JPH09113403A - Method and equipment for analyzing seismic response of aseismatic structure - Google Patents

Method and equipment for analyzing seismic response of aseismatic structure

Info

Publication number
JPH09113403A
JPH09113403A JP7272522A JP27252295A JPH09113403A JP H09113403 A JPH09113403 A JP H09113403A JP 7272522 A JP7272522 A JP 7272522A JP 27252295 A JP27252295 A JP 27252295A JP H09113403 A JPH09113403 A JP H09113403A
Authority
JP
Japan
Prior art keywords
seismic
characteristic model
seismic isolation
isolation device
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7272522A
Other languages
Japanese (ja)
Other versions
JP3606651B2 (en
Inventor
Hiroyoshi Takahashi
弘好 高橋
Yoshihiro Sato
美洋 佐藤
Ikuo Shimoda
郁夫 下田
Masaki Mochimaru
昌已 持丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Oiles Industry Co Ltd
Original Assignee
Bando Chemical Industries Ltd
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd, Oiles Industry Co Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP27252295A priority Critical patent/JP3606651B2/en
Publication of JPH09113403A publication Critical patent/JPH09113403A/en
Application granted granted Critical
Publication of JP3606651B2 publication Critical patent/JP3606651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance accuracy in the analysis of a seismic response of an aseismatic structure by employing a hysteresis characteristic model for an aseismatic unit which can represents the rising of initial displacement accurately and can perform simulation accurately regardless of the magnitude of displacement when seismic analysis is performed for the aseismatic structure born through the aseismatic unit comprising a rubber laminate where a plurality of rubbers and steel plates are laminated alternately and bonded through vulcanization, and a lead plug embedded in the center thereof. SOLUTION: Four spring slider elements 18a-18d comprising spring elements 16a-16d and slider elements 17a-17d connected in series, a single spring element 15, and a single dashpot element 19 are connected in parallel in order to set a hysteresis characteristic model for an aseismatic unit. A seismic response is analyzed for an aseismatic structure based on the hysteresis characteristic model thus obtaining a hysteresis characteristic model similar to an actual aseismatic unit having both characteristics of elasticity and plasticity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、免震装置を介して
支承された免震構造物の地震応答解析方法及びその装置
に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field relating to an earthquake response analysis method for a seismic isolated structure supported by a seismic isolation device and the device thereof.

【0002】[0002]

【従来の技術】従来より、この種の免震構造物を支承す
るための免震装置として、LRB(Lead Rubber Bearin
g )と呼ばれる鉛入り積層免震ゴムは知られている。こ
の免震装置は、複数のゴム及び鋼板を交互に積層して加
硫接着した積層ゴム体と、該積層ゴム体の中心部に埋め
込まれた鉛プラグとを備えてなるもので、構造物と地盤
との間に所定数介在されて構造物を支承する。
2. Description of the Related Art Conventionally, an LRB (Lead Rubber Bearin) has been used as a seismic isolation device for supporting this type of seismic isolation structure.
A laminated rubber seismic isolation rubber called g) is known. This seismic isolation device is provided with a laminated rubber body in which a plurality of rubbers and steel plates are alternately laminated and vulcanized and bonded, and a lead plug embedded in the center of the laminated rubber body. The structure is supported by interposing a predetermined number with the ground.

【0003】このような免震構造物の地震応答解析を行
うには、上記免震装置の履歴特性のモデル化、つまり水
平変位に対する水平荷重曲線の特性をモデル化すること
が必須となる。この履歴特性のモデル化にあたっては、
従来、種々のモデル化の方法が採用されているが、その
殆どが等価ばね定数を用いたバイリニアモデルとされて
いる。このバイリニアモデルでは、図7に示す如く、実
測した履歴曲線での等価ばね定数(図7のAB間の線の
傾きとして表される)を求めて履歴曲線を作成し、いか
なる剪断歪み状態でも同じ曲線を用い、剪断歪みの大き
さの違いに拘らず、ある変位xbに対する復元力をFb
とするように求めるものである。
In order to analyze the seismic response of such a seismic isolation structure, it is essential to model the hysteresis characteristic of the seismic isolation device, that is, the characteristic of the horizontal load curve with respect to horizontal displacement. In modeling this history characteristic,
Conventionally, various modeling methods have been adopted, but most of them are bilinear models using an equivalent spring constant. In this bi-linear model, as shown in FIG. 7, the equivalent spring constant (expressed as the slope of the line between AB in FIG. 7) in the actually measured hysteresis curve is obtained to create a hysteresis curve, and the same is obtained in any shear strain state. Using a curve, the restoring force for a certain displacement xb is Fb regardless of the difference in the magnitude of shear strain.
It is what you ask.

【0004】[0004]

【発明が解決しようとする課題】しかし、この従来のバ
イリニアモデルを用いる方法では、等価ばね定数を用い
るので、初期変位の立上がりを正確に表すことができな
いとともに、小さな変位から大きな変位までを同じ1つ
のモデルで精度よくシミュレーションすることができな
いという問題があった。
However, in the conventional method using the bilinear model, since the equivalent spring constant is used, the rise of the initial displacement cannot be accurately represented, and the small displacement to the large displacement are the same. There was a problem that two models could not be simulated accurately.

