voltage source so that the maximum value is proportional to the area of subordinate pixels selected as pure- color subordinate pixels. The remaining subordinate pixels are applied with the gradation voltage Vc corresponding to the achromatic signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、明るいカラー表示
ができる液晶表示素子、特に反射型のカラー液晶表示素
子とその駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device capable of bright color display, and more particularly to a reflective type color liquid crystal display device and its driving circuit.

【0002】[0002]

【従来の技術】液晶表示素子は、薄く、軽いので、携帯
型の情報端末のディスプレイとして広く用いられてい
る。液晶は、自らは発光しない受光型素子で、数ボルト
の低電圧で駆動できるので、背面に反射板を置いて外部
光で照らして表示を見る反射型の液晶素子は極めて低消
費電力である。
2. Description of the Related Art Liquid crystal display devices are thin and light, and are therefore widely used as displays for portable information terminals. The liquid crystal is a light-receiving element that does not emit light by itself, and can be driven with a low voltage of several volts. Therefore, a reflection-type liquid crystal element, which is provided with a reflector on the back surface and is illuminated by external light to view a display, has extremely low power consumption.

【0003】しかし、反射型の液晶表示素子は通常、白
黒表示であり、カラー表示はバックライトを背後に置い
た、透過型である。すなわちカラー表示は、3つの画素
に、赤、青、緑の三原色の微細なカラーフィルターを被
せて、それぞれの透過光が三原色になるよう、白色入射
光をカラーフィルターで吸収する方法が採られている。
赤、青、緑の3画素がすべて透過状態になったとき、白
色表示となり、最も明るい状態になる。
However, a reflection type liquid crystal display device is usually a monochrome display, and a color display is a transmission type with a backlight placed behind it. That is, for color display, a method is used in which three pixels are covered with fine color filters of three primary colors of red, blue, and green, and white incident light is absorbed by the color filters so that each transmitted light becomes three primary colors. There is.
When all three pixels of red, blue, and green are in a transmissive state, white display is performed, and the brightest state is obtained.

【0004】従って、入射光はカラーフィルターで吸収
されて透過率が1/3以下になってしまう。しかも、液
晶表示素子では通常、偏光板を用いるので、一方の偏光
が吸収されて、さらに透過率は半分以下になる。このた
め、カラーフィルターを用いた液晶表示素子は、消費電
力の大きなバックライトが必要となり、厚みや重量も増
すし、低消費電力という特徴も損なわれてしまう。ま
た、カラーフィルターは製造工程が複雑なためコストが
高く、液晶表示装置としての製造コストが高い。
Therefore, the incident light is absorbed by the color filter and the transmittance becomes 1/3 or less. Moreover, since a polarizing plate is usually used in the liquid crystal display element, one polarized light is absorbed, and the transmittance becomes half or less. Therefore, a liquid crystal display element using a color filter requires a backlight that consumes a large amount of power, which increases the thickness and weight, and also impairs the feature of low power consumption. In addition, since the color filter has a complicated manufacturing process, the cost is high, and the manufacturing cost of the liquid crystal display device is high.

【0005】一方、カラー表示を行うために、カラーフ
ィルターを用いずに複屈折効果による発色を利用する液
晶表示素子が報告されている(例えば、松本正一、角田
市良著「液晶の最新技術」、130頁〜132頁)。
On the other hand, in order to perform color display, a liquid crystal display element which utilizes color development due to a birefringence effect without using a color filter has been reported (for example, Shoichi Matsumoto and Ichio Kakuda, "Latest Liquid Crystal Technology"). , Pp. 130-132).

【0006】この方式では、例えば、誘電率異方性が正
のネマチック液晶を水平配向させ、配向方向に角度45
゜の方向の偏光軸を持つ偏光板と、これに直交する偏光
板に液晶層を挟むと、複屈折による透過光強度Iは入射
光強度I0に対して I = I0sin2(πΔnd/λ) ・・・・・・(式1) と表される。但し、λは入射光の波長、dは厚み、Δn
は液晶の複屈折異方性である。
In this system, for example, a nematic liquid crystal having a positive dielectric anisotropy is horizontally aligned, and an angle of 45 ° is formed in the alignment direction.
A polarizing plate having a polarization axis of degrees direction and sandwich the liquid crystal layer on a polarizing plate which is orthogonal thereto, I = I 0 sin 2 for the transmitted light intensity I due to birefringence incident light intensity I 0 (πΔnd / λ) ... (Expression 1) Where λ is the wavelength of the incident light, d is the thickness, and Δn
Is the birefringence anisotropy of the liquid crystal.

【0007】この式から、透過光強度には波長依存があ
り、液晶層の複屈折量(屈折率異方性Δnと厚みdの
積)に応じた色を呈する。Δndは、電圧印加によって
液晶分子が立ち上がるにつれて小さくなるので、印加電
圧に応じて透過率の高い波長が変化し、表示の色を制御
することができる。反射型の場合は、入射光は液晶パネ
ルを往復して出射するので、(式1)を2乗した強度分
布になるので、より波長依存性が顕著になり色純度が上
がる。
From this equation, the intensity of transmitted light depends on the wavelength and exhibits a color corresponding to the birefringence amount (product of refractive index anisotropy Δn and thickness d) of the liquid crystal layer. Since Δnd becomes smaller as the liquid crystal molecules rise due to the voltage application, the wavelength with high transmittance changes according to the applied voltage, and the display color can be controlled. In the case of the reflection type, since the incident light travels back and forth through the liquid crystal panel and has an intensity distribution obtained by squaring (Equation 1), the wavelength dependence becomes more remarkable and the color purity is improved.

【0008】同様の複屈折効果で、超ねじれネマチック
(STN)液晶を用いて単純マトリクス駆動で、4色程
度の色を表示する従来例も報告されている(例えば、特
開平6−301006号公報)。
A conventional example of displaying about four colors by simple matrix drive using a super twisted nematic (STN) liquid crystal with the same birefringence effect has also been reported (for example, Japanese Patent Laid-Open No. 6-301006). ).

【0009】また、このSTN液晶セルを、TFTを使
って駆動する液晶表示装置も開示されている(特開平7
−159752号公報)。TFT駆動した方が、表示し
たい色の電圧値を容易かつ正確に印加することが可能と
なる。上記特開平7−159752号公報では、1つの
画素で表示できる赤、緑、青のようないくつかの複屈折
色を表示するときに、表示する複屈折色の数だけ駆動電
圧値を用意し、色信号に応じて印加する駆動電圧を切り
替える方法、ならびに駆動回路が開示されている。
A liquid crystal display device in which the STN liquid crystal cell is driven by using a TFT has also been disclosed (Japanese Patent Laid-Open No. 7-18753).
-159752). By driving the TFT, it becomes possible to easily and accurately apply the voltage value of the color to be displayed. In the above-mentioned Japanese Patent Laid-Open No. 7-159752, when displaying some birefringent colors such as red, green, and blue that can be displayed by one pixel, drive voltage values are prepared for the number of birefringent colors to be displayed. , A method of switching a drive voltage to be applied according to a color signal, and a drive circuit are disclosed.

【0010】[0010]

【発明が解決しようとする課題】カラーフィルターを用
いるカラー表示では、コストが高く、また、反射型では
非常に暗い表示しか得られない。
Color display using a color filter is expensive, and the reflection type display is very dark.

