JPH09113412A - Method and apparatus for inspection of orientation of organic thin film - Google Patents

Method and apparatus for inspection of orientation of organic thin film

Info

Publication number
JPH09113412A
JPH09113412A JP29788495A JP29788495A JPH09113412A JP H09113412 A JPH09113412 A JP H09113412A JP 29788495 A JP29788495 A JP 29788495A JP 29788495 A JP29788495 A JP 29788495A JP H09113412 A JPH09113412 A JP H09113412A
Authority
JP
Japan
Prior art keywords
light
sample
measuring
thin film
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29788495A
Other languages
Japanese (ja)
Other versions
JP2735053B2 (en
Inventor
Ichiro Hirozawa
一郎 廣沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29788495A priority Critical patent/JP2735053B2/en
Publication of JPH09113412A publication Critical patent/JPH09113412A/en
Application granted granted Critical
Publication of JP2735053B2 publication Critical patent/JP2735053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the molecular orientation of an organic thin film by a method wherein light formed by condensing a beam of parallel light through a lens is made incident on a sample, its reflected light is passed again through the lens and the spatial distribution of the intensity of the reflected light is measured as a beam of parallel light. SOLUTION: Radiant light from a monochromatic light source 1 is magnified by a condensing lens 2 so as to be changed into a beam of parallel light, and the light is changed, by a slit 3, into a shape whose cross section is linear. In addition, radiant light from the slit 3 is passed through a polarizer 4, linearly polarized light is formed, and the light is set in such a way that it advances to the periphery from the center of a condensing lens 5. When vibration faces of the transmitted light of the polarizer 4 are parallel in the length direction of the slit 3, P-polarized light is incident on a sample 10, and, when they are vertical, S-polarized light is incident on the sample 10. Reflected light form the sample 10 is passed again through the lens 5 so as to become a beam of parallel light, and the light changes its direction by a reflecting mirror 6 so as to be incident on a slit 7. After the light has been magnified by a magnifier 8, the intensity of the light is measured by a one-dimensional detector 9. An angle of incidence on the sample 10 is known on the basis of the position of reflected light detected by the detector 9. In order to measure the anisotropy of the intensity of the reflected light, the slit 3 which comprises an opening part 11 is used, and the sample 10 is turned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機薄膜の微小部分
子の配向測定方法及び装置に関し、特に、好ましくは、
液晶表示素子において液晶分子の配向を制御する有機薄
膜の分子配向を評価する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the orientation of small molecules in an organic thin film.
The present invention relates to a method and an apparatus for evaluating the molecular orientation of an organic thin film for controlling the orientation of liquid crystal molecules in a liquid crystal display device.

【0002】[0002]

【従来の技術】有機薄膜の膜中分子の配向状態はそれを
用いたデバイスの機能に与える影響が大きい。特に、液
晶表示素子で液晶分子に初期配向を与えるのに用いられ
る有機薄膜においては、有機薄膜分子の配向と、液晶分
子の配向と、の間に密接な関係があることが知られてお
り(例えば文献(1)(石原他、“リキッド クリスタル
ズ(Liquid Crystals)”、第4巻、6号、第669頁、
1989年)参照)、有機薄膜の分子配向度が大きいほ
ど、液晶分子の配向規制力が大きいとされる。このため
に有機薄膜の分子配向の定量的測定はデバイスの機能を
評価する上で重要である。
2. Description of the Related Art The orientation of molecules in an organic thin film has a great effect on the function of a device using the same. In particular, in an organic thin film used to give initial alignment to liquid crystal molecules in a liquid crystal display device, it is known that there is a close relationship between the alignment of the organic thin film molecules and the alignment of the liquid crystal molecules ( For example, reference (1) (Ishihara et al., “Liquid Crystals”, Vol. 4, No. 6, p. 669,
1989)), the greater the degree of molecular orientation of the organic thin film, the greater the alignment regulating force of the liquid crystal molecules. For this reason, quantitative measurement of the molecular orientation of the organic thin film is important for evaluating the function of the device.

【0003】有機薄膜の従来の評価方法においては、赤
外線吸収分光法やラマン散乱分光法など、分子振動から
分子の状態を観察する方法が中心である。薄膜内の分子
配向度や配向方向についての知見は、分子配向に起因す
る薄膜の光学異方性を光の偏光を利用した二色比の測定
を行うことで評価している(例えば特開平6−1608
62号公報参照)。
[0003] In the conventional evaluation method of an organic thin film, a method of observing the state of a molecule from molecular vibration, such as infrared absorption spectroscopy and Raman scattering spectroscopy, is mainly used. The knowledge about the degree of molecular orientation and the orientation direction in the thin film is evaluated by measuring the optical anisotropy of the thin film caused by the molecular orientation by measuring the dichroic ratio using the polarization of light (for example, see Japanese Unexamined Patent Application Publication No. -1608
No. 62).

【0004】振動分光法以外にも試料を透過した光の旋
光度によって光学異方性を評価することが行われている
(例えば特開平6−102512号公報参照)。
In addition to vibrational spectroscopy, optical anisotropy is evaluated by optical rotation of light transmitted through a sample (see, for example, JP-A-6-102512).

【0005】また、偏光方向が膜表面に水平またはそれ
と直交する直線偏光を入射し、その反射光強度の差か
ら、分子配向によって生じる膜の面内の屈折率異方性を
観測する方法も提案されている(例えば特開平4−95
845号公報参照)。
Further, a method has been proposed in which linearly polarized light whose polarization direction is horizontal or perpendicular to the film surface is incident on the film surface, and the in-plane refractive index anisotropy of the film caused by molecular orientation is observed from the difference in reflected light intensity. (For example, Japanese Patent Application Laid-Open No. 4-95
No. 845).

【0006】さらに、上記した以外の、有機薄膜の従来
の評価方法として、原子間力顕微鏡や走査トンネル顕微
鏡によって薄膜表面の形状を二次元的に測定することが
行われている(例えば文献(2)(磯野他、日本学術振興
会、142委員会A委員会A部会、特別研究会試料、第
34頁、1994年)参照)。
[0006] In addition to the above, as a conventional evaluation method of an organic thin film, a two-dimensional measurement of the shape of the thin film surface using an atomic force microscope or a scanning tunnel microscope has been performed (for example, see Reference (2)). ) (Isono et al., Japan Society for the Promotion of Science, 142 Committee a committee a committee, a special study group sample, 34 pp., 1994) reference).

