JP6900795B2 - Analysis method of resultant force - Google Patents

Analysis method of resultant force Download PDF

Info

Publication number
JP6900795B2
JP6900795B2 JP2017116890A JP2017116890A JP6900795B2 JP 6900795 B2 JP6900795 B2 JP 6900795B2 JP 2017116890 A JP2017116890 A JP 2017116890A JP 2017116890 A JP2017116890 A JP 2017116890A JP 6900795 B2 JP6900795 B2 JP 6900795B2
Authority
JP
Japan
Prior art keywords
force
resultant force
human body
analyzing
doll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017116890A
Other languages
Japanese (ja)
Other versions
JP2019003371A (en
Inventor
佳臣 西垣
佳臣 西垣
香寿美 井上
香寿美 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2017116890A priority Critical patent/JP6900795B2/en
Publication of JP2019003371A publication Critical patent/JP2019003371A/en
Application granted granted Critical
Publication of JP6900795B2 publication Critical patent/JP6900795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、合力の解析方法に関する。 The present disclosure relates to a method for analyzing resultant forces.

例えばシート等の人体が着座する物体において、安定性や座り心地を高めるためには、人体が物体(つまりシート)から受ける反力を評価する必要がある。この反力は人体の表面に圧力として分布する。 For example, in an object such as a seat on which the human body sits, it is necessary to evaluate the reaction force received by the human body from the object (that is, the seat) in order to improve stability and sitting comfort. This reaction force is distributed as pressure on the surface of the human body.

物体から人体が受ける反力の評価方法としては、例えば反力計等のセンサを用いて反力を求める方法が公知である(特許文献1参照)。しかし、この方法はシートのように変形する弾性体には展開されていない。そこで、変形に追従可能な体圧測定シートを用いた反力の測定も行われている。 As a method for evaluating the reaction force received by the human body from an object, for example, a method for obtaining the reaction force using a sensor such as a reaction force meter is known (see Patent Document 1). However, this method has not been developed for elastic bodies that deform like sheets. Therefore, the reaction force is also measured using a body pressure measuring sheet capable of following the deformation.

特開平3−103272号公報Japanese Unexamined Patent Publication No. 3-103272

上述の体圧測定シートでは、人体と物体との接触面における反力の垂直成分(つまり垂直抗力)は計測できるが、せん断成分(つまり摩擦力)は計測できない。そのため、従来技術では十分な安定性の評価を行うことができない。 With the above-mentioned body pressure measuring sheet, the vertical component (that is, normal force) of the reaction force on the contact surface between the human body and the object can be measured, but the shear component (that is, the frictional force) cannot be measured. Therefore, it is not possible to evaluate the stability sufficiently by the conventional technique.

本開示の一局面は、弾性を有する物体に接触する人体の挙動を評価することができる合力の解析方法を提供することを目的としている。 One aspect of the present disclosure is an object of the present invention to provide a method for analyzing a resultant force capable of evaluating the behavior of a human body in contact with an elastic object.

本開示の一態様は、弾性を有する物体に対し、人体又は人体を模した人形による荷重を加えた際に、人体又は人形が物体から受ける反力の合力を解析する方法である。合力の解析方法は、物体と人体又は人形との接触面において人体又は人形が物体から受ける反力の分布を求める工程(S20)と、反力の分布を合成した合力を求める工程(S30)と、人体又は人形におけるモーメントの釣り合いを用いて、合力の作用線を求める工程(S40)と、合力の作用線を出力する工程(S60)と、を備える。 One aspect of the present disclosure is a method of analyzing the resultant force of the reaction force received from the human body or the doll when a load is applied to the elastic object by the human body or a doll imitating the human body. The method of analyzing the resultant force includes a step of obtaining the distribution of the reaction force received from the object by the human body or the doll on the contact surface between the object and the human body or the doll (S20), and a step of obtaining the resultant force by combining the distribution of the reaction forces (S30). A step of obtaining the action line of the resultant force (S40) and a step of outputting the action line of the resultant force (S60) by using the balance of moments in the human body or the doll are provided.

このような構成によれば、反力の分布から合力を求め、さらにその合力の作用線を出力するので、可視化された作用線によって人体又は人形の安定性を視覚的に評価できる。また、摩擦力を考慮して合力の作業線を出力することができるので、より現実的に人体又は人形の挙動の評価を行うことができる。 According to such a configuration, the resultant force is obtained from the distribution of the reaction force, and the action line of the resultant force is output. Therefore, the stability of the human body or the doll can be visually evaluated by the visualized action line. Further, since the work line of the resultant force can be output in consideration of the frictional force, the behavior of the human body or the doll can be evaluated more realistically.