【0005】本発明は斯かる点に鑑みてなされたもの
で、その目的は、免震装置の履歴特性モデルの構成を改
良することで、初期変位の立上がりを正確に表すことが
でき、しかも変位の大きさに拘らず同じモデルで精度よ
くシミュレーションできるようにすることにある。
The present invention has been made in view of the above points, and an object thereof is to improve the configuration of the hysteresis characteristic model of the seismic isolation device so that the rising of the initial displacement can be accurately represented and the displacement The aim is to enable accurate simulations with the same model regardless of the size of.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明では、上記LRBの免震装置が弾性と塑
性との両特性を兼ね備えたもので、その履歴特性は非線
形特性で複雑な挙動を示すことに着目し、この弾塑性の
両特性を持った要素を組み合わせてモデル化することと
した。
In order to achieve the above object, in the present invention, the LRB seismic isolation device has both elasticity and plasticity characteristics, and its hysteresis characteristics are non-linear and complicated. Focusing on the behavior, we decided to combine the elements with both elasto-plastic characteristics to create a model.

【0007】具体的には、請求項1〜4の発明は免震構
造物の地震応答解析方法の発明であり、請求項1の発明
では、複数のゴム及び鋼板を交互に積層して加硫接着し
た積層ゴム体と、該積層ゴム体の中心部に埋め込まれた
鉛プラグとを備えてなる免震装置を介して支承された免
震構造物の地震応答解析方法が対象である。
Specifically, the inventions of claims 1 to 4 are inventions of a method for analyzing seismic response of a base-isolated structure. In the invention of claim 1, a plurality of rubbers and steel plates are alternately laminated and vulcanized. A method for analyzing the seismic response of a seismic isolated structure supported by a seismic isolation device including a bonded laminated rubber body and a lead plug embedded in the center of the laminated rubber body is an object.

【0008】そして、上記免震装置について、ばね要素
及びスライダ要素が直列に接続された少なくとも1つの
ばねスライダ要素と、1つのばね要素と、1つのダッシ
ュポット要素とを互いに並列に接続した水平変位に対す
る水平荷重の履歴特性モデルを設定し、この免震装置の
履歴特性モデルに基づいて免震構造物の地震応答解析を
行う。
Further, in the seismic isolation device described above, at least one spring slider element in which a spring element and a slider element are connected in series, one spring element and one dashpot element are connected in parallel to each other in horizontal displacement. A horizontal characteristic model of horizontal load is set for and the seismic response analysis of the base-isolated structure is performed based on the historical characteristic model of the base isolation device.

【0009】上記の構成により、履歴特性モデルがばね
スライダ要素、ばね要素及びダッシュポット要素を備え
ているので、その履歴特性モデルは弾性及び塑性の両特
性を兼ね備えた実際の免震装置と同様の履歴特性とな
り、初期変位の立上がりを正確に表すことができる。ま
た、小さな変位から大きな変位までを同じ1つのモデル
で精度よくシミュレーションすることができる。
With the above structure, the hysteresis characteristic model includes the spring slider element, the spring element and the dashpot element, so that the hysteresis characteristic model is similar to an actual seismic isolation device having both elasticity and plasticity characteristics. It has a hysteresis characteristic and can accurately represent the rise of the initial displacement. Also, small displacements to large displacements can be accurately simulated with the same one model.

【0010】請求項2の発明では、請求項2の発明の免
震構造物の地震応答解析方法において、水平変位の増大
に応じて免震装置の履歴特性モデルのばねスライダ要素
の数を増加させる。このことで、変位が増大してもその
増大に応じて初期変位の立上がりを精度よく表せるよう
になる。
According to a second aspect of the present invention, in the seismic response analysis method for the base isolation structure according to the second aspect, the number of spring slider elements of the hysteresis characteristic model of the seismic isolation device is increased according to an increase in horizontal displacement. . As a result, even if the displacement increases, the rise of the initial displacement can be accurately represented according to the increase.

【0011】請求項3の発明では、具体的に、上記免震
装置の履歴特性モデルのばねスライダ要素の数を4とす
る。こうすれば、シミュレーションに要する時間と各要
素の定数の決定とを考慮して初期変位の立上がりを精度
よく表すことができる。
In the third aspect of the invention, specifically, the number of spring slider elements of the hysteresis characteristic model of the seismic isolation device is set to four. By doing so, the rise of the initial displacement can be accurately represented in consideration of the time required for the simulation and the determination of the constants of the respective elements.

【0012】請求項4の発明では、請求項1の発明の免
震構造物の地震応答解析方法において、履歴特性モデル
におけるばね要素及びスライダ要素の各定数は、免震装
置の実際の履歴特性から求められた定数に1よりも小さ
い所定値を乗じたものとする。この構成により、変位が
大きくなった場合でも履歴面積が大きくなり過ぎること
はなく、深刻な問題となるような大きな地震での変位に
良好に対応させることができる。
According to a fourth aspect of the invention, in the seismic response analysis method for the base isolation structure according to the first aspect of the invention, the constants of the spring element and the slider element in the hysteresis characteristic model are based on the actual hysteresis characteristics of the seismic isolation device. It is assumed that the obtained constant is multiplied by a predetermined value smaller than 1. With this configuration, even if the displacement becomes large, the history area does not become too large, and it is possible to favorably deal with the displacement in a large earthquake that poses a serious problem.

【0013】請求項5の発明は地震応答解析装置の発明
であり、複数のゴム及び鋼板を交互に積層して加硫接着
した積層ゴム体と、該積層ゴム体の中心部に埋め込まれ
た鉛プラグとを備えてなる免震装置を介して支承された
免震構造物の地震応答を解析するようにした地震応答解
析装置が対象である。
A fifth aspect of the present invention is an invention of an earthquake response analyzing apparatus, which comprises a laminated rubber body in which a plurality of rubbers and steel plates are alternately laminated and vulcanized and bonded, and lead embedded in the central portion of the laminated rubber body. The object is an earthquake response analysis device configured to analyze the seismic response of a seismic isolation structure supported by a seismic isolation device including a plug.