【0007】[0007]

【発明が解決しようとする課題】赤外吸収等の光を用い
た振動分光による方法は、ガラス基板上に透明電極膜を
作製し、その上に液晶配向膜がある液晶表示素子を測定
する際に、ガラス基板や透明電極膜の影響を避けること
はできない。特に、1500cm-1より低波数の赤外線
はガラスを透過しないために吸収スペクトルの測定が困
難である。
The method based on vibrational spectroscopy using light such as infrared absorption is used to measure a liquid crystal display device having a transparent electrode film formed on a glass substrate and a liquid crystal alignment film formed thereon. In addition, the influence of the glass substrate and the transparent electrode film cannot be avoided. In particular, since infrared rays having a wave number lower than 1500 cm -1 do not pass through glass, it is difficult to measure an absorption spectrum.

【0008】これまでの赤外分光による液晶配向膜の分
子配向の観測は1240cm-1のピークに注目して測定
を行っているので(例えば文献(3)(沢他、“ジャパニ
ーズジャーナル オブ アプライド フィジクス(Japan
ese Journal of Applied Physics)”、第33巻、第6
273頁、1994年)参照)、現在使用されている液
晶表示素子の配向膜の検査を行うことはできない。
[0008] The conventional observation of molecular orientation of a liquid crystal alignment film by infrared spectroscopy has focused on the peak at 1240 cm -1 (for example, see Reference (3) (Sawa et al., “Japanese Journal of Applied Physics” ). (Japan
ese Journal of Applied Physics) ", Volume 33, Volume 6
273, 1994)), it is not possible to inspect the alignment film of the liquid crystal display element currently used.

【0009】複屈折率測定を行う場合、通常ガラス基板
自身が歪による複屈折異方性を持つので配向膜自身の複
屈折率を測定するのは困難である。従って、従来から知
られている方法では、配向膜中の分子の配向状態を正確
に評価することはできない。
In the measurement of birefringence, it is usually difficult to measure the birefringence of the alignment film itself because the glass substrate itself has birefringence anisotropy due to strain. Therefore, the conventionally known method cannot accurately evaluate the alignment state of the molecules in the alignment film.

【0010】これに加えて複屈折位相差φ、複屈折率Δ
n、膜厚d、光の波長λとの間には次式(1)のような関
係がある。
In addition to this, the birefringence phase difference φ and the birefringence index Δ
The following equation (1) has a relationship among n, film thickness d, and light wavelength λ.

【0011】φ=2π(Δn)d/λ …(1)Φ = 2π (Δn) d / λ (1)

【0012】上式(1)は、複屈折位相差φの測定から得
られる量が、膜厚dと分子配向によって生じる複屈折率
Δnの積であることを示している。
The above equation (1) shows that the quantity obtained from the measurement of the birefringence phase difference φ is the product of the film thickness d and the birefringence index Δn generated by the molecular orientation.

【0013】液晶表示素子に配向膜として広く使われて
いる、ラビング処理されたポリイミド膜は、膜全体の分
子が配向するのではなく、表面付近が配向することが知
られている(例えば上記文献(3)(沢他、“ジャパニー
ズ ジャーナル オブ アプライド フィジクス(Japan
ese Journal of Applied Physics)”、第33巻、第6
273頁、1994年)参照)ので、配向した部分の厚
さが測定できなければ分子配向を定量的に知ることはで
きない。
It is known that a rubbed polyimide film, which is widely used as an alignment film in a liquid crystal display element, does not align molecules of the entire film but aligns near the surface (for example, the above-mentioned document). (3) (Sawa et al., “Japanese Journal of Applied Physics (Japan
ese Journal of Applied Physics) ", Volume 33, Volume 6
273, 1994)), so that the molecular orientation cannot be quantitatively known unless the thickness of the oriented portion can be measured.

【0014】そして、膜からの反射光強度の入射光の偏
光状態と、膜への入射方向(分子の配向方向に対する入
射光の方向)の依存性から、膜の面内の屈折率異方性を
測定して配向を決定する方法が、例えば上記特開平4−
95845号公報に提案されているが、複屈折位相差測
定と同様に、配向した部分の膜厚を測定することができ
ないために、膜の分子配向自身を測定することは不可能
である。
From the dependence of the intensity of the reflected light from the film on the polarization state of the incident light and the direction of incidence on the film (the direction of the incident light relative to the orientation direction of the molecules), the in-plane refractive index anisotropy is determined. The method of determining the orientation by measuring the
Although it is proposed in Japanese Patent Application Laid-Open No. 95845, it is impossible to measure the molecular orientation itself of the film because the film thickness of the oriented portion cannot be measured as in the birefringence phase difference measurement.

【0015】さらに、測定を行う際の技術的な困難性と
して、表面形状の異方性の効果が挙げられる。すなわ
ち、液晶配向膜として広く用いられるポリイミド膜は、
ラビングにより膜中の分子に分子配向が与えられるが、
このラビング処理により、ラビング方向に走る微細な溝
が形成されることが知られている(例えば上記文献(2)
(磯野他、日本学術振興会、142委員会A委員会A部
会、特別研究会試料、第34頁、1994年)等報告は
多数有る)。
Further, as a technical difficulty in performing the measurement, there is an effect of anisotropy of a surface shape. That is, a polyimide film widely used as a liquid crystal alignment film is:
Rubbing gives the molecules in the film a molecular orientation,
It is known that a fine groove running in the rubbing direction is formed by this rubbing treatment (for example, the above-mentioned literature (2)
(Isono et al., Japan Society for the Promotion of Science, 142 Committee A Committee A Subcommittee, Special Study Group Sample, p. 34, 1994) and many other reports.