【0011】一方、カラーフィルターを用いずに複屈折
効果を用いて色を可変とする方式では、電圧に応じて変
わる色は、液晶パネルの構成によって決まっており、色
度図上の特定の色しか表示できない。
On the other hand, in the system in which the color is variable by using the birefringence effect without using the color filter, the color that changes according to the voltage is determined by the structure of the liquid crystal panel, and the specific color on the chromaticity diagram is determined. Only can be displayed.

【0012】また、電圧によって色は変わるが、階調表
示、すなわち、輝度調整をすることができない。
Further, although the color changes depending on the voltage, gradation display, that is, brightness adjustment cannot be performed.

【0013】これらの制約から、複屈折効果による方式
は、カラーフィルターを用いた透過型の液晶パネルに比
べると、表示色数が極端に少なく、限られた用途にしか
利用できないという課題があった。
Due to these restrictions, the method based on the birefringence effect has a problem that the number of display colors is extremely small as compared with a transmissive liquid crystal panel using a color filter, and it can be used only for a limited purpose. .

【0014】また、複屈折効果を用いたカラー液晶表示
装置の駆動回路も、限られた複屈折色を表示するための
手段しか提示されていない。
Further, the driving circuit of the color liquid crystal display device using the birefringence effect is also presented only as a means for displaying a limited birefringence color.

【0015】[0015]

【課題を解決するための手段】上記の課題を解決するた
め本発明の液晶表示素子は、1つの画素が複数の副画素
からなり、前記副画素を形成する対向電極間にネマチッ
ク液晶を挟んだ液晶層と、前記液晶層の前面の偏光子と
前記偏光子と前記液晶層の間の位相差板と、前記液晶層
の背後に反射板とを具備し、前記対向電極間に電圧を印
加することにより前記ネマチック液晶の複屈折量を制御
して、複屈折効果により前記複数の副画素の各々の色を
可変させる液晶表示素子において、前記複数の副画素の
うちの一部の副画素を、前記1つの画素に表示する色相
と同じ色とし、残りの副画素を無彩色または前記色相の
補色とし、前記残りの副画素の面積の和を前記一つの画
素の彩度に応じて制御することを特徴とすることによ
り、表示色数を極めて多くすることができる。
In order to solve the above problems, in a liquid crystal display device of the present invention, one pixel is composed of a plurality of sub-pixels, and a nematic liquid crystal is sandwiched between opposed electrodes forming the sub-pixels. A liquid crystal layer, a polarizer in front of the liquid crystal layer, a retardation plate between the polarizer and the liquid crystal layer, and a reflector behind the liquid crystal layer are provided, and a voltage is applied between the counter electrodes. By controlling the amount of birefringence of the nematic liquid crystal, thereby changing the color of each of the plurality of subpixels by a birefringence effect, in a subpixel of the plurality of subpixels, The same color as the hue displayed on the one pixel, the remaining sub-pixels are achromatic colors or complementary colors of the hue, and the sum of the areas of the remaining sub-pixels is controlled according to the saturation of the one pixel. To maximize the number of display colors It can be increased.

【0016】すなわち、異なる色の微細な画素(副画
素)を複数個隣接させれば、それらの副画素の集合であ
る単位画素の色が副画素の色の中間色として見えるとい
うのは、加法混色の原理そのものである。
That is, when a plurality of fine pixels (sub-pixels) of different colors are arranged adjacent to each other, the color of the unit pixel, which is a set of these sub-pixels, appears as an intermediate color of the colors of the sub-pixels. Is the principle of.

【0017】従って、複屈折効果により隣接する複数の
微細な副画素に異なる色を表示すれば、それらの副画素
の集合である単位画素で複屈折効果で有られる色以外の
中間色が表現できることは当然である。
Therefore, if different colors are displayed on a plurality of adjacent fine sub-pixels due to the birefringence effect, an intermediate color other than the color due to the birefringence effect can be expressed in the unit pixel which is a set of these sub-pixels. Of course.

【0018】問題は、カラーフィルターを用いた場合と
異なり、輝度を制御できない複屈折効果により、いかに
効率よく多くの階調を表示できるかである。例えば、白
色を加法混色で表現する場合でも、画素の色が可変なの
で、赤とシアンや緑とマゼンタのように補色を用いるこ
ともできるし、赤、青、緑やシアン、マゼンタ、黄色と
いった3色を混色することもできるので、組み合わせは
無数にあるといえる。
The problem is, unlike the case where a color filter is used, how efficiently a large number of gradations can be displayed due to the birefringence effect in which the brightness cannot be controlled. For example, even when white is represented by an additive color mixture, since the pixel colors are variable, complementary colors such as red and cyan or green and magenta can be used, or red, blue, green and cyan, magenta, and yellow can be used. You can say that there are countless combinations because you can mix colors.

【0019】複屈折効果による発色は、位相差板を使わ
ない単純な構成を考えると、液晶の実質的なΔndが0
〜0.3μmの間で黒から灰色、白と無彩色に近い色の
明度を調整でき、さらにΔndが大きくなるにつれて、
黄色、赤、紫、青、緑と変化していく。
In the color development due to the birefringence effect, considering the simple structure without using the retardation plate, the substantial Δnd of the liquid crystal is 0.
.About.0.3 .mu.m, it is possible to adjust the brightness of colors from black to gray, white and achromatic colors, and as .DELTA.nd increases,
It changes from yellow, red, purple, blue, and green.

【0020】本発明の液晶表示素子では、複数の副画素
のうちの一部に単位画素で表示したい所望の色相を発色
し、残りの副画素に無彩色または補色の色相を表示し
て、彩度を調整する。無彩色領域では、複屈折効果でも
階調表示が可能なので、その輝度を微調節することによ
り、彩度調節の自由度が非常に高まる。残りの副画素に
補色の色相を表示したときは、階調表示できない領域な
ので、彩度の調節はあまりできないが、無彩色との混色
で出せない彩度の非常に低い色を表示することができる
ので、単位画素の彩度に応じて使い分けるとよい。
In the liquid crystal display device of the present invention, a desired hue to be displayed in the unit pixel is developed in a part of the plurality of sub-pixels, and an achromatic color or a complementary color is displayed in the remaining sub-pixels. Adjust the degree. In the achromatic region, gradation display is possible even with the birefringence effect, so that the degree of freedom in saturation adjustment is greatly increased by finely adjusting the brightness. When the hue of the complementary color is displayed on the remaining sub-pixels, it is an area where gradation cannot be displayed, so it is not possible to adjust the saturation very much, but it is possible to display a very low saturation that cannot be produced by mixing with an achromatic color. Therefore, it is preferable to use them properly according to the saturation of the unit pixel.

【0021】また、色の明度については、所望の色相を
表示する副画素の数と、無彩色副画素の明度と数を制御
することで可変となる。望ましくは、各副画素の面積を
互いに異ならせ、かつ、単位画素の彩度に応じて無彩色
とする副画素を選択するのがよい。
The lightness of the color can be changed by controlling the number of sub-pixels displaying a desired hue and the lightness and number of achromatic sub-pixels. Desirably, the areas of the sub-pixels are made different from each other, and it is preferable to select the sub-pixels having an achromatic color according to the saturation of the unit pixel.