【0014】そして、請求項1の発明と同様に、上記免
震装置について、ばね要素及びスライダ要素が直列に接
続された少なくとも1つのばねスライダ要素と、1つの
ばね要素と、1つのダッシュポット要素とを互いに並列
に接続した水平変位に対する水平荷重の履歴特性モデル
を設定する履歴特性モデル設定手段を設けるとともに、
この履歴特性モデル設定手段により設定された免震装置
の履歴特性モデルに基づいて免震構造物の地震応答解析
をシミュレーションにより行う解析手段を設ける。従っ
て、この発明でも、請求項1の発明と同様の作用効果が
得られる。
As in the invention of claim 1, in the seismic isolation device, at least one spring slider element in which a spring element and a slider element are connected in series, one spring element, and one dashpot element. And a history characteristic model setting means for setting a history characteristic model of horizontal load with respect to horizontal displacement, which is connected in parallel with each other,
An analysis means is provided for performing a simulation of the seismic response of the base-isolated structure based on the history characteristic model of the seismic isolation device set by the history characteristic model setting means. Therefore, also in this invention, the same effect as the invention of claim 1 can be obtained.

【0015】[0015]

【発明の実施の形態】図3は本発明の実施形態に係る免
震装置Mを示し、この免震装置Mは、図示しないが免震
構造物と地盤との間に複数介在されて該免震構造物を地
盤上に免震構造で支承するものである。
FIG. 3 shows a seismic isolation device M according to an embodiment of the present invention. A plurality of seismic isolation devices M, which are not shown, are interposed between a seismic isolation structure and the ground. The seismic structure is supported on the ground by a seismic isolation structure.

【0016】すなわち、図3において、1は地盤側に取
り付けられる下側の地盤側取付プレート、2は構造物側
に取り付けられる上側の構造物側取付プレートで、両プ
レート1,2は同じ大きさの円板状のものであり、互い
に同心に対向配置されている。両プレート1,2間には
複数のゴム3,3,…及び鋼板4,4,…を交互に積層
して加硫接着した円柱状の積層ゴム体5が両プレート
1,2と同心に介在されて接着され、その積層ゴム体5
の中心部に鉛プラグ6が埋め込まれている。尚、積層ゴ
ム体5の周囲側面は被覆ゴム7で覆われている。また、
各プレート1,2の対向面にはプレート1,2の同心円
周上に複数のダウエルピン8,8,…(1つのみ図示す
る)が一体に突設され、この各ダウエルピン8は積層ゴ
ム体5の上下端面に形成したダウエル穴(図示せず)内
に嵌合されている。
That is, in FIG. 3, 1 is a lower ground side mounting plate to be mounted on the ground side, 2 is an upper structure side mounting plate to be mounted on the structure side, and both plates 1 and 2 have the same size. Disc-shaped, and are concentrically arranged to face each other. A plurality of rubbers 3, 3, ... And a plurality of steel plates 4, 4, .. And laminated, the laminated rubber body 5
A lead plug 6 is embedded in the center of the. The peripheral side surface of the laminated rubber body 5 is covered with a covering rubber 7. Also,
A plurality of dowel pins 8, 8, ... (Only one is shown) are integrally projected on the concentric circumferences of the plates 1 and 2 on the facing surfaces of the plates 1 and 2, and each dowel pin 8 is formed of a laminated rubber body 5. Are fitted in dowel holes (not shown) formed in the upper and lower end surfaces.

【0017】図4は上記免震装置Mに支承された免震構
造物の地震応答解析装置の構成を示し、この装置は履歴
特性モデル設定部11と、この履歴特性モデル設定部1
1に接続された解析部12とを備えてなる。
FIG. 4 shows the structure of the seismic response analysis device for the seismic isolation structure supported by the seismic isolation device M. This device has a history characteristic model setting unit 11 and this history characteristic model setting unit 1.
1 and an analysis unit 12 connected to 1.

【0018】上記履歴特性モデル設定部11は、上記免
震装置Mについて水平変位に対する水平荷重の履歴特性
モデルを設定するもので、この履歴特性モデルは、図1
に示すように、1つのばね要素15(定数k0 )と、各
々ばね要素16a〜16d(定数k1 〜k4 )及びスラ
イダ要素17a〜17d(定数f1 〜f4 )が直列に接
続された4つのばねスライダ要素18a〜18dと、1
つのダッシュポット要素19(定数c)とを互いに並列
に接続したモデルとされている。上記各要素15,16
a〜16d,17a〜17d,19は表1に示す特性を
有する。
The history characteristic model setting unit 11 sets a history characteristic model of horizontal load with respect to horizontal displacement for the seismic isolation device M. This history characteristic model is shown in FIG.
As shown in FIG. 5, one spring element 15 (constant k 0 ) is connected in series with each of the spring elements 16a to 16d (constants k 1 to k 4 ) and slider elements 17a to 17d (constants f 1 to f 4 ). Four spring slider elements 18a-18d and 1
It is a model in which two dashpot elements 19 (constant c) are connected in parallel with each other. Each of the above elements 15, 16
a to 16d, 17a to 17d, 19 have the characteristics shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】免震装置Mに対する水平変位が小さい場
合、上記履歴特性モデルのばねスライダ要素の数は1つ
でもよく、実測した履歴曲線と一致させることができ
る。しかし、変位が大きくなると、初期変位での立上が
りを精度よく表すことが困難になるので、水平変位の増
大に応じて免震装置Mの履歴特性モデルのばねスライダ
要素の数を増加させればよく、この数を増やすほど精度
が高くなる。この実施形態では、上記ばねスライダ要素
の数を4とすることで、シミュレーションに要する時間
と各要素の定数の決定とを考慮して初期変位の立上がり
を精度よく表すことができるようにしている。
When the horizontal displacement with respect to the seismic isolation device M is small, the number of spring slider elements in the above hysteresis characteristic model may be one, and can be matched with the measured hysteresis curve. However, when the displacement becomes large, it becomes difficult to accurately represent the rise at the initial displacement. Therefore, the number of spring slider elements of the hysteresis characteristic model of the seismic isolation device M may be increased according to the increase of the horizontal displacement. , The higher the number, the higher the accuracy. In this embodiment, by setting the number of the spring slider elements to four, the rise of the initial displacement can be accurately represented in consideration of the time required for the simulation and the determination of the constant of each element.