【0016】この溝の存在のために正反射方向以外に散
乱される光の量に差が生じて反射光強度に影響を与え
る。例えば、上記特開平4−95845号公報の(実施
例3)には、入射光の偏光方向と垂直の偏光成分をもつ
反射光強度の測定から配向膜の状態の評価結果が記載さ
れているが、検出される反射光成分は膜中の配向してい
ない部分の厚さと表面の状態(荒れ)にも依存する量で
あるので、分子配向を直接反映している量とはいえな
い。
Due to the presence of the groove, a difference occurs in the amount of light scattered in directions other than the regular reflection direction, which affects the intensity of reflected light. For example, Japanese Patent Application Laid-Open No. 4-95845 (Example 3) describes the evaluation result of the state of the alignment film from the measurement of reflected light intensity having a polarization component perpendicular to the polarization direction of incident light. The amount of the reflected light component to be detected depends on the thickness of the unoriented portion in the film and also on the surface condition (roughness), and cannot be said to be an amount that directly reflects the molecular orientation.

【0017】また、原子間力顕微鏡による観察において
は、試料表面の粗さといった表面形状の測定がなされて
いるのみで、有機薄膜において原子レベルの分解能での
観察がなされた例はない。
Further, in the observation with an atomic force microscope, only the surface shape such as the roughness of the sample surface is measured, and there is no example in which an organic thin film is observed at an atomic level resolution.

【0018】液晶配向膜の場合、これらの方法で観測さ
れた表面形状が液晶の配向状態に影響を与える膜中の分
子配向と直接の関係はないことは既に報告されている
(例えば上記文献(2)(磯野他、日本学術振興会、14
2委員会A委員会A部会、特別研究会試料、第34頁、
1994年)等報告は多数有る)。
In the case of a liquid crystal alignment film, it has already been reported that the surface shape observed by these methods has no direct relationship with the molecular orientation in the film which affects the alignment state of the liquid crystal (see, for example, the above-mentioned literature ). 2) (Isono et al., Japan Society for the Promotion of Science, 14
2 Committee A Committee A subcommittee, special study group sample, page 34,
(1994).

【0019】さらに、ラビングした表面をアセトン等の
有機溶媒で処理した膜では、液晶分子の配向規制力はあ
るものの、ラビングで発生した表面の筋状の構造がなく
なることが知られている。このように、表面形態観察は
膜の液晶配向規制力に関して直接的な情報を与えない。
Further, it is known that a film obtained by treating a rubbed surface with an organic solvent such as acetone has a force for regulating the alignment of liquid crystal molecules, but loses the streaky structure of the surface generated by the rubbing. Thus, surface morphology observation does not provide direct information on the liquid crystal alignment regulating force of the film.

【0020】さらに、反射型の偏光顕微鏡による配向膜
の微小部分の評価も試みられている(ニコン社製『配向
膜観察顕微鏡』EPIPOL−5D参照)。この方法
は、直線偏光した光を試料に対してはほぼ垂直に入射
し、反射光のうち入射光の偏光成分とは垂直の成分をも
つ光の強度の面内部分を観察するものである。微小域を
観察するためには入射光をレンズを用いて集光し、反射
光をレンズを通して拡大し結像させる。入射光の偏光方
向に対する試料の向きを変えて観測することで膜の光学
的異方性をある程度観測できるが、定量的な観測は困難
である。さらに、光が試料に対してほぼ垂直に入射する
ためにガラス基板の歪が反射光の偏光状態に大きく影響
するために膜自身の分子配向の観測はより困難である。
Further, evaluation of minute portions of the alignment film using a reflection type polarizing microscope has been attempted (see "Alignment Film Observation Microscope", EPIPOL-5D, manufactured by Nikon Corporation). In this method, linearly polarized light is incident on a sample almost perpendicularly, and the in-plane portion of the intensity of the reflected light having a component perpendicular to the polarization component of the incident light is observed. In order to observe a minute area, incident light is condensed using a lens, and reflected light is enlarged through the lens to form an image. The optical anisotropy of the film can be observed to some extent by changing the direction of the sample with respect to the polarization direction of the incident light, but quantitative observation is difficult. Furthermore, since the light is incident on the sample almost perpendicularly, the distortion of the glass substrate greatly affects the polarization state of the reflected light, so that it is more difficult to observe the molecular orientation of the film itself.

【0021】一方、分子配向は反射光の偏光状態の異方
性を観察することで測定できる。しかし、反射光の偏光
状態は試料の分子配向ばかりでなく、入射光の波長や試
料への入射角にも依存する。このため、微小領域を測定
するためにレンズを用いて入射光を絞ると、試料への入
射角に広がりが発生するために正確な測定ができなくな
ってしまう。
On the other hand, the molecular orientation can be measured by observing the anisotropy of the polarization state of the reflected light. However, the polarization state of the reflected light depends not only on the molecular orientation of the sample, but also on the wavelength of the incident light and the angle of incidence on the sample. For this reason, if the incident light is narrowed using a lens in order to measure a minute area, an accurate measurement cannot be performed due to the spread of the incident angle to the sample.

【0022】以上のように、液晶配向膜の微小部での分
子配向を測定する方法はいまのところ存在しない。
As described above, there is no method for measuring the molecular orientation at the minute part of the liquid crystal alignment film at present.

【0023】従って、本発明は上記問題点に鑑みてなさ
れたものであって、液晶表示素子に用いられる液晶高分
子配向膜の反射光強度の偏光及び入射角依存性を測定す
ることによって微小部の膜質を評価することを可能とす
る方法及び装置を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned problems, and has been made by measuring the polarization and incident angle dependence of the reflected light intensity of a liquid crystal polymer alignment film used for a liquid crystal display device. It is an object of the present invention to provide a method and an apparatus capable of evaluating the film quality of a film.

【0024】[0024]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、反射光強度の入射角及び偏光依存性の試
料の方向異方性測定による有機薄膜の分子配向の測定方
法であって、平行光線をレンズで集光してなる光を前記
試料に入射し、前記試料で反射した後再びレンズを通過
して平行光線とされてなる反射光の強度の空間分布を測
定して配向測定を行うことを特徴とする微小部の分子配
向測定方法を提供する。
In order to achieve the above object, the present invention provides a method for measuring the molecular orientation of an organic thin film by measuring the incident angle of reflected light intensity and the directional anisotropy of a sample depending on polarization. And measuring the spatial distribution of the intensity of the reflected light, which is formed by converging parallel light rays with a lens, is incident on the sample, reflects off the sample, passes through the lens again, and is converted into a parallel light ray. And a method for measuring the molecular orientation of a minute portion.