【0022】これにより、明度の階調数が増えるだけで
なく、彩度の可変範囲も広がる。例えば、副画素が2つ
の場合を考えると、各副画素の面積が同じ場合は、赤を
表示するなら赤+赤、赤+黒、黒+黒の3階調で、彩度
は赤と白の1:1混色より低彩度の色は、調節の範囲か
らはずれる。ところが、副画素の面積が1:2なら、階
調数は4となり、そして、彩度も赤と白が1:2となる
低彩度の範囲まで彩度を微調節できる。
As a result, not only the number of gradations of lightness increases, but also the variable range of saturation expands. For example, considering the case where there are two sub-pixels, if each sub-pixel has the same area, when displaying red, there are three gradations of red + red, red + black, and black + black, and the saturation is red and white. Colors with lower saturation than the 1: 1 mixture of are out of the adjustment range. However, if the area of the sub-pixel is 1: 2, the number of gradations is 4, and the saturation can be finely adjusted to a low saturation range in which red and white are 1: 2.

【0023】このように、本発明の液晶表示素子では、
複屈折効果を用いたカラーフィルターのないカラー表示
において、色数を非常に多く表現できるとともに、色
相、彩度、明度の制御を分離して行うために、容易に信
号処理を行うことができる。
Thus, in the liquid crystal display device of the present invention,
In a color display without a color filter using the birefringence effect, a very large number of colors can be expressed, and since hue, saturation, and lightness are separately controlled, signal processing can be easily performed.

【0024】また、本発明の液晶表示素子の駆動回路
は、画素が印加電圧によって色が変わる複数の副画素か
らなる液晶表示装置に入力される色信号の3原色の各成
分から、前記各成分の内の最小値を減算して純色信号を
求め、3原色の各成分がすべて前記最小値からなる無彩
色信号を求め、純色信号と無彩色信号とに分離する信号
分離部と、前記純色信号と無彩色信号の各々に対応する
複数の階調電圧を発生する電圧発生源と、前記複数の副
画素の各々と前記電圧発生源の複数の階調電圧の接続を
切り替えるスイッチ部とを具備することにより、極めて
多くの色表示が実現できる。
Further, in the drive circuit of the liquid crystal display element of the present invention, each of the three components of the three primary colors of the color signal input to the liquid crystal display device in which the pixel changes its color depending on the applied voltage To obtain a pure color signal by subtracting the minimum value from among the three values, to obtain an achromatic color signal in which each component of the three primary colors has the minimum value, and to separate into a pure color signal and an achromatic color signal; And a voltage generation source that generates a plurality of gradation voltages corresponding to each of the achromatic signals, and a switch unit that switches connection between each of the plurality of sub-pixels and the plurality of gradation voltages of the voltage generation source. As a result, an extremely large number of color displays can be realized.

【0025】すなわち、上記の液晶表示素子を実現する
駆動回路であり、信号分離部により色信号を純色信号と
無彩色信号に分離し、電圧発生源とスイッチ部により、
表示したい画素の色相を調整する純色副画素に純色信号
に対応する電圧を印加し、彩度を調整する無彩色副画素
に無彩色信号に対応する電圧を印加する、いう機能を実
現するものである。
That is, in the drive circuit for realizing the above liquid crystal display element, the color signal is separated into the pure color signal and the achromatic color signal by the signal separation section, and the voltage generation source and the switch section
It realizes the function of applying the voltage corresponding to the pure color signal to the pure color sub-pixel that adjusts the hue of the pixel to be displayed and applying the voltage corresponding to the achromatic color signal to the achromatic color sub-pixel that adjusts the saturation. is there.

【0026】望ましくは、純色信号に対応する階調電圧
に接続する副画素の面積の和が、純色信号の3原色の各
成分の内の最大値と比例するようにスイッチ部の接続を
設定し、かつ、前記副画素以外の無彩色副画素の面積の
和で無彩色信号の成分を割った商と、前記無彩色副画素
の明度が比例するよう無彩色信号に対応する階調電圧を
決めることにより、所望の色表示が行える。
Desirably, the connection of the switch section is set so that the sum of the areas of the sub-pixels connected to the gradation voltage corresponding to the pure color signal is proportional to the maximum value of the respective components of the three primary colors of the pure color signal. And a gray scale voltage corresponding to the achromatic color signal is determined so that the quotient obtained by dividing the component of the achromatic color signal by the sum of the areas of the achromatic color subpixels other than the subpixel is proportional to the brightness of the achromatic color subpixel. As a result, a desired color can be displayed.

【0027】すなわち、純色信号に対応する階調電圧に
接続する副画素の面積の和が、純色信号の3原色の各成
分の内の最大値と比例するようにスイッチ部の接続を設
定し、かつ、前記副画素以外の無彩色副画素の面積の和
で無彩色信号の成分を割った商と、前記無彩色副画素の
明度が比例するよう無彩色信号に対応する階調電圧を決
めることにより、純色副画素と無彩色副画素の選択を色
信号に応じて柔軟にかつ最適に行えるので、少ない画素
数でより多くの、また正確な色表現が可能となる。
That is, the connection of the switch section is set so that the sum of the areas of the sub-pixels connected to the grayscale voltage corresponding to the pure color signal is proportional to the maximum value of the respective components of the three primary colors of the pure color signal, And determining a gradation voltage corresponding to the achromatic color signal such that the quotient obtained by dividing the component of the achromatic color signal by the sum of the areas of the achromatic color subpixels other than the subpixel is proportional to the brightness of the achromatic color subpixel. With this, the selection of the pure color subpixels and the achromatic color subpixels can be flexibly and optimally performed according to the color signal, so that more and more accurate color expression can be performed with a small number of pixels.

【0028】[0028]

【発明の実施の形態】以下、具体例について詳細に述べ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Specific examples will be described in detail below.

【0029】図1は本発明の液晶表示素子の平面図、図
2は図1の一点鎖線の部分の断面図である。図2で、ガ
ラスからなる下基板1上にはTFT素子3、4を形成
し、各々のTFT素子のドレインに、透明な酸化インジ
ウム錫(ITO)からなる副画素電極10、11が接続
されている。
FIG. 1 is a plan view of a liquid crystal display device of the present invention, and FIG. 2 is a cross-sectional view taken along the alternate long and short dash line in FIG. In FIG. 2, TFT elements 3 and 4 are formed on the lower substrate 1 made of glass, and the sub-pixel electrodes 10 and 11 made of transparent indium tin oxide (ITO) are connected to the drains of the respective TFT elements. There is.

【0030】上基板2上には、ITOからなる共通電極
12を表示画面全体を覆うよう形成する。上下基板上に
ポリイミド配向膜5を印刷し、図1のゲート線6と45
゜をなす方向で、上下基板で反平行になる向きにラビン
グ処理した。これらの基板を5.5μmの球形スペーサ
を挟んで、周囲にシール樹脂を塗布して貼合わせた。
A common electrode 12 made of ITO is formed on the upper substrate 2 so as to cover the entire display screen. The polyimide alignment film 5 is printed on the upper and lower substrates, and the gate lines 6 and 45 of FIG.
The upper and lower substrates were subjected to rubbing treatment in a direction of forming an angle of 0 °. These substrates were laminated by applying a sealing resin on the periphery with a spherical spacer of 5.5 μm interposed therebetween.