【0021】一方、解析部12は、上記履歴特性モデル
設定部11により設定された免震装置Mの履歴特性モデ
ルに基づいて免震構造物の地震応答解析を行うものであ
る。
On the other hand, the analysis unit 12 performs the seismic response analysis of the seismic isolated structure based on the history characteristic model of the seismic isolation apparatus M set by the history characteristic model setting unit 11.

【0022】次に、上記履歴特性モデルを用いたときに
各要素がどのように作用するかを説明すると、まず、初
期状態(変位0)でのモデル全体のばね定数ka0は次式
により表され、また、初期変位xに対してモデルが元
に戻ろうとする復元力Fは式で表される。
Next, how each element works when the above hysteresis characteristic model is used will be described. First, the spring constant k a0 of the entire model in the initial state (displacement 0) is expressed by the following equation. The restoring force F that the model tries to return to the original displacement x is expressed by an equation.

【0023】[0023]

【数1】 (Equation 1)

【0024】その後、変位が大きくなるに従い、ばねス
ライダ要素18a〜18dにおいてスライダ要素17a
〜17dとセットになったばね要素16a〜16dに作
用する力が摩擦力fよりも大きくなると、スライダ要素
17a〜17dが滑り出してモデル全体でのばね定数が
低下する。すなわち、変位xに対してk1 x>f1 とな
った場合、モデル全体のばね定数ka1は以下の式で、
また復元力Fは式でそれぞれ表される。
Thereafter, as the displacement becomes larger, the slider elements 17a in the spring slider elements 18a to 18d are changed.
When the force acting on the spring elements 16a to 16d, which is set to ˜17d, becomes larger than the frictional force f, the slider elements 17a to 17d start to slide and the spring constant of the entire model decreases. That is, when k 1 x> f 1 with respect to displacement x, the spring constant k a1 of the entire model is given by
Further, the restoring force F is expressed by an equation.

【0025】[0025]

【数2】 (Equation 2)

【0026】上記履歴特性モデルに用いるばね要素1
5,16a〜16d及びスライダ要素17a〜17dの
各定数の決定には、図2に示すような免震装置Mの実際
の履歴特性の曲線を使用する。つまり、この履歴曲線の
履歴特性を5つに分割し、各々の区間での傾きksj(j
=1〜5)を求める。この傾きksjは次式〜により
表すことができ、これらの式〜からki を求めるこ
とができる。
Spring element 1 used in the hysteresis characteristic model
In order to determine the constants of 5, 16a to 16d and the slider elements 17a to 17d, the actual hysteresis characteristic curve of the seismic isolation device M as shown in FIG. 2 is used. That is, the history characteristic of this history curve is divided into five, and the slope k sj (j
= 1 to 5). This slope k sj can be expressed by the following equations (1) to (3), and ki can be obtained from these equations (1) to (3).

【0027】[0027]

【数3】 (Equation 3)

【0028】そのとき、各区間の変位Δxi とばね要素
15,16a〜16dの定数ki との積を定数fi とす
るが、そのままでは、変位が大きくなった場合、履歴面
積が大きくなり過ぎるので、50%歪みでの履歴形状に
合わせるべく0.5程度の値をそれぞれ定数ki ,fi
にかける(尚、1よりも小さい所定値をかければよ
い)。こうすることで、変位が大きくなった場合でも、
履歴面積が大きくなり過ぎることはなく、深刻な問題と
なるような大きな地震での変位に良好に対応させること
ができる。
At this time, the product of the displacement Δx i of each section and the constant k i of the spring elements 15, 16a to 16d is defined as a constant f i . However, if the displacement becomes large, the hysteresis area becomes large. Therefore, a value of about 0.5 is set to the constants k i and f i , respectively, in order to match the history shape at 50% strain.
(Note that a predetermined value smaller than 1 should be applied). By doing this, even if the displacement becomes large,
The history area does not become too large, and it is possible to respond well to displacements in large earthquakes that pose a serious problem.

【0029】したがって、このように変位の増大に伴っ
て順にスライダ要素17a〜17dが滑り出すことによ
り、一定の復元力を保ちながら変位が大きくなるに連れ
てばね定数が小さくなっていく、弾性及び塑性の両特性
を兼ね備えた実際の免震装置Mの履歴特性を適正にモデ
ル化することができ、初期変位の立上がりを正確に表す
ことができる。また、小さな変位から大きな変位までを
同じ1つのモデルで精度よくシミュレーションすること
ができる。
Therefore, as the displacement increases, the slider elements 17a to 17d sequentially slide out, and the spring constant decreases as the displacement increases while maintaining a constant restoring force. Elasticity and plasticity It is possible to properly model the history characteristic of the actual seismic isolation device M that has both of the above characteristics and accurately represent the rise of the initial displacement. Also, small displacements to large displacements can be accurately simulated with the same one model.