【0025】本発明は、第2の視点において、反射光強
度の入射角及び偏光依存性の試料の方向異方性測定によ
る有機薄膜のの分子配向の測定方法であって、入射面が
互いに直交する平行光線をレンズで集光した入射光を用
い、再びレンズを通過して平行光線とされたそれぞれの
反射光の強度の空間分布を測定して配向測定を行うこと
を特徴とする微小部の分子配向測定方法を提供する。
According to a second aspect of the present invention, there is provided a method for measuring the molecular orientation of an organic thin film by measuring the incident angle of the reflected light intensity and the directional anisotropy of the sample, which is dependent on the polarization. Using the incident light obtained by converging the parallel light beams by the lens, measuring the spatial distribution of the intensity of the respective reflected lights that have passed through the lens and turned into parallel light beams again, and performing orientation measurement. Provided is a method for measuring molecular orientation.

【0026】また、本発明は、反射光強度の入射角及び
偏光依存性の試料の方向異方性測定による有機薄膜の分
子配向を測定する装置であって、平行光線を集光して試
料への入射光とするレンズを少なくとも備え、前記試料
で反射した後再び前記レンズを通過して平行光線とされ
てなる反射光の強度の空間分布を測定して配向測定を行
うことを特徴とする微小部の分子配向測定装置を提供す
る。
Further, the present invention is an apparatus for measuring the molecular orientation of an organic thin film by measuring the direction anisotropy of a sample, which is dependent on the incident angle and the polarization of the reflected light intensity. Characterized in that the orientation measurement is performed by measuring at least the spatial distribution of the intensity of the reflected light, which is reflected by the sample and then passes through the lens and becomes a parallel ray again after being reflected by the sample. The present invention provides an apparatus for measuring the molecular orientation of a part.

【0027】そして、本発明は、反射光強度の入射角及
び偏光依存性の試料の方向異方性測定による液晶配向膜
の分子配向を測定する装置であって、入射面が互いに直
交する平行光線を集光して試料への入射光とするレンズ
を備え、前記試料で反射した後再び前記レンズを通過し
て平行光線とされてなるそれぞれの反射光の強度の空間
分布を測定して配向測定を行うことを特徴とする微小部
の分子配向測定装置を提供する。
The present invention is a device for measuring the molecular orientation of a liquid crystal alignment film by measuring the incident angle of reflected light intensity and the directional anisotropy of a sample depending on the polarization, and the parallel light rays whose incidence planes are orthogonal to each other. Is provided with a lens for condensing light into incident light to the sample, and after measuring the orientation distribution by measuring the spatial distribution of the intensity of each reflected light that is reflected by the sample and then passes through the lens again to become parallel rays. There is provided a molecular orientation measuring device for a minute portion, which is characterized by performing

【0028】[0028]

【作用】従来より提案されている反射光強度異方性の測
定では、分子配向によって生じる屈折率の異方性と表面
荒れの異方性を区別することはできず、分子配向状態に
ついて定量的に知ることはできない。
The anisotropy of the refractive index caused by the molecular orientation cannot be distinguished from the anisotropy of the surface roughness by the conventional measurement of the reflected light intensity anisotropy. Can not know.

【0029】これに対して、本発明による入射角度依存
性の異方性の測定は、表面荒れの異方性と分子配向によ
って生じた屈折率異方性を測定することができる。これ
は、表面荒れは乱反射を生じるために、測定される反射
光の量の減少を引き起こし、入射角が大きくなるほどそ
の影響は大きい。
On the other hand, the measurement of the anisotropy depending on the incident angle according to the present invention can measure the anisotropy of the surface roughness and the refractive index anisotropy caused by the molecular orientation. This causes a reduction in the amount of reflected light to be measured because the surface roughness causes irregular reflection, and the effect is greater as the angle of incidence increases.

【0030】この状態は膜が完全に透明ではなく、吸収
がある場合に置き換えることができる。膜に吸収がある
場合も、入射角が大きくなれば反射光の膜中の光路が長
くなるためにその影響は大きくなる。すなわち、表面荒
れの異方性は、みかけ上、吸収の異方性として観測さ
れ、分子配向に依存した屈折率の異方性とは分離して観
測される。
This state can be replaced if the film is not completely transparent and has absorption. Even in the case where the film has absorption, if the incident angle increases, the optical path of the reflected light in the film becomes longer, so that the influence increases. That is, the surface roughness anisotropy is apparently observed as absorption anisotropy, and is observed separately from the refractive index anisotropy depending on the molecular orientation.

【0031】また、反射光の偏光状態異方性の観測によ
り液晶配向膜の分子配向を観測する方法では、光をレン
ズ等で集光すると光の試料への入射角分布が大きくなっ
てしまうために、偏光解析から屈折率を正確に求めるこ
とができず、微小部の分子配向の定量的測定はできな
い。
In the method of observing the molecular orientation of the liquid crystal alignment film by observing the polarization state anisotropy of the reflected light, the incident angle distribution of the light on the sample becomes large when the light is condensed by a lens or the like. In addition, the refractive index cannot be accurately obtained from the polarization analysis, and the molecular orientation of the minute portion cannot be quantitatively measured.

【0032】一方、反射光強度の入射角依存性の測定で
は、試料に対して入射角の定まった平行光線を入射させ
ることは不要とされ、レンズ等で集光された様々な入射
角をもった光を入射させることができるため、微小部分
の光学的性質を測定することができる。
On the other hand, in the measurement of the dependence of the intensity of the reflected light on the incident angle, it is not necessary to make a parallel ray having a fixed incident angle incident on the sample. Light can be made incident, so that the optical properties of the minute portion can be measured.

【0033】本発明においては、好ましくは、入射光は
試料面上に焦点を結ぶようにレンズを用いて集光され、
レンズの周辺部を通過した光の入射角は大きく、中央に
近いところを通過した光ほど入射角が小さくなる。従っ
て、集光による微小部観察においては入射角度の変化が
同時に行える。
In the present invention, preferably, the incident light is condensed using a lens so as to be focused on the sample surface.
The incident angle of light that has passed through the periphery of the lens is large, and the light that has passed near the center has a smaller incident angle. Therefore, the change of the incident angle can be performed at the same time in the observation of a minute portion by light collection.

【0034】[0034]

【発明の実施の形態】本発明の実施の形態を図面を参照
して以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0035】図1は、本発明の一実施形態に係る装置の
構成を説明するための図である。
FIG. 1 is a diagram for explaining the configuration of an apparatus according to one embodiment of the present invention.