【0031】このセルに、フッ素系ポジ型(誘電異方性
が正)ネマチック液晶(Δnが0.183)を注入し、
図1の液晶分子7の方向にホモジニアス配向させた。こ
のセルを図2のように偏光軸を直交させた偏光板14
a、14bで挟み、偏光板14bとセルの間にポリアリ
レートの一軸延伸位相差板14を、偏光板14aの背後
に反射板15を配置した。偏光板14bの偏光軸は、液
晶の配向方向と45゜をなす方向16とし、偏光板14
aはこれに直交する方向とし、また、ポリアリレートの
位相差(Δnd)は980nmで、その遅相軸を液晶配
向方向に直交する方向17に向けて、これらの偏光板位
相板を上基板に貼り合わせた。
Fluorine-based positive type (positive dielectric anisotropy) nematic liquid crystal (Δn is 0.183) was injected into this cell,
The liquid crystal molecules 7 in FIG. 1 were homogeneously aligned. A polarizing plate 14 in which the polarization axes of the cell are orthogonal to each other as shown in FIG.
A uniaxially stretched retardation plate 14 of polyarylate was placed between the polarizing plate 14b and the cell, and a reflection plate 15 was placed behind the polarizing plate 14a. The polarization axis of the polarizing plate 14b is set to a direction 16 which forms 45 ° with the alignment direction of the liquid crystal,
a is the direction orthogonal to this, and the phase difference (Δnd) of the polyarylate is 980 nm, and these polarizing plate phase plates are placed on the upper substrate with the slow axis thereof oriented in the direction 17 orthogonal to the liquid crystal alignment direction. Pasted together

【0032】この液晶表示素子の一つの副画素に、電圧
を印加したときの色変化を表した色度図が図3である。
無電界では黒で、電圧が1.1Vから液晶が動きだし、
1.7Vで白色になるまでは、明度が徐々に明るくなる
が、色度図では黒丸31から白丸32までわずかに動く
だけで、ほぼ無彩色になっている。
FIG. 3 is a chromaticity diagram showing a color change when a voltage is applied to one subpixel of this liquid crystal display element.
With no electric field, it is black and the liquid crystal starts to move from the voltage of 1.1V.
The brightness gradually becomes bright until it becomes white at 1.7 V, but in the chromaticity diagram, it is almost achromatic by only slightly moving from the black circle 31 to the white circle 32.

【0033】位相差板としてポリアリレートよりΔnの
波長分散の小さい例えばポリカーボネートを用いると、
黒がもっと青みがかってくるので、ポリアリレートやポ
リサルファーのようなΔnの波長依存が液晶に近い位相
差板がよい。
When, for example, polycarbonate having a smaller wavelength dispersion of Δn than polyarylate is used as the retardation plate,
Since black becomes more bluish, it is preferable to use a retardation plate such as polyarylate or polysulfur whose wavelength dependence of Δn is close to that of liquid crystal.

【0034】1.7Vからさらに電圧を上げていくと、
黄色(点33)から、赤(点34)、紫、青(点3
5)、緑(点36)と色が変化していく。液晶への印加
電圧と1つの副画素の色(複屈折色)の対応を(表1)
に示す。
When the voltage is further increased from 1.7V,
From yellow (point 33) to red (point 34), purple, blue (point 3)
5), the color changes to green (point 36). Correspondence between the voltage applied to the liquid crystal and the color of one subpixel (birefringence color) (Table 1)
Shown in

【0035】[0035]

【表1】 [Table 1]

【0036】印加電圧に応じて、上記のような発色をす
る副画素を、図1のように面積を1:2としてそれぞれ
TFT素子で駆動する。表示したいカラー画像のデータ
は、パーソナルコンピュータの場合、赤、緑、青、と強
度の4つのビットマップから作られ、テレビジョンの映
像信号では、輝度信号と2つの色差信号が送られる。
The sub-pixels which develop color as described above according to the applied voltage are driven by the TFT elements with the area of 1: 2 as shown in FIG. In the case of a personal computer, data of a color image to be displayed is created from four bitmaps of red, green, blue, and intensity, and a luminance signal and two color difference signals are sent as a television video signal.

【0037】しかし、いずれの場合も、ディスプレイに
最終的に送られる信号は赤、青、緑の3つの色の光強度
信号となる。赤、緑、青の強度をEr、Eg、Ebとし
て2ビットデータで扱うとすると、任意の画素の色信号
はベクトル(Er、Eg、Eb)で表される。但し、各
成分は0から3の値を取るとする。
However, in any case, the signals finally sent to the display are light intensity signals of three colors of red, blue and green. If red, green, and blue intensities are treated as 2-bit data as Er, Eg, and Eb, the color signal of an arbitrary pixel is represented by a vector (Er, Eg, Eb). However, each component is assumed to have a value of 0 to 3.

【0038】この色信号を処理して各副画素を駆動する
駆動電圧を発生する本発明の駆動回路のブロック図を図
4に示す。
FIG. 4 shows a block diagram of a driving circuit of the present invention which processes the color signals to generate a driving voltage for driving each sub-pixel.

【0039】まず初めに、色信号を純色信号と無彩色信
号を信号分離部40で分離する。Er,Eg,Ebの3
原色の各成分のうち、最小値のデータを比較器41で検
出し、各成分との差を減算器42で行う。例えば、Eg
が最小だとすれば (Er、Eg、Eb)−(Eg、Eg、Eg) =(Er−Eg、0、Eb−Eg) ・・・・・・(式2) となり、この新しいベクトルが色信号の表す色と色相
が、同じ純色(彩度が最も高い色)信号となり、一方、
3成分がすべて最小値Egとなる(Eg,Eg,Eg)
が、色信号の無彩色成分を抽出した無彩色信号となる。
比較器41は、最小値がどの色になっているかを示すフ
ラッグ信号47を出力する。最小値が2つあるときは、
いずれの信号でも良い。
First, the signal separation unit 40 separates a color signal into a pure color signal and an achromatic color signal. Er, Eg, Eb 3
Of the respective components of the primary colors, the minimum value data is detected by the comparator 41, and the difference from the respective components is calculated by the subtractor 42. For example, Eg
Is the minimum, (Er, Eg, Eb)-(Eg, Eg, Eg) = (Er-Eg, 0, Eb-Eg) (Equation 2) The signal represents the same pure color (color with the highest saturation) and hue as the signal, while
All three components have the minimum value Eg (Eg, Eg, Eg)
Is an achromatic signal obtained by extracting the achromatic component of the color signal.
The comparator 41 outputs a flag signal 47 indicating which color has the minimum value. If there are two minimum values,
Either signal will do.

【0040】次に、分離した純色信号と無彩色信号の各
々に対応する階調電圧を電圧源43で発生し、それぞれ
の階調電圧を、副画素をスイッチ部48で純色画素と無
彩色画素に振り分けて印加する。
Next, a grayscale voltage corresponding to each of the separated pure color signal and achromatic color signal is generated by the voltage source 43, and the respective grayscale voltages are supplied to the sub-pixels by the switch section 48 as pure color pixels and achromatic color pixels. And then apply.