【0030】[0030]

【実施例】今回実施した履歴特性モデルの妥当性を検証
するために、5種類の免震装置についてシミュレーショ
ンをVisual Basicを用いて行った。表2に、今回モデル
化した免震装置の各定数を示す。表2中、「LRB」の
次の数字は免震装置の有効径(シム径)を表す。また、
「RB」は鉛プラグ6の埋め込まれていない免震装置
(比較例)を示す。
[Example] In order to verify the validity of the hysteresis characteristic model implemented this time, simulation was performed using Visual Basic for five types of seismic isolation devices. Table 2 shows each constant of the seismic isolation device modeled this time. In Table 2, the number next to "LRB" represents the effective diameter (shim diameter) of the seismic isolation device. Also,
“RB” indicates a seismic isolation device (comparative example) in which the lead plug 6 is not embedded.

【0031】[0031]

【表2】 [Table 2]

【0032】上記シミュレーションは図5に示すフロー
チャートに沿って行われる。その手順について説明する
と、ステップS1で5種類の免震装置を選択し、ステッ
プS2で各々の定数(表2参照)を読み込む。ステップ
S3において、復元力Fn を、1つ前の復元力Fn-1
微小変位xn −xn-1 とばね定数ki (i=1〜4)と
の積を加えた値Fn =Fn-1 +ki (xn −xn-1 )と
して計算する。ステップS4では、上記微小変位xn
n-1 の正負を判定し、この判定がxn −xn- 1 >0の
YESのときにはステップS5でその復元力Fn と摩擦
力fi (i=1〜4)との大小を判定し、この判定がF
n ≧fi のYESのときにはステップS6で復元力Fn
を摩擦力fi とした後、またFn <fi のNOのときに
は直接それぞれステップS9に進む。
The above simulation is performed according to the flow chart shown in FIG. The procedure will be described. In step S1, five types of seismic isolation devices are selected, and in step S2, respective constants (see Table 2) are read. In step S3, the restoring force F n is a value F obtained by adding the product of the minute displacement x n −x n−1 and the spring constant k i (i = 1 to 4) to the previous restoring force F n−1. n = calculated as F n-1 + k i ( x n -x n-1). In step S4, the small displacement x n
Whether the sign of x n-1 is positive or negative is judged, and when the judgment is YES of x n -x n- 1 > 0, the restoring force F n and the friction force f i (i = 1 to 4) are compared in step S5. Judgment, this judgment is F
When n ≧ f i is YES, the restoring force F n is determined in step S6.
Is set as the frictional force f i, and when F n <f i is NO, the process directly proceeds to step S9.

【0033】一方、ステップS4での判定がxn −x
n-1 ≦0のNOのときにはステップS7で復元力Fn
摩擦力−fi との大小を判定し、この判定がFn ≦−f
i のYESのときにはステップS8で復元力Fn を摩擦
力−fi とした後、またFn >−fi のNOのときには
そのままステップS9に進む。
On the other hand, the determination in step S4 is x n -x
when n-1 ≦ 0 of NO determines the magnitude of the restoring force F n and the frictional force -f i in step S7, the determination is F n ≦ -f
When i is YES, the restoring force F n is set to the frictional force −f i in step S8, and when F n > −f i is NO, the process directly proceeds to step S9.

【0034】上記ステップS9では、前回の復元力F
n-1 を今回の復元力Fn に書き換え、ステップS10で
結果の表示をした後、ステップS11で結果をファイル
に出力し、しかる後に終了する。
At step S9, the previous restoring force F
rewrites the n-1 to the current restoring force F n, after the display of the result in step S10, and outputs the results to a file in step S11, and ends thereafter.

【0035】すなわち、このシミュレーションでは、ス
ライダ要素が滑るか滑らないかの判断を行うために、1
つ前の復元力Fn-1 を用いている。この前回の復元力F
n-1と微小変位xn −xn-1 及びばね定数ki の積との
和として得られた復元力Fn=Fn-1 +ki (xn −x
n-1 )が摩擦力fi よりも大きくなった場合、スライダ
要素が滑り出し、復元力Fn がスライダ要素の摩擦力f
i と等しくなるようにしている(ステップS3〜S
8)。
That is, in this simulation, in order to judge whether the slider element slips or does not slip, 1
The previous restoring force F n-1 is used. This previous resilience F
n-1 and the minute displacement x n -x n-1 and the spring constant k restoring force obtained as the sum of the product of i F n = F n-1 + k i (x n -x
n-1 ) becomes larger than the frictional force f i , the slider element slides out and the restoring force F n is the frictional force f of the slider element.
It is set to be equal to i (steps S3 to S
8).

【0036】また、微小変位xn −xn-1 の正負を判定
することで、変位が正負のいずれであっても復元力の方
向を考慮したシミュレーションを行うことができる(ス
テップS4〜S8)。
Further, by determining whether the small displacement x n -x n-1 is positive or negative, it is possible to perform a simulation considering the direction of the restoring force regardless of whether the displacement is positive or negative (steps S4 to S8). .

【0037】図6(a)にシミュレーションの結果を、
また図6(b)に実際に測定された履歴曲線をそれぞれ
対比して示す。この図6からシミュレーション結果が実
測結果と一致していることが判る。
The result of the simulation is shown in FIG.
In addition, FIG. 6B shows the actually measured history curves in comparison with each other. It can be seen from FIG. 6 that the simulation result matches the actual measurement result.