【0036】図1を参照して、単色光源1より出射され
た光はコンデンサーレンズ2により拡大されて平行光線
になり、スリット3によってほぼ線状の断面形状にされ
る。さらに、スリット3の出射光は偏光子4を通過して
直線偏光とされ、集光レンズ5の一側に入射する。この
際、光の長手方向が集光レンズ5の中心から周辺に向か
うように設定する。
Referring to FIG. 1, light emitted from monochromatic light source 1 is expanded by condenser lens 2 to be a parallel light beam, and slit 3 has a substantially linear cross-sectional shape. Further, the light emitted from the slit 3 passes through the polarizer 4 to be linearly polarized, and enters one side of the condenser lens 5. At this time, the longitudinal direction of the light is set so as to extend from the center of the condenser lens 5 to the periphery.

【0037】また、偏光子4を通過した光の振動面がス
リット3の長手方向に平行であれば、p偏光が試料10
に入射し、垂直であればs偏光が試料10に入射するこ
とになる。
If the vibration plane of the light passing through the polarizer 4 is parallel to the longitudinal direction of the slit 3, the p-polarized light
And if perpendicular, s-polarized light will be incident on the sample 10.

【0038】さらに、集光レンズ5によって光は試料1
0の表面で焦点を結ぶ。この際、試料10面に入射する
光は、集光レンズ5の周辺を通過したものほど入射角が
大きく、中心部ほど小さい。なお、単色光源1から試料
10に入射するまでの光路は、図1に一点鎖線で示して
いる。
Further, the light is transferred to the sample 1 by the condenser lens 5.
Focus on surface 0. At this time, the light incident on the surface of the sample 10 has a larger incident angle as it passes through the periphery of the condensing lens 5 and has a smaller angle at the center. The optical path from the monochromatic light source 1 to the sample 10 is shown by a dashed line in FIG.

【0039】そして、試料10の表面から反射された光
は入射光の集光に用いた集光レンズ5を再び通過して平
行光線とされ、反射鏡6で向きを変えられた後、スリッ
ト7に入射する。
Then, the light reflected from the surface of the sample 10 passes through the condenser lens 5 used for condensing the incident light again to be made into a parallel light, and after being turned by the reflecting mirror 6, the slit 7 is turned. Incident on.

【0040】さらに、拡大レンズ8によって拡大された
のち、1次元検出器9により光の強度が測定される。
Further, after being magnified by the magnifying lens 8, the intensity of light is measured by the one-dimensional detector 9.

【0041】図1では、1次元検出器9の上側に入る反
射光の方が下側にくる反射光より入射角が小さい。以上
のように、1次元検出器9にて検出される反射光の位置
により、試料10への入射角が判る。
In FIG. 1, the angle of incidence of the reflected light entering the upper side of the one-dimensional detector 9 is smaller than that of the reflected light coming below the one-dimensional detector 9. As described above, the angle of incidence on the sample 10 can be determined from the position of the reflected light detected by the one-dimensional detector 9.

【0042】なお、反射鏡6は、光学素子のスペースの
都合で、図1に示す位置に配設して測定を行ったが、測
定において必ずしも必要なものではなく(例えば1次元
検出器9を集光レンズ5の上方に配置するような場合反
射鏡6は不要)、状況に応じて置く位置や個数は変化す
る。
Although the reflecting mirror 6 is arranged at the position shown in FIG. 1 for the sake of space of the optical element and the measurement is performed, it is not always necessary for the measurement (for example, the one-dimensional detector 9 may be used). The reflecting mirror 6 is not necessary when it is disposed above the condenser lens 5), and the position and the number of the reflecting mirror 6 vary depending on the situation.

【0043】反射光強度の異方性の測定は、図1のスリ
ット3として図2(a)に示すような形状の開口部を持
つものを用い、試料10を回転させて測定を行う。
The measurement of the anisotropy of the reflected light intensity is performed by rotating the sample 10 using the slit 3 shown in FIG. 1 having an opening having a shape as shown in FIG. 2A.

【0044】しかし、試料10の表面の微小部の異方性
を観察するために、試料10を回転させる場合には、観
測位置が回転中心に正確に一致している必要があり、現
実には装置の位置調整に時間を要する。
However, when the sample 10 is rotated in order to observe the anisotropy of the minute portion on the surface of the sample 10, the observation position needs to exactly coincide with the center of rotation. It takes time to adjust the position of the device.

【0045】そこで、スリット3の開口部を図2(b)
に示すように、長手方向が互いに直交するような2本の
光を試料に入射する。この場合、図2(b)に示すスリ
ットの第1の開口部12の出射光がp偏光であれば、第
2の開口部13の出射光はs偏光となり、第1の開口部
12がs偏光の場合には、第2の開口部13はp偏光に
なる。
Therefore, the opening of the slit 3 is changed as shown in FIG.
As shown in (2), two lights whose longitudinal directions are orthogonal to each other are incident on the sample. In this case, if the light emitted from the first opening 12 of the slit shown in FIG. 2B is p-polarized, the light emitted from the second opening 13 becomes s-polarized light, and the first opening 12 becomes s-polarized. In the case of polarized light, the second opening 13 becomes p-polarized light.

【0046】このように2本の光を用いた場合は、スリ
ット7の形状も図2(b)に示すように2つの開口部を
もった形にする。また、反射光の検出器9には2次元検
出器あるいは2本の1次元検出器を組み合わせて用い
る。なお、実際の測定では2本の1次元検出器を組み合
わせて用いた。
When two lights are used in this way, the shape of the slit 7 is made to have two openings as shown in FIG. 2B. A two-dimensional detector or a combination of two one-dimensional detectors is used as the reflected light detector 9. In the actual measurement, two one-dimensional detectors were used in combination.

【0047】この装置を用いて以下の試料を測定した。The following samples were measured using this apparatus.