【0041】(式2)の純色信号が0ベクトルのときは
画素が無彩色となるが、それ以外のときは、赤と青の間
の色相となる。赤を基準に、どの程度青が混じっている
かの混色比率を次の(式3)のように、 Kb=(Eb−Eg)/{(Er−Eg)+(Eb−Eg)} ・・・・・・(式3) 純色信号の青の成分を各成分の総和(赤と青の和)で割
って、青み度Kbとして検出する。すなわち、青の成分
が0のとき、すなわち、完全な赤であれば青み度は0。
完全な青であれば、赤の成分が0になるので、青み度は
1になる。
When the pure color signal of (Equation 2) is the 0 vector, the pixel is achromatic, but in other cases, the hue is between red and blue. The color mixture ratio of how much blue is mixed based on red is expressed by the following equation (3): Kb = (Eb-Eg) / {(Er-Eg) + (Eb-Eg)} (Equation 3) The blue component of the pure color signal is divided by the total sum of each component (sum of red and blue) to detect the bluishness Kb. That is, when the blue component is 0, that is, when it is completely red, the bluishness is 0.
In the case of perfect blue, the red component becomes 0, so the bluishness becomes 1.

【0042】副画素が赤を示す電圧をVr、青を示す電
圧をVbとすると、純色信号に対応する階調電圧Vhは
ほぼ次の Vh=Vr+Kb(Vr−Vb) ・・・・・・(式4) のようになる。正確には非線形的な変換とするべきであ
るが、本実施例では階調数が少ないので線形変換とし
た。
Assuming that the voltage indicating red in the sub-pixel is Vr and the voltage indicating blue is Vb, the gradation voltage Vh corresponding to a pure color signal is approximately the following Vh = Vr + Kb (Vr-Vb). It becomes like Formula 4). To be exact, nonlinear conversion should be performed, but in this embodiment, since the number of gradations is small, linear conversion is used.

【0043】(式3)及び(式4)の演算を演算器44
で行う。画素の色信号の色相が青と緑の間にあるとき
も、上記と同様の演算を行えばよいので、比較器41の
フラッグ信号によって、色相が赤と青の間か、青と緑の
間かを選択する。
The arithmetic operation of the equations (3) and (4) is performed by the arithmetic unit 44.
Do with. Even when the hue of the pixel color signal is between blue and green, the same calculation as above may be performed. Therefore, depending on the flag signal of the comparator 41, the hue may be between red and blue or between blue and green. Or select.

【0044】しかし、色相が緑と赤の間にあるときは、
緑と赤が発色する電圧が不連続なので、純色副画素への
印加電圧Vhの設定が上記と異なる。色相ベクトル、及
び赤み度Krはそれぞれ(式2)、(式3)と同様に (Er,Eg,Eb)−(Eb,Eb,Eb)=(Er
−Eb,Eg−Eb,0) Kr=(Er−Eb)/(Er+Eg−2Eb) として算出するが、Krが0.5の時は複屈折色で黄色
が表示される電圧VyにVhを設定する。
However, when the hue is between green and red,
Since the voltages for coloring green and red are discontinuous, the setting of the applied voltage Vh to the pure color sub-pixel is different from the above. The hue vector and the redness degree Kr are respectively (Er, Eg, Eb)-(Eb, Eb, Eb) = (Er) as in (Equation 2) and (Equation 3).
-Eb, Eg-Eb, 0) Calculated as Kr = (Er-Eb) / (Er + Eg-2Eb), but when Kr is 0.5, Vh is set to the voltage Vy at which yellow is displayed in a birefringent color. To do.

【0045】本実施例ではおよそ2.1Vであった。K
rが0.5〜1.0の間では、黄色と赤の間の色なので Vh=2×(Kr−0.5)(Vr−Vy)+Vy ・・・・・・(式5) と設定する。
In this example, it was about 2.1V. K
When r is between 0.5 and 1.0, it is a color between yellow and red, so Vh = 2 × (Kr−0.5) (Vr−Vy) + Vy (Formula 5) is set. To do.

【0046】一方、Krが0.5未満のときは緑と黄色
の中間色になるが、図3のように緑になる電圧Vgより
電圧を上げたときに黄緑色が表示できる。このとき、 Vh=Vg+Kr ・・・・・・(式6) と電圧を設定すると、概ね黄色と緑色の間の表示が可能
である。(式5)、(式6)による演算を演算器45で
行う。演算器44と45の結果は、フラッグ47でスイ
ッチ53で選択して最終的なVhを求める。
On the other hand, when Kr is less than 0.5, it is an intermediate color between green and yellow, but as shown in FIG. 3, when the voltage is raised from the voltage Vg for making it green, yellow green can be displayed. At this time, if a voltage is set as Vh = Vg + Kr (Equation 6), it is possible to display a color between approximately yellow and green. The arithmetic unit 45 performs the operations according to (Equation 5) and (Equation 6). The results of the arithmetic units 44 and 45 are selected by the switch 53 by the flag 47 to obtain the final Vh.

【0047】ところで、純色副画素は電圧により色相だ
けが変わるので、その明度は副画素の面積で制御しなけ
ればならない。従って、純色信号の強度、すなわち(式
2)の成分の最大値を比較器49で検出して、デコーダ
50の出力でスイッチ51、52を切り替えることで、
最大値と純色副画素として選択する副画素の面積が比例
するよう、最大値が3の時は副画素10、11の両方、
2の時は副画素10のみ、1の時は副画素11のみを電
圧源のVhの端子に接続するようスイッチ部53を制御
する。
By the way, since only the hue of the pure color sub-pixel changes depending on the voltage, its brightness must be controlled by the area of the sub-pixel. Therefore, by detecting the intensity of the pure color signal, that is, the maximum value of the component of (Equation 2) with the comparator 49, and switching the switches 51 and 52 with the output of the decoder 50,
When the maximum value is 3, both the sub-pixels 10 and 11 are arranged so that the maximum value and the area of the sub-pixel selected as the pure color sub-pixel are proportional to each other.
When it is 2, only the sub-pixel 10 is connected, and when it is 1, only the sub-pixel 11 is connected to the Vh terminal of the voltage source.

【0048】そして、残りの副画素には、無彩色信号に
対応する階調電圧Vcが印加される。無彩色副画素の明
度はEgなので、Egを無彩色副画素の面積の和Sで割
った値が、各無彩色副画素の明度になる。面積の和Sは
比較器49の最大値と等しい。
Then, the gradation voltage Vc corresponding to the achromatic signal is applied to the remaining sub-pixels. Since the lightness of the achromatic subpixel is Eg, a value obtained by dividing Eg by the sum S of the areas of the achromatic subpixels is the lightness of each achromatic subpixel. The sum S of areas is equal to the maximum value of the comparator 49.

【0049】前述したように無彩色副画素は、電圧によ
り明度を制御できるので、明度Eg/Sに相当する電圧
Vcを、(式5)を基づいて演算器46で演算して出力
した。すなわち、初期の黒表示から液晶の応答が始まる
閾値電圧をVth、白になる電圧Vwとして Vc=(Vw−Vth)×Eg/S+Vth ・・・・・・(式7) である。但し、本実施例よりも画素数を増やす等の方法
により色数を増やして、厳密な色再現を行う場合は、次
式 Vc=a(Vw−Vth)×Eg/S のように補正係数aを掛ける必要がある。ここで、補正
係数aとは、複屈折効果による色と、3原色の混色によ
る色の彩度の違いを補正するものである。
As described above, since the brightness of the achromatic sub-pixel can be controlled by the voltage, the voltage Vc corresponding to the brightness Eg / S is calculated by the calculator 46 based on (Equation 5) and output. That is, Vc = (Vw-Vth) * Eg / S + Vth (Equation 7), where Vth is the threshold voltage at which the response of the liquid crystal starts from the initial black display and Vw is the voltage at which the liquid crystal becomes white. However, when the number of colors is increased by a method such as increasing the number of pixels as compared with the present embodiment and strict color reproduction is performed, the correction coefficient a is expressed by the following equation: Vc = a (Vw−Vth) × Eg / S. Need to multiply. Here, the correction coefficient a is for correcting the difference in color saturation between the color due to the birefringence effect and the color mixture of the three primary colors.