【0038】また、変異が小さい場合、シミュレーショ
ン結果でのループ面積が実測の場合よりも小さくなって
いるが、これは変位が大きい場合に実測状態に合わせよ
うとしたためであり、この点から本発明の履歴特性モデ
ルは、解析を必要とするような大きな地震に対して特に
有効であることが判る。
When the variation is small, the loop area in the simulation result is smaller than that in the actual measurement. This is because when the displacement is large, an attempt is made to match the actual measurement state. It is found that the historical characteristic model of is particularly effective for large earthquakes that require analysis.

【0039】また、本発明の履歴特性モデルによれば、
従来のバイリニアモデルよりも遥かに実測履歴曲線に近
い結果が得られ、特に、初期変位での曲線の立上がりを
十分に表すことができ、剪断歪みの大きさによって異な
るLRB免震装置の履歴特性を正確に表すことができる
ことが判る。
According to the history characteristic model of the present invention,
The result is much closer to the measured history curve than the conventional bilinear model, and in particular, the rise of the curve at the initial displacement can be sufficiently expressed, and the history characteristics of the LRB seismic isolation device that differ depending on the magnitude of shear strain can be obtained. It turns out that it can be expressed accurately.

【0040】[0040]

【発明の効果】以上説明したように、請求項1又は5の
発明によると、複数のゴム及び鋼板を交互に積層して加
硫接着した積層ゴム体と、該積層ゴム体の中心部に埋め
込まれた鉛プラグとを備えてなる免震装置を介して支承
された免震構造物の地震応答解析を行う場合、免震装置
について、ばね要素及びスライダ要素が直列に接続され
た少なくとも1つのばねスライダ要素と、1つのばね要
素と、1つのダッシュポット要素とを互いに並列に接続
した水平変位に対する水平荷重の履歴特性モデルを設定
して、この履歴特性モデルに基づいて免震構造物の地震
応答解析を行うようにしたことにより、免震装置の履歴
特性モデルとして弾性及び塑性の両特性を兼ね備えた実
際の免震装置と同様のモデルが得られ、初期変位の立上
がりを正確に表すことができるとともに、小さな変位か
ら大きな変位までを同じ1つのモデルで精度よくシミュ
レーションすることができ、免震構造物の地震応答解析
精度の向上を図ることができる。
As described above, according to the invention of claim 1 or 5, a plurality of rubbers and steel plates are alternately laminated and vulcanized and bonded, and a laminated rubber body is embedded in the center of the laminated rubber body. At least one spring in which a spring element and a slider element are connected in series for the seismic isolation device when performing seismic response analysis of a seismic isolation structure supported via the seismic isolation device including a lead plug A hysteresis characteristic model of horizontal load for horizontal displacement in which a slider element, one spring element, and one dashpot element are connected in parallel to each other is set, and based on this hysteresis characteristic model, the seismic response of a base-isolated structure By performing the analysis, a model similar to an actual seismic isolation device that has both elastic and plastic characteristics can be obtained as a hysteresis characteristic model of the seismic isolation device, and accurately represents the rise of initial displacement. Preparative it is, small displacements from to large displacement can be accurately simulated with the same one model, it is possible to improve the seismic response analysis accuracy of seismic isolation structure.

【0041】請求項2の発明によると、水平変位の増大
に応じて履歴特性モデルのばねスライダ要素の数を増加
させるようにしたことにより、変位の増大に応じて初期
変位の立上がりを精度よく表すことができ、免震構造物
の地震応答解析をさらに精度よく行うことができる。
According to the second aspect of the present invention, the number of spring slider elements of the hysteresis characteristic model is increased in accordance with the increase in horizontal displacement, so that the rise of the initial displacement is accurately represented in accordance with the increase in displacement. Therefore, the seismic response analysis of the base-isolated structure can be performed with higher accuracy.

【0042】請求項3の発明によると、上記履歴特性モ
デルのばねスライダ要素の数を4としたことにより、シ
ミュレーションに要する時間と各要素の定数の決定とを
考慮して初期変位の立上がりを精度よく表す最適な履歴
特性モデルを得ることができる。
According to the third aspect of the present invention, the number of spring slider elements in the hysteresis characteristic model is set to 4, so that the rise of the initial displacement can be accurately taken into consideration in consideration of the time required for the simulation and the determination of the constant of each element. It is possible to obtain an optimal history characteristic model that is well represented.

【0043】請求項4の発明によると、履歴特性モデル
におけるばね要素及びスライダ要素の各定数として、免
震装置の実際の履歴特性から求められた定数に1よりも
小さい所定値を乗じたものとしたことにより、深刻な問
題となるような大きな地震での変位に履歴特性モデルを
良好に対応させることができる。
According to the invention of claim 4, the constants obtained from the actual hysteresis characteristics of the seismic isolation device are multiplied by a predetermined value smaller than 1 as the constants of the spring element and the slider element in the hysteresis characteristic model. By doing so, the hysteresis characteristic model can favorably correspond to the displacement in a large earthquake that causes a serious problem.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る免震装置のシミュレー
ションモデルを示す図である。
FIG. 1 is a diagram showing a simulation model of a seismic isolation device according to an embodiment of the present invention.

【図2】実施形態に係る免震装置の履歴特性を示す特性
図である。
FIG. 2 is a characteristic diagram showing a history characteristic of the seismic isolation device according to the embodiment.

【図3】免震装置を一部破断して示す斜視図である。FIG. 3 is a perspective view showing the seismic isolation device partially broken away.

【図4】本発明の実施形態に係る地震応答解析装置を示
すブロック図である。
FIG. 4 is a block diagram showing an earthquake response analysis device according to an embodiment of the present invention.

【図5】シミュレーションの手順を示すフローチャート
図である。
FIG. 5 is a flowchart showing a procedure of simulation.