【0048】ポリイミド原料液の日産化学のSE731
1をコーニング社製7059ガラスの表面にスピンコー
ト装置を用いて塗布した後、200℃で1時間加熱によ
る焼成を行った。この試料を光源にHe−Neレーザー
の632.8nmの光を用い、2つの光線を同時に試料
に入射させて異方性の測定を行った。なお、焦点の大き
さは約30μmである。
Nissan Chemical's SE731 for polyimide raw material liquid
1 was applied to the surface of 7059 glass manufactured by Corning Co. using a spin coater, and then baked by heating at 200 ° C. for 1 hour. Using this sample as a light source, light of 632.8 nm of a He-Ne laser was used, and two light beams were simultaneously incident on the sample to measure anisotropy. The size of the focal point is about 30 μm.

【0049】その結果得られた反射率の入射角依存性の
測定結果を図3及び図4に示す。図3及び図4は、2方
向同時に光を入射してラビング前の試料を測定した際の
測定結果を示す図であり、図3と図4は互いに直交する
方向の反射率の分布を示している。図中の点が実測値、
実線は計算値を示している。なお、図中の実線は理論式
(文献(4)(アザム及びバサラ著、「エリプソメトリー
アンド ポーラライズド ライト」(Azzam & Bashar
a、“Ellipsometry and Polarized light”)、North-H
olland、第285頁、1987年刊)参照)に従ってポ
リイミド膜の屈折率と厚さを求めた際に得られた反射率
の計算値である。
FIGS. 3 and 4 show the measurement results of the dependency of the reflectance on the incident angle. 3 and 4 are diagrams showing measurement results when a sample before rubbing is measured by simultaneously irradiating light in two directions, and FIGS. 3 and 4 show distributions of reflectance in directions orthogonal to each other. I have. The points in the figure are the measured values,
The solid line shows the calculated value. The solid line in the figure is the theoretical formula (Reference (4) (Azam and Basara, “Ellipsometry and Polarized Light” (Azzam & Bashar
a, “Ellipsometry and Polarized light”), North-H
Olland, p. 285, 1987)) is a calculated value of the reflectance obtained when the refractive index and thickness of the polyimide film were obtained.

【0050】その結果、屈折率は1.60〜1.61、
膜圧は7.8〜8.2nmとなった。なお、ラビングを
行っていないのでポリイミドの表面の荒れによるみかけ
の吸収は発生しないので、吸収の効果は考慮していな
い。
As a result, the refractive index was 1.60 to 1.61,
The film pressure became 7.8 to 8.2 nm. Since rubbing is not performed, apparent absorption due to roughness of the polyimide surface does not occur, so that the absorption effect is not considered.

【0051】図3と図4に示す測定結果はほぼ等しく、
ラビング処理前の試料表面は無配向状態であることがわ
かる。
The measurement results shown in FIG. 3 and FIG.
It can be seen that the sample surface before the rubbing treatment is in a non-oriented state.

【0052】この測定の後、この試料を直径50mmの
バフ布ローラーで800rpm、送り速度20mm/s
で2回ラビングを行った後に再び観測を行った。
After this measurement, the sample was fed to a buff cloth roller having a diameter of 50 mm at 800 rpm and at a feed rate of 20 mm / s.
After rubbing two times, observation was performed again.

【0053】2本の光のうち一方の長手方向をラビング
方向に一致させて測定した。測定結果を図5及び図6に
示す。図5がラビング方向に平行、図6がラビング方向
に垂直な方向である。
The measurement was performed with one longitudinal direction of the two lights being aligned with the rubbing direction. The measurement results are shown in FIGS. 5 shows a direction parallel to the rubbing direction, and FIG. 6 shows a direction perpendicular to the rubbing direction.

【0054】図5及び図6から、両者の反射率の角度依
存性に差があるのは明らかである。図中の実線は図3及
び図4の場合と同様に、ポリイミド膜の屈折率膜厚から
計算した反射率である。今回は吸収についても考慮し
た。膜厚を8nmに固定し、屈折率と吸収を測定から求
めると、ラビングに平行な方向では屈折率が1.679
〜1.685、吸収は小さいためにはっきりと決めるこ
とができず、約5×10-4程度と見積もられた。
It is clear from FIGS. 5 and 6 that there is a difference in the angle dependence of the reflectance between the two. The solid line in the figure is the reflectance calculated from the refractive index film thickness of the polyimide film, as in the case of FIGS. 3 and 4. This time, we also considered absorption. When the film thickness was fixed at 8 nm and the refractive index and absorption were determined from the measurement, the refractive index was 1.679 in the direction parallel to the rubbing.
˜1.685, which cannot be clearly determined due to small absorption, and was estimated to be about 5 × 10 −4 .

【0055】一方、ラビングに垂直な方向では屈折率が
1.533〜1.543、吸収が2×10-3となった。
On the other hand, in the direction perpendicular to the rubbing, the refractive index was 1.533 to 1.543, and the absorption was 2 × 10 −3 .

【0056】以上のように、ラビングによりポリイミド
分子が配向した様子が屈折率の異方性より明らかになっ
た。なお、ラビングと垂直方向では吸収の値が平行の場
合よりも大きく、表面荒れによる影響がより顕著となっ
ている。
As described above, the state in which the polyimide molecules were oriented by rubbing became apparent from the anisotropy of the refractive index. Note that the absorption value is larger in the direction perpendicular to the rubbing than in the case where the absorption is parallel, and the influence of the surface roughness is more remarkable.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
反射光強度の入射角及び偏光依存性の測定より、これま
での反射光の偏光解析では測定できない微小な領域の屈
折率等の光学的異方性の測定が可能となり、ポリイミド
液晶配向膜の分子配向の微小な領域での測定を可能とす
るという効果を有する。
As described above, according to the present invention,
From the measurement of the incident angle and the polarization dependence of the reflected light intensity, it becomes possible to measure the optical anisotropy such as the refractive index of a minute area that cannot be measured by the polarization analysis of the reflected light so far. This has an effect that measurement can be performed in a microscopic region of orientation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る装置の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of an apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態におけるスリットの開口部
を示した図である。(a)は一方向入射の際に用いるス
リットを示す図であり、(b)は2方向入射の場合のス
リットを示す図である。
FIG. 2 is a diagram showing an opening of a slit according to an embodiment of the present invention. (A) is a figure which shows the slit used at the time of one-way incidence, and (b) is a figure which shows the slit at the time of two-way incidence.

【図3】本発明の一実施形態により2方向同時入射でラ
ビング前の試料を測定した際の結果を示す図である。
FIG. 3 is a diagram showing a result when a sample before rubbing is measured by simultaneous incidence in two directions according to an embodiment of the present invention.