【0050】図3の色度図のように、複屈折効果による
色表示では色の軌跡32は円弧を描き、赤、青、緑の中
間の色相では、2つの原色を混ぜた時の直線的な色の軌
跡37よりも外側を通る。従って、青み度Kbが0.5
に近いほど、無彩色副画素の明度を上げる必要がある。
例えば、 a=(0.5−|Kb−0.5|)×1.05 とするとよい。
As shown in the chromaticity diagram of FIG. 3, in the color display by the birefringence effect, the color locus 32 draws an arc, and in the intermediate hues of red, blue, and green, the two primary colors are linearly mixed. It passes outside the locus 37 of different colors. Therefore, the blueness Kb is 0.5
The closer to, the higher the brightness of the achromatic subpixel needs to be.
For example, a = (0.5− | Kb−0.5 |) × 1.05 may be set.

【0051】スイッチ51、52の階調電圧は、サンプ
ルホールド回路を介して従来のソース側駆動LSIへ転
送されて、ゲート信号に同期してTFTに印加され、各
々の副画素を駆動できる。
The gradation voltages of the switches 51 and 52 are transferred to a conventional source side driving LSI via a sample hold circuit and applied to the TFT in synchronization with a gate signal to drive each subpixel.

【0052】上記の電圧Vr、Vg、Vbは、本実施例
では(表1)のようになる。但し、これらの電圧は温度
によってわずかに変化し、(表1)の電圧は25℃のと
きの値である。
The above voltages Vr, Vg and Vb are as shown in (Table 1) in this embodiment. However, these voltages slightly change depending on the temperature, and the voltage in Table 1 is a value at 25 ° C.

【0053】具体的に、いくつかの色データについて、
(式2)から(式7)に基づいて、副画素10、11に
印加する電圧V10、V11と、それぞれの副画素の色、及
び副画素の集合である画素の色がどうなるかを、(表
2)に例示した。
Specifically, for some color data,
Based on (Equation 2) to (Equation 7), the voltages V10 and V11 applied to the sub-pixels 10 and 11, the color of each sub-pixel, and the color of the pixel that is a set of sub-pixels are calculated as follows. Examples are shown in Table 2).

【0054】[0054]

【表2】 [Table 2]

【0055】1行目は、色データがEr,Eg,Ebと
も3なので、色相ベクトルが0ベクトルで無彩色とな
り、副画素10も11も白になる。2行目では色データ
の最小成分はEr=1なので、(式2)から色相ベクト
ルは(0,1,2)となり、青と緑の間の色相で、(式3)か
ら Kg=1/(1+2)=1/3 となり、緑み度が1/3の青なので、(式4)と(表
1)から Vh=Vb+Kg(Vg−Vb) =3.2+1/3×(4.0−3.2) =3.47 (V) となる。
In the first line, since the color data for Er, Eg, and Eb is 3, the hue vector is 0, which is an achromatic color, and the sub-pixels 10 and 11 are also white. In the second line, the minimum component of color data is Er = 1, so the hue vector is (0,1,2) from (Equation 2), and the hue between blue and green is Kg = 1 / Equation from (Equation 3). Since (1 + 2) = 1/3 and the greenness is 1/3 blue, Vh = Vb + Kg (Vg−Vb) = 3.2 + 1/3 × (4.0−) from (Equation 4) and (Table 1). 3.2) = 3.47 (V).

【0056】このとき、色相ベクトルの最大値がEb=
2なので、副画素10を色相調整用として、V10=Vh
を印加すると緑味の青色となる。そして、他方の彩度調
整用副画素である副画素11の明度Er=1で、面積S
=1なので(式5)から V11=Vc=Vw=1.7 (V) である。
At this time, the maximum value of the hue vector is Eb =
Since it is 2, V10 = Vh for the sub-pixel 10 for hue adjustment.
Is applied, a greenish blue color is obtained. When the brightness Er of the sub-pixel 11 that is the other saturation adjustment sub-pixel is 1, the area S
Since (= 1), V11 = Vc = Vw = 1.7 (V) from (Equation 5).

【0057】(表2)の第3行の場合は、色データの最
小値がEbで、緑と赤の間の色相になるので、(式
6)、(式7)を適用すると、 Kr=0.5 Vh=Vy=2.1 (V) となる。色相ベクトルの最大値が1なので、小さい方の
副画素11を色相調整用に選択し、彩度調整副画素10
を白にすればよい。
In the case of the third row in (Table 2), the minimum value of the color data is Eb, which is a hue between green and red. Therefore, applying (Equation 6) and (Equation 7), Kr = 0.5 Vh = Vy = 2.1 (V). Since the maximum value of the hue vector is 1, the smaller subpixel 11 is selected for hue adjustment, and the saturation adjustment subpixel 10 is selected.
Should be white.

【0058】そして、第4行の色データでは、最小値が
Er=0で、色相ベクトルは(0,3,3)、 Kg=0.5 の青緑なので、Vh=3.6ボルトとなり、色相ベクト
ルの最大値が3なので、副画素10と11の両方が色相
調整用なので、V11=V10=Vhとなる。
In the color data of the fourth row, the minimum value is Er = 0, the hue vector is (0,3,3), and Kg = 0.5 is blue-green. Therefore, Vh = 3.6 V, Since the maximum value of the hue vector is 3, both sub-pixels 10 and 11 are for hue adjustment, and therefore V11 = V10 = Vh.

【0059】第5行目の色データについては、色相ベク
トルが(1、0、0)なので、副画素11を赤にし、他方の副
画素10を彩度調整用とする。副画素10の明度は1な
ので(式7)から Vc=(1.7−1.1)×1/2+1.1 =1.4 (V) となる。このとき、副画素10は灰色(白の明るさに対
して50%)となる。
With respect to the color data on the fifth line, since the hue vector is (1, 0, 0), the sub-pixel 11 is made red and the other sub-pixel 10 is used for saturation adjustment. Since the brightness of the sub-pixel 10 is 1, Vc = (1.7-1.1) × 1/2 + 1.1 = 1.4 (V) from (Equation 7). At this time, the sub-pixel 10 becomes gray (50% of the brightness of white).

【0060】最後の第6行目の色データ(2、0、0)は明度
2の赤で、色相ベクトルも同じであるので、副画素10
が赤で、副画素11が黒となるよう電圧を設定すればよ
い。
Since the color data (2, 0, 0) in the final sixth row is red with a lightness of 2 and the hue vector is the same, the sub-pixel 10
The voltage may be set so that is red and the sub-pixel 11 is black.