【図6】シミュレーションの結果を実測結果と対比して
示す図である。
FIG. 6 is a diagram showing simulation results in comparison with actual measurement results.

【図7】免震装置の従来の履歴特性を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing a conventional hysteresis characteristic of the seismic isolation device.

【符号の説明】[Explanation of symbols]

M 免震装置 1,2 取付プレート 3 ゴム 4 鋼板 5 積層ゴム体 6 鉛プラグ 11 履歴特性モデル設定部(履歴特性モデル設定手
段) 12 解析部(解析手段) 15,16a〜16d ばね要素 17a〜17d スライダ要素 18a〜18d ばねスライダ要素 19 ダッシュポット要素 ki ,c 定数 fi 摩擦力
M seismic isolation device 1, 2 mounting plate 3 rubber 4 steel plate 5 laminated rubber body 6 lead plug 11 history characteristic model setting unit (history characteristic model setting means) 12 analysis unit (analysis means) 15, 16a to 16d spring element 17a to 17d The slider element 18a~18d spring slider element 19 dashpot element k i, c constants f i frictional force

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 郁夫 神奈川県藤沢市桐原町8番地 オイレス工 業株式会社藤沢事業所内 (72)発明者 持丸 昌已 神奈川県藤沢市桐原町8番地 オイレス工 業株式会社藤沢事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Ikuo Shimoda Inventor Ikuo Shimoda 8 Kirihara-cho, Fujisawa-shi, Kanagawa OILES Industrial Co., Ltd. Fujisawa Works (72) Inventor Masami Mochimaru 8 Kirihara-machi, Fujisawa-Kanagawa OILES Industrial Co., Ltd. Company Fujisawa Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数のゴム及び鋼板を交互に積層して加
硫接着した積層ゴム体と、該積層ゴム体の中心部に埋め
込まれた鉛プラグとを備えてなる免震装置を介して支承
された免震構造物の地震応答解析方法であって、 上記免震装置について、ばね要素及びスライダ要素が直
列に接続された少なくとも1つのばねスライダ要素と、
1つのばね要素と、1つのダッシュポット要素とを互い
に並列に接続した水平変位に対する水平荷重の履歴特性
モデルを設定し、 上記免震装置の履歴特性モデルに基づいて免震構造物の
地震応答解析を行うことを特徴とする免震構造物の地震
応答解析方法。
1. A bearing through a seismic isolation device comprising a laminated rubber body in which a plurality of rubbers and steel plates are alternately laminated and vulcanized and bonded, and a lead plug embedded in the center of the laminated rubber body. The seismic response analysis method for a seismic isolated structure, comprising: at least one spring slider element in which a spring element and a slider element are connected in series in the seismic isolation device;
A horizontal load hysteresis characteristic model for horizontal displacement in which one spring element and one dashpot element are connected in parallel is set, and the seismic response analysis of the seismic isolation structure is performed based on the hysteresis characteristic model of the seismic isolation device. Response analysis method for base-isolated structures, characterized by performing
【請求項2】 請求項1記載の免震構造物の地震応答解
析方法において、 水平変位の増大に応じて免震装置の履歴特性モデルのば
ねスライダ要素の数を増加させることを特徴とする免震
構造物の地震応答解析方法。
2. The seismic response analysis method for a seismic isolation structure according to claim 1, wherein the number of spring slider elements of the hysteresis characteristic model of the seismic isolation device is increased according to an increase in horizontal displacement. Seismic response analysis method for seismic structures.
【請求項3】 請求項2記載の免震構造物の地震応答解
析方法において、 免震装置の履歴特性モデルのばねスライダ要素の数が4
であることを特徴とする免震構造物の地震応答解析方
法。
3. The seismic response analysis method for a seismic isolation structure according to claim 2, wherein the number of spring slider elements in the hysteresis characteristic model of the seismic isolation device is four.
A method for analyzing seismic response of base-isolated structures, characterized in that.
【請求項4】 請求項1記載の免震構造物の地震応答解
析方法において、 履歴特性モデルにおけるばね要素及びスライダ要素の各
定数は、免震装置の実際の履歴特性から求められた定数
に1よりも小さい所定値を乗じたものであることを特徴
とする免震構造物の地震応答解析方法。
4. The seismic response analysis method for a seismic isolation structure according to claim 1, wherein each constant of the spring element and the slider element in the hysteresis characteristic model is 1 to a constant obtained from an actual hysteresis characteristic of the seismic isolation device. A method for analyzing seismic response of a base-isolated structure, characterized in that it is multiplied by a predetermined value smaller than.
【請求項5】 複数のゴム及び鋼板を交互に積層して加
硫接着した積層ゴム体と、該積層ゴム体の中心部に埋め
込まれた鉛プラグとを備えてなる免震装置を介して支承
された免震構造物の地震応答を解析するようにした地震
応答解析装置であって、 上記免震装置について、ばね要素及びスライダ要素が直
列に接続された少なくとも1つのばねスライダ要素と、
1つのばね要素と、1つのダッシュポット要素とを互い
に並列に接続した水平変位に対する水平荷重の履歴特性
モデルを設定する履歴特性モデル設定手段と、 上記履歴特性モデル設定手段により設定された免震装置
の履歴特性モデルに基づいて免震構造物の地震応答解析
をシミュレーションにより行う解析手段とを備えたこと
を特徴とする免震構造物の地震応答解析装置。
5. A bearing is supported via a seismic isolation device including a laminated rubber body in which a plurality of rubbers and steel plates are alternately laminated and vulcanized and bonded, and a lead plug embedded in the center of the laminated rubber body. A seismic response analysis device for analyzing seismic response of a seismic isolated structure, wherein at least one spring slider element in which a spring element and a slider element are connected in series,
A history characteristic model setting unit that sets one spring element and one dashpot element in parallel with each other to set a history characteristic model of horizontal load with respect to horizontal displacement, and a seismic isolation device set by the history characteristic model setting unit. Seismic response analysis apparatus for a seismic isolated structure, characterized by comprising: an analysis means for performing a seismic response analysis of the seismic isolated structure based on the above history characteristic model by simulation.
JP27252295A 1995-10-20 1995-10-20 Seismic response analysis method and analyzer for seismic isolation structure Expired - Lifetime JP3606651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27252295A JP3606651B2 (en) 1995-10-20 1995-10-20 Seismic response analysis method and analyzer for seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27252295A JP3606651B2 (en) 1995-10-20 1995-10-20 Seismic response analysis method and analyzer for seismic isolation structure