【図4】本発明の一実施形態により2方向同時入射でラ
ビング前の試料を測定した際の結果を示す図である。
FIG. 4 is a diagram showing a result when a sample before rubbing is measured by simultaneous incidence in two directions according to an embodiment of the present invention.

【図5】本発明の一実施形態により2方向同時入射でラ
ビング後の試料を測定した際の結果を示す図である(ラ
ビング方向に平行な向き)。
FIG. 5 is a diagram showing a result of measurement of a sample after rubbing by simultaneous incidence in two directions according to an embodiment of the present invention (a direction parallel to the rubbing direction).

【図6】本発明の一実施形態により2方向同時入射でラ
ビング後の試料を測定した際の結果を示す図である(ラ
ビング方向に垂直な向き)。
FIG. 6 is a diagram showing a result of measurement of a sample after rubbing by simultaneous incidence in two directions according to an embodiment of the present invention (a direction perpendicular to the rubbing direction).

【符号の説明】 1 単色光源 2 コンデンサーレンズ 3 スリット 4 偏光子 5 集光レンズ 6 反射鏡 7 スリット 8 拡大レンズ 9 1次元検出器 11、12、13 スリット開口部[Explanation of symbols] 1 monochromatic light source 2 condenser lens 3 slit 4 polarizer 5 condenser lens 6 reflecting mirror 7 slit 8 magnifying lens 9 one-dimensional detector 11, 12, 13 slit opening

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】反射光強度の入射角及び偏光依存性の試料
の方向異方性測定による有機薄膜の分子配向の測定方法
であって、 平行光線をレンズで集光してなる光を前記試料に入射
し、前記試料で反射した後再びレンズを通過して平行光
線とされてなる反射光の強度の空間分布を測定して配向
測定を行うことを特徴とする有機薄膜の配向検査方法。
1. A method for measuring the molecular orientation of an organic thin film by measuring the direction anisotropy of a sample, which is dependent on the angle of incidence and the polarization of the reflected light intensity, comprising the steps of: And measuring the spatial distribution of the intensity of the reflected light, which is reflected by the sample, is reflected by the sample, passes through the lens again, and is converted into a parallel light beam, and performs orientation measurement.
【請求項2】反射光強度の入射角及び偏光依存性の試料
の方向異方性測定による有機薄膜のの分子配向の測定方
法であって、 入射面が互いに直交する平行光線をレンズで集光した入
射光を用い、再びレンズを通過して平行光線とされたそ
れぞれの反射光の強度の空間分布を測定して配向測定を
行うことを特徴とする有機薄膜の配向検査方法。
2. A method for measuring the molecular orientation of an organic thin film by measuring the direction of anisotropy of a sample, which is dependent on the angle of incidence and polarization of reflected light intensity, wherein parallel lenses whose incident surfaces are orthogonal to each other are condensed by a lens. A method for inspecting the orientation of an organic thin film, wherein the orientation measurement is performed by measuring the spatial distribution of the intensity of each of the reflected light that has passed through the lens and turned into parallel rays again using the incident light thus obtained.
【請求項3】反射光強度の入射角及び偏光依存性の試料
の方向異方性測定による有機薄膜の分子配向を測定する
装置であって、 平行光線を集光して試料への入射光とするレンズを少な
くとも備え、 前記試料で反射した後再び前記レンズを通過して平行光
線とされてなる反射光の強度の空間分布を測定して配向
測定を行うことを特徴とする有機薄膜の配向検査装置。
3. An apparatus for measuring the molecular orientation of an organic thin film by measuring the direction of anisotropy of a sample, which is dependent on the angle of incidence and the polarization of the reflected light intensity. An alignment test of an organic thin film, wherein the alignment measurement is performed by measuring at least a spatial distribution of the intensity of reflected light, which is reflected by the sample, passes through the lens again, and becomes a parallel ray after being reflected by the sample. apparatus.
【請求項4】反射光強度の入射角及び偏光依存性の試料
の方向異方性測定による液晶配向膜の分子配向を測定す
る装置であって、 入射面が互いに直交する平行光線を集光して試料への入
射光とするレンズを備え、 前記試料で反射した後再び前記レンズを通過して平行光
線とされてなるそれぞれの反射光の強度の空間分布を測
定して配向測定を行うことを特徴とする有機薄膜の配向
検査装置。
4. An apparatus for measuring a molecular orientation of a liquid crystal alignment film by measuring a direction anisotropy of a sample, which is dependent on an incident angle and a polarization of reflected light intensity, and collects parallel light beams whose incident surfaces are orthogonal to each other. A lens for making incident light to the sample, and after measuring the spatial distribution of the intensity of each reflected light, which is reflected by the sample, passes through the lens again, and becomes a parallel light beam, and performs orientation measurement. Characteristic organic thin film orientation inspection equipment.
【請求項5】請求項1又は2記載の有機薄膜の配向検査
方法により、基板上に有機薄膜を形成してなる液晶配向
膜の分子配向を測定することを特徴とする液晶配向膜の
検査方法。
5. A method for inspecting a liquid crystal alignment film, comprising the step of measuring the molecular alignment of a liquid crystal alignment film formed by forming an organic thin film on a substrate by the method of claim 1 or 2. .
【請求項6】請求項3又は4記載の有機薄膜の配向検査
装置を含み、基板上に有機薄膜を形成してなる液晶配向
膜の分子配向を測定することを特徴とする液晶配向膜の
検査装置。
6. An inspection of a liquid crystal alignment film, comprising the alignment inspection device for an organic thin film according to claim 3 or 4, wherein the molecular alignment of a liquid crystal alignment film formed by forming an organic thin film on a substrate is measured. apparatus.
【請求項7】前記試料を回転させるか又は入射面が互い
に交差する光を前記試料に入射し、それぞれの反射光の
偏光及び入射角依存性を測定して、微小部の分子配向を
測定することを特徴とする請求項1記載の有機薄膜の配
向検査方法。
7. A method for measuring the molecular orientation of a minute part by rotating the sample or inputting light whose incident surfaces intersect each other to the sample and measuring the polarization and the incident angle dependence of each reflected light. 2. The method for inspecting the orientation of an organic thin film according to claim 1, wherein:
【請求項8】単色光を出射する光源と、 前記光源から出射された光を平行光線とする第1のレン
ズと、 前記平行光線を光軸に直交する面上で所定形状に変換す
る変換手段と、 前記変換手段からの出射光を直線偏光とする偏光手段
と、 前記偏光手段からの直線偏光を試料表面上に集光させる
と共に前記試料表面からの反射光を平行光線とする第2
のレンズと、 前記第2のレンズからの反射光の光強度の空間分布を検
出する手段と、 を含むことを特徴とする有機薄膜の配向検査装置。
8. A light source that emits monochromatic light, a first lens that converts light emitted from the light source into parallel rays, and a conversion unit that converts the parallel rays into a predetermined shape on a plane orthogonal to the optical axis. A polarizing means for converting light emitted from the conversion means into linearly polarized light; and a second means for condensing linearly polarized light from the polarizing means on a sample surface and converting reflected light from the sample surface into parallel rays.
An orientation inspection apparatus for an organic thin film, comprising: a lens; and means for detecting a spatial distribution of light intensity of reflected light from the second lens.
【請求項9】前記平行光線を光軸に直交する面上で所定
形状に変換する変換手段が、所定の矩形形状の開口部を
備えたスリットからなることを特徴とする請求項8記載
の有機薄膜の配向検査装置。
9. The organic light emitting device according to claim 8, wherein said converting means for converting said parallel rays into a predetermined shape on a plane orthogonal to the optical axis comprises a slit having a predetermined rectangular opening. Inspection device for thin film.
【請求項10】前記平行光線を光軸に直交する面上で所
定形状に変換する変換手段が、所定の矩形形状の二つの
開口部を備え、前記二つの開口部が長手方向の延長線が
互いに直交するスリットからなることを特徴とする請求
項8記載の有機薄膜の配向検査装置。
10. A conversion means for converting the parallel light beam into a predetermined shape on a plane orthogonal to the optical axis has two openings having a predetermined rectangular shape, and the two openings have an extension in the longitudinal direction. 9. The organic thin film orientation inspection apparatus according to claim 8, comprising slits orthogonal to each other.
JP29788495A 1995-10-20 1995-10-20 Organic thin film orientation inspection method and inspection device Expired - Fee Related JP2735053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29788495A JP2735053B2 (en) 1995-10-20 1995-10-20 Organic thin film orientation inspection method and inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29788495A JP2735053B2 (en) 1995-10-20 1995-10-20 Organic thin film orientation inspection method and inspection device