【0061】なお、本実施例では図2のように反射板1
5を液晶層の背後に置いて反射型としたが、反射板をは
ずして背後に光源を置けば、カラーフィルターのない低
コストで明るい透過型カラー液晶を実現できる。
In this embodiment, as shown in FIG.
Although 5 is placed behind the liquid crystal layer to make it a reflection type, a bright transmissive color liquid crystal without a color filter can be realized by removing the reflector and placing a light source at the back.

【0062】また、面積の異なる副画素の数を増やせば
色数は極めて多くでき、フルカラーに近い表示も可能で
ある。
Further, if the number of sub-pixels having different areas is increased, the number of colors can be made extremely large, and a display close to full color is possible.

【0063】さらに、本実施例では、純色画素はすべて
同じ色としたが、複数の副画素に異なる色を発色させ
て、加法混色により純色信号に対応する色を表示しても
よい。例えば、純色信号が青緑に対応するときに、青と
緑の2つ以上の副画素により、その中間色である青緑を
表現してもよい。この場合でも、純色信号の強度に応じ
て選択する副画素を変えて、残った副画素で彩度を調整
するということができ、本発明は効果を発揮できる。
Further, in the present embodiment, all of the pure color pixels have the same color, but a plurality of sub-pixels may be made to develop different colors and the color corresponding to the pure color signal may be displayed by additive color mixture. For example, when a pure color signal corresponds to blue-green, two or more sub-pixels of blue and green may express the intermediate color blue-green. Even in this case, it is possible to change the selected sub-pixel according to the intensity of the pure color signal and adjust the saturation with the remaining sub-pixels, and the present invention can exert the effect.

【0064】また、本実施例ではTFT素子によって液
晶を駆動したが、これに限らず、2端子型のアクティブ
素子による駆動や、単純マトリクス駆動でも同様の信号
処理を行えば、色数を増やすことができ、効果を発揮で
きる。
Further, although the liquid crystal is driven by the TFT element in this embodiment, the number of colors can be increased by performing the same signal processing even in the case of driving by a two-terminal active element or simple matrix driving. Can be achieved and the effect can be demonstrated.

【0065】以上のように、本発明の液晶表示素子およ
びその駆動回路はカラーフィルターを用いない低コスト
で、明るいカラー液晶を用いて非常に多くの色表現を可
能とするものである。
As described above, the liquid crystal display device and its driving circuit of the present invention can express a great number of colors using a bright color liquid crystal at low cost without using a color filter.

【0066】[0066]

【発明の効果】本発明の液晶表示素子とその駆動回路
は、カラーフィルターを用いずに電圧により色を可変で
きる複屈折効果によるカラー液晶素子において、少ない
画素数で非常に多くの色表示を可能とでき、これによ
り、低コストで、明るいカラー液晶表示素子が実現でき
る。特に、従来は困難であった反射型液晶のフルカラー
表示を可能とできる。
The liquid crystal display device and its driving circuit of the present invention can display a great number of colors with a small number of pixels in a color liquid crystal device with a birefringence effect that can change the color by voltage without using a color filter. As a result, a bright color liquid crystal display device can be realized at low cost. In particular, full-color display of reflective liquid crystal, which has been difficult in the past, can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶表示素子の実施例の液晶表示素子
の平面図
FIG. 1 is a plan view of a liquid crystal display element as an embodiment of the liquid crystal display element of the present invention.

【図2】本発明の液晶表示素子の実施例の液晶表示素子
の断面図
FIG. 2 is a cross-sectional view of a liquid crystal display element of an embodiment of the liquid crystal display element of the present invention.

【図3】本発明の液晶表示素子の実施例の色度図FIG. 3 is a chromaticity diagram of an example of the liquid crystal display device of the present invention.

【図4】本発明の液晶表示素子の駆動回路のブロック図FIG. 4 is a block diagram of a drive circuit for a liquid crystal display element of the present invention.

【符号の説明】[Explanation of symbols]

1 下基板 2 上基板 3、4 TFT素子 5 配向膜 6 ゲート線 7 液晶分子 8 液晶分子 9 二色性色素 10、11 副画素電極 12 共通電極 13 位相差板 14a、14b 偏光板 15 反射板 1 Lower Substrate 2 Upper Substrate 3, 4 TFT Element 5 Alignment Film 6 Gate Line 7 Liquid Crystal Molecule 8 Liquid Crystal Molecule 9 Dichroic Dye 10, 11 Sub-Pixel Electrode 12 Common Electrode 13 Phase Difference Plate 14a, 14b Polarizing Plate 15 Reflector