Publications (2)

Publication Number Publication Date
JPH09113403A true JPH09113403A (en) 1997-05-02
JP3606651B2 JP3606651B2 (en) 2005-01-05

Family

ID=17515073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27252295A Expired - Lifetime JP3606651B2 (en) 1995-10-20 1995-10-20 Seismic response analysis method and analyzer for seismic isolation structure

Country Status (1)

Country Link
JP (1) JP3606651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091339A (en) * 2008-10-06 2010-04-22 Takenaka Komuten Co Ltd Method for identifying restoring force characteristics
CN102288402A (en) * 2011-07-25 2011-12-21 中国航空规划建设发展有限公司 Method for monitoring hysteretic property of damper in real time or periodically
JP5698402B1 (en) * 2014-06-10 2015-04-08 グローバル・ロジスティック・プロパティーズ株式会社 Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223576A (en) * 1984-04-18 1985-11-08 株式会社大林組 Earthquake dampening apparatus
JPS61113928A (en) * 1984-11-07 1986-05-31 Hideyuki Tada Elastic plastic type damping mechanism using composite material
JPH02103536U (en) * 1989-02-02 1990-08-17
JPH02128844U (en) * 1989-03-31 1990-10-24
JPH05157656A (en) * 1991-12-05 1993-06-25 Hitachi Ltd Vibration test device and method and vibration response analysis method of structure
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223576A (en) * 1984-04-18 1985-11-08 株式会社大林組 Earthquake dampening apparatus
JPS61113928A (en) * 1984-11-07 1986-05-31 Hideyuki Tada Elastic plastic type damping mechanism using composite material
JPH02103536U (en) * 1989-02-02 1990-08-17
JPH02128844U (en) * 1989-03-31 1990-10-24
JPH05157656A (en) * 1991-12-05 1993-06-25 Hitachi Ltd Vibration test device and method and vibration response analysis method of structure
JPH06101740A (en) * 1992-08-07 1994-04-12 Sumitomo Rubber Ind Ltd Lamination rubber support

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091339A (en) * 2008-10-06 2010-04-22 Takenaka Komuten Co Ltd Method for identifying restoring force characteristics
CN102288402A (en) * 2011-07-25 2011-12-21 中国航空规划建设发展有限公司 Method for monitoring hysteretic property of damper in real time or periodically
JP5698402B1 (en) * 2014-06-10 2015-04-08 グローバル・ロジスティック・プロパティーズ株式会社 Seismic response analysis method for base-isolated buildings and seismic safety evaluation method for base-isolated devices using seismic response analysis method for base-isolated buildings

Also Published As

Publication number Publication date
JP3606651B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
Darby et al. Stability and delay compensation for real-time substructure testing
Riahi et al. Seismic assessment of steel frames with the endurance time method
CN107330176B (en) Strain gauge and accelerometer joint layout method based on structural modal estimation
Wong Uncertainties in dynamic soil-structure interaction
US20070118343A1 (en) Immediate buckling model, hysteresis model, and cloth simulation method based on the invented models, and computer-readable media storing a program which executes the invented simulation method
CN110955993B (en) Optimum design method for beam membrane structure of micro-pressure sensor
Mortezaei et al. Effectiveness of modified pushover analysis procedure for the estimation of seismic demands of buildings subjected to near‐fault earthquakes having forward directivity
Türker et al. Assessment of semi-rigid connections in steel structures by modal testing
JPH09113403A (en) Method and equipment for analyzing seismic response of aseismatic structure
Xie et al. Innovative substructure approach to estimating structural parameters of shear structures
JP4433769B2 (en) Nonlinear finite element analysis apparatus and method, computer program, and recording medium
CN104603771A (en) Information processing device, method and program
JP4374547B2 (en) Simple evaluation method for building seismic response
Bartsch et al. Small insect measurements using a custom MEMS force sensor
Telukunta et al. Fully Lagrangian modeling of MEMS with thin plates
EP3089057A2 (en) Method and apparatus for use in thermal coupled analysis
Guggenberger et al. Monte Carlo simulation of the hysteretic response of frame structures using plastification adapted shape functions
JP6900795B2 (en) Analysis method of resultant force
de la Llera et al. A design procedure for buildings equipped with energy dissipation devices using nonclassical damping and iso‐performance curves
JP2001033347A (en) Construction judgement system for base isolation building
Erickson et al. SEAS benchmark problem BP1
Buchhold et al. A novel approach to modeling the transfer functions of four-terminal-transducer pressure sensors within a single simulation tool
JP4429118B2 (en) Time history response analysis method, apparatus, and program
Lignos et al. Collapse assessment of a 4-story steel moment resisting frame
US20030125914A1 (en) System simulation using dynamic step size and iterative model

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term