Publications (2)

Publication Number Publication Date
JPH09113412A true JPH09113412A (en) 1997-05-02
JP2735053B2 JP2735053B2 (en) 1998-04-02

Family

ID=17852362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29788495A Expired - Fee Related JP2735053B2 (en) 1995-10-20 1995-10-20 Organic thin film orientation inspection method and inspection device

Country Status (1)

Country Link
JP (1) JP2735053B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040593A (en) * 2000-11-22 2002-05-30 가네꼬 히사시 Method of anisotropic thin film appraisement capable of measuring film regularity and orientation at high speed, and device thereof
US9093662B2 (en) 2010-10-26 2015-07-28 Samsung Display Co., Ltd. Sealing inspection device and sealing inspection method of flat panel display apparatus by using the sealing inspection device
CN114199807A (en) * 2021-12-10 2022-03-18 南京大学 Method for detecting polyimide surface molecular chain orientation structure by AFM-IR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020040593A (en) * 2000-11-22 2002-05-30 가네꼬 히사시 Method of anisotropic thin film appraisement capable of measuring film regularity and orientation at high speed, and device thereof
US9093662B2 (en) 2010-10-26 2015-07-28 Samsung Display Co., Ltd. Sealing inspection device and sealing inspection method of flat panel display apparatus by using the sealing inspection device
CN114199807A (en) * 2021-12-10 2022-03-18 南京大学 Method for detecting polyimide surface molecular chain orientation structure by AFM-IR
CN114199807B (en) * 2021-12-10 2023-09-22 南京大学 Method for detecting polyimide surface molecular chain orientation structure by AFM-IR

Also Published As

Publication number Publication date
JP2735053B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
JP4863979B2 (en) Ellipsometry measurement method and apparatus
US20130265576A1 (en) Device and method for polarimetric measurement with microscopic resolution, polarimetry accessory for a microscope, ellipsomicroscope and ellipsometric contrast microscope
JPS6257936B2 (en)
KR100203345B1 (en) Simultaneous multiple angle/multiple wavelength ellipsometer and method
KR100399206B1 (en) Method of evaluating an anisotropic thin film and an evaluating apparatus
US6693711B1 (en) Ellipsometer using radial symmetry
JP3425923B2 (en) Evaluation method and evaluation device for anisotropic multilayer thin film structure
KR19990077575A (en) Method and apparatus for evaluating internal film stress at high lateral resolution
US5365067A (en) Method and device for evaluation of surface properties, especially molecular orientation, in non-transparent layers
JPH11173946A (en) Optical characteristic measuring apparatus
US20210156790A1 (en) Ellipsometer and inspection device for semiconductor device
US5903352A (en) Apparatus and method for measuring optical anisotropy
JP3063843B2 (en) Liquid crystal initial alignment angle measuring method and liquid crystal initial alignment angle measuring device
JP3275944B2 (en) Anisotropic thin film inspection method, anisotropic thin film inspection device, liquid crystal alignment film inspection method, liquid crystal alignment film inspection device
JP2735053B2 (en) Organic thin film orientation inspection method and inspection device
EP0603863B1 (en) Birefringent member cell gap measurement method and instrument
KR100951110B1 (en) Line Scan Type High Resolution Ellipsometer
JP3520379B2 (en) Optical constant measuring method and device
JPH10267831A (en) Birefringence measuring optical system and high space resolution polarization analyzer
Kuczyński et al. Interference method for the determination of refractive indices and birefringence of liquid crystals
JP2776333B2 (en) Liquid crystal alignment film inspection method and inspection apparatus
JPH10293011A (en) Method and device for evaluating anisotropic thin film
JP2677199B2 (en) Alignment film inspection device and inspection method
Sassella et al. Generalized anisotropic ellipsometry applied to an organic single crystal: Potassium acid phthalate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971202

LAPS Cancellation because of no payment of annual fees