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】画素が複数の副画素からなり、前記副画素
を形成する電極間にネマチック液晶を挟んだ液晶層と、
前記液晶層に隣接する偏光子と、位相差板とを有し、前
記電極間に電圧を印加することにより前記ネマチック液
晶の複屈折量を制御して、複屈折効果により前記複数の
副画素の各々の色を可変させて画素を色信号に対応した
所望の色にする液晶表示素子において、前記色信号を無
彩色信号と純色信号とに分離し、前記純色信号の強度に
応じて選択した前記複数の副画素のうちの一部または全
部の副画素を、前記純色信号に対応する電圧を印加し、
残りの副画素に無彩色信号に対応する電圧を印加するこ
とを特徴とする液晶表示素子。
1. A liquid crystal layer in which a pixel is composed of a plurality of sub-pixels, and nematic liquid crystal is sandwiched between electrodes forming the sub-pixels,
It has a polarizer adjacent to the liquid crystal layer and a retardation plate, and controls the birefringence amount of the nematic liquid crystal by applying a voltage between the electrodes, and the birefringence effect causes the birefringence of the plurality of sub-pixels to increase. In a liquid crystal display element that makes each pixel a desired color corresponding to a color signal by varying each color, the color signal is separated into an achromatic color signal and a pure color signal, and selected according to the intensity of the pure color signal. A voltage corresponding to the pure color signal is applied to some or all of the plurality of subpixels,
A liquid crystal display device characterized in that a voltage corresponding to an achromatic signal is applied to the remaining sub-pixels.
【請求項2】複数の副画素の各々の面積を互いに異なら
せ、純色信号の強度に応じて選択した副画素の面積の和
が、前記純色信号の強度と比例し、残りの副画素の面積
と明度の積が、無彩色信号の強度と比例する請求項1記
載の液晶表示素子。
2. The area of each of the plurality of subpixels is made different from each other, and the sum of the areas of the subpixels selected according to the intensity of the pure color signal is proportional to the intensity of the pure color signal, and the area of the remaining subpixels. 2. The liquid crystal display element according to claim 1, wherein the product of the lightness and the lightness is proportional to the intensity of the achromatic signal.
【請求項3】液晶層と位相差板と偏光子からなり、複屈
折効果により個々の副画素の色が、黒から白の輝度の異
なる無彩色と、少なくとも赤、青、緑の3色が印加電圧
に応じて発色する請求項2記載の液晶表示素子。
3. A liquid crystal layer, a retardation plate, and a polarizer, and due to the birefringence effect, the color of each subpixel is an achromatic color having different brightness from black to white and at least three colors of red, blue, and green. The liquid crystal display element according to claim 2, which develops color in accordance with an applied voltage.
【請求項4】液晶層の背後に反射板を具備する請求項1
〜3何れかに記載の液晶表示素子。
4. A reflector is provided behind the liquid crystal layer.
4. The liquid crystal display device according to any one of 3 to 3.
【請求項5】2枚の偏光子で液晶層を挟み、前記2枚の
偏光子の少なくとも一方の偏光子と液晶層との間の位相
差板と、前記液晶層および偏光子の背後に光源を有する
請求項1〜3何れかに記載の液晶表示素子。
5. A liquid crystal layer sandwiched between two polarizers, a retardation plate between at least one of the two polarizers and the liquid crystal layer, and a light source behind the liquid crystal layer and the polarizer. The liquid crystal display element according to claim 1, which comprises:
【請求項6】画素が、印加電圧によって色が変わる複数
の副画素からなる液晶表示装置に入力される色信号の3
原色の各成分から、前記各成分の内の最小値を減算して
純色信号を求め、3原色の各成分がすべて前記最小値か
らなる無彩色信号を求め前記純色信号と前記無彩色信号
とに分離する信号分離部と、前記純色信号と無彩色信号
の各々に対応する複数の階調電圧を発生する電圧発生源
と、前記複数の副画素の各々と前記電圧発生源の複数の
階調電圧の接続を切り替えるスイッチ部とを具備するこ
とを特徴とする液晶表示素子の駆動回路。
6. A three-color signal input to a liquid crystal display device, in which a pixel is composed of a plurality of sub-pixels whose color changes according to an applied voltage.
From each component of the primary color, the minimum value of each component is subtracted to obtain a pure color signal, and an achromatic color signal in which each component of the three primary colors has the minimum value is obtained to obtain the pure color signal and the achromatic color signal. A signal separation unit for separating, a voltage generation source for generating a plurality of grayscale voltages corresponding to each of the pure color signal and the achromatic color signal, each of the plurality of subpixels, and a plurality of grayscale voltages of the voltage generation source. 2. A drive circuit for a liquid crystal display device, comprising:
【請求項7】純色信号に対応する階調電圧に接続する副
画素の面積の和が、純色信号の3原色の各成分の内の最
大値と比例するようにスイッチ部の接続を設定し、前記
副画素以外の無彩色副画素の面積の和で無彩色信号の成
分を割った商と、前記無彩色副画素の明度が比例するよ
う無彩色信号に対応する階調電圧を決めることを特徴と
する請求項6記載の液晶表示素子の駆動回路。
7. The connection of the switch unit is set such that the sum of the areas of the sub-pixels connected to the grayscale voltage corresponding to the pure color signal is proportional to the maximum value of the respective components of the three primary colors of the pure color signal, The gradation voltage corresponding to the achromatic color signal is determined so that the quotient obtained by dividing the component of the achromatic color signal by the sum of the areas of the achromatic color subpixels other than the subpixel is proportional to the brightness of the achromatic color subpixel. The drive circuit for the liquid crystal display element according to claim 6.
【請求項8】電圧発生源において、純色信号に対応する
階調電圧を生成する際に、あらかじめ少なくとも3色の
基準色と前記基準色に対応する階調電圧とを設定してお
き、前記純色信号に対応する純色を前記基準色のうちの
2色により混色したときの混色比率を求め、前記混色比
率に相関させて、前記2色の階調電圧の間の電圧を内挿
することで前記純色信号に対応する階調電圧を生成する
ことを特徴とする請求項6記載の液晶表示素子の駆動回
路。
8. When generating a gradation voltage corresponding to a pure color signal in a voltage generation source, at least three reference colors and gradation voltages corresponding to the reference colors are set in advance, and the pure color signal is set. A pure color corresponding to a signal is mixed with two of the reference colors to obtain a color mixture ratio, which is correlated with the color mixture ratio to interpolate a voltage between gradation voltages of the two colors to obtain the color mixture ratio. 7. The drive circuit for a liquid crystal display element according to claim 6, wherein a grayscale voltage corresponding to a pure color signal is generated.
JP7270830A 1995-10-19 1995-10-19 Liquid crystal display element Pending JPH09113868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7270830A JPH09113868A (en) 1995-10-19 1995-10-19 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7270830A JPH09113868A (en) 1995-10-19 1995-10-19 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH09113868A true JPH09113868A (en) 1997-05-02

Family

ID=17491612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7270830A Pending JPH09113868A (en) 1995-10-19 1995-10-19 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH09113868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109385A1 (en) * 2004-05-06 2005-11-17 Canon Kabushiki Kaisha Display and image forming apparatus
WO2005111980A1 (en) * 2004-05-14 2005-11-24 Canon Kabushiki Kaisha Display device
WO2005111705A1 (en) * 2004-05-14 2005-11-24 Canon Kabushiki Kaisha Color display device and method for driving the same
JP2012093437A (en) * 2010-10-25 2012-05-17 Chi Mei Electronics Corp Liquid crystal display device and electronic appliance including the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109385A1 (en) * 2004-05-06 2005-11-17 Canon Kabushiki Kaisha Display and image forming apparatus
JP2005346045A (en) * 2004-05-06 2005-12-15 Canon Inc Display device and image forming apparatus
US7375735B2 (en) 2004-05-06 2008-05-20 Canon Kabushiki Kaisha Display apparatus and image forming apparatus
JP4498205B2 (en) * 2004-05-06 2010-07-07 キヤノン株式会社 Display device
WO2005111980A1 (en) * 2004-05-14 2005-11-24 Canon Kabushiki Kaisha Display device
WO2005111705A1 (en) * 2004-05-14 2005-11-24 Canon Kabushiki Kaisha Color display device and method for driving the same
JP2005352463A (en) * 2004-05-14 2005-12-22 Canon Inc Color display element and method of driving the same
US7379080B2 (en) 2004-05-14 2008-05-27 Canon Kabushiki Kaisha Color display device and driving method thereof
US7460115B2 (en) 2004-05-14 2008-12-02 Canon Kabushiki Kaisha Display apparatus using subpixels with high light utilization
US8184134B2 (en) 2004-05-14 2012-05-22 Canon Kabushiki Kaisha Display apparatus
JP2012093437A (en) * 2010-10-25 2012-05-17 Chi Mei Electronics Corp Liquid crystal display device and electronic appliance including the same

Similar Documents

Publication Publication Date Title
US8134582B2 (en) Color display apparatus
US5583678A (en) Color liquid crystal display apparatus
US20050243047A1 (en) Color display device
JP2621385B2 (en) Electro-optical device
WO2005111705A1 (en) Color display device and method for driving the same
US7375735B2 (en) Display apparatus and image forming apparatus
US7782425B2 (en) OCB mode liquid crystal display and a driving method of the same
JP3308154B2 (en) Liquid crystal panel and its driving method
JP3284169B2 (en) Birefringence control type liquid crystal display
JPH09113868A (en) Liquid crystal display element
EP1850317B1 (en) Image projection apparatus
JPH09244057A (en) Liquid crystal display device
US20080291375A1 (en) Color display apparatus
KR101186869B1 (en) Liquid crystal display device for controlling viewing angle
JPH08190101A (en) Liquid crystal display element
JP2005031265A (en) Liquid crystal display
JPH08278500A (en) Liquid crystal display panel
JP2006053498A (en) Color display device
JP2817740B2 (en) Liquid crystal display
JP2757380B2 (en) Color liquid crystal display device
JPH0527711A (en) Liquid crystal display device
JP3000669B2 (en) Liquid crystal display
JP3733018B2 (en) Liquid crystal display
JP2780221B2 (en) Electro-optical device
JP2815006B2 (en) Electro-optical device