本開示の一態様は、人体又は人形の重心を求める工程(S50)をさらに備えてもよい。また、出力する工程(S60)では、人体又は人形の重心を出力してもよい。このような構成によれば、人体又は人形の重心と合力の作用線との位置関係を把握できるので、より効果的に人体又は人形の挙動を評価できる。 One aspect of the present disclosure may further include a step (S50) of determining the center of gravity of the human body or the doll. Further, in the output step (S60), the center of gravity of the human body or the doll may be output. According to such a configuration, the positional relationship between the center of gravity of the human body or the doll and the action line of the resultant force can be grasped, so that the behavior of the human body or the doll can be evaluated more effectively.

本開示の一態様では、反力の分布を求める工程(S20)では、反力を2以上の分力に分解することで、分力毎の分布を求めてもよい。また、合力を求める工程(S30)では、分力毎の合力を求めてもよい。このような構成によれば、反力を任意の方向の分力に分解してそれぞれ可視化できるため、物体の形状や使用状況等に合わせた最適な評価が可能となる。 In one aspect of the present disclosure, in the step (S20) of obtaining the distribution of the reaction force, the distribution of each component force may be obtained by decomposing the reaction force into two or more component forces. Further, in the step of obtaining the resultant force (S30), the resultant force for each component force may be obtained. According to such a configuration, the reaction force can be decomposed into component forces in arbitrary directions and visualized, so that the optimum evaluation can be performed according to the shape of the object, the usage condition, and the like.

本開示の一態様では、2以上の分力は、垂直抗力及び摩擦力であってもよい。このような構成によれば、例えばシートに着座した人体又は人形に対する反力による挙動をより的確に評価できる。 In one aspect of the present disclosure, the two or more component forces may be normal force and frictional force. According to such a configuration, for example, the behavior due to the reaction force with respect to the human body or the doll seated on the seat can be evaluated more accurately.

本開示の一態様では、反力の分布を求める工程(S20)では、有限要素法により反力を求めてもよい。また、出力する工程(S60)では、有限要素法の解析結果上に合力の作用線を出力してもよい。このような構成によれば、合力を求めるための計算から合力の作用線の出力結果確認までを同一の画面で行うことができるので、作業性が向上する。 In one aspect of the present disclosure, in the step (S20) of obtaining the distribution of the reaction force, the reaction force may be obtained by the finite element method. Further, in the output step (S60), the action line of the resultant force may be output on the analysis result of the finite element method. According to such a configuration, workability is improved because the calculation for obtaining the resultant force and the confirmation of the output result of the action line of the resultant force can be performed on the same screen.

本開示の一態様は、出力された合力の作用線に基づき、人体又は人形の安定性を評価する工程(S70)をさらに備えてもよい。このような構成によれば、従来よりも容易かつ的確に人体の安定性を評価することができる。 One aspect of the present disclosure may further include a step (S70) of evaluating the stability of the human body or the doll based on the output line of action of the resultant force. According to such a configuration, the stability of the human body can be evaluated more easily and accurately than before.

なお、上記各括弧内の符号は、後述する実施形態に記載の具体的構成等との対応関係を示す一例であり、本開示は上記括弧内の符号に示された具体的構成等に限定されるものではない。 The reference numerals in the parentheses are examples showing the correspondence with the specific configurations and the like described in the embodiments described later, and the present disclosure is limited to the specific configurations and the like shown in the symbols in the parentheses. It's not something.

図1は、実施形態における合力の解析方法を示すフローチャートである。FIG. 1 is a flowchart showing a method of analyzing the resultant force in the embodiment. 図2は、図1の合力の解析方法で算出した反力の分布を示す模式的な図である。FIG. 2 is a schematic diagram showing the distribution of the reaction force calculated by the method of analyzing the resultant force of FIG. 図3は、図1の合力の解析方法における合力の作用線の出力結果を示す模式的な図である。FIG. 3 is a schematic diagram showing the output result of the action line of the resultant force in the method of analyzing the resultant force of FIG. 図4Aは、図1の合力の解析方法における合力の作用線の出力結果を示す模式的な図であり、図4Bは、安定性の評価の一例を示す模式的な図である。FIG. 4A is a schematic diagram showing the output result of the action line of the resultant force in the method of analyzing the resultant force of FIG. 1, and FIG. 4B is a schematic diagram showing an example of the evaluation of stability. 図5は、図1の出力工程における矢印の表示方法を示すフローチャートである。FIG. 5 is a flowchart showing a method of displaying arrows in the output process of FIG.

以下、本開示が適用された実施形態について、図面を用いて説明する。
[1.第1実施形態]
[1−1.構成]
図1に示す合力の解析方法は、弾性を有する物体に対し人体又は人体を模した人形による荷重を加えた際に、人体又は人形が物体から受ける反力の合力を3次元的に解析する方法である。なお、本実施形態では、人体又は人形は、剛体又は変形体として扱う。
Hereinafter, embodiments to which the present disclosure has been applied will be described with reference to the drawings.
[1. First Embodiment]
[1-1. Constitution]
The method of analyzing the resultant force shown in FIG. 1 is a method of three-dimensionally analyzing the resultant force of the reaction force received by the human body or the doll from the object when a load is applied to the elastic object by the human body or a doll imitating the human body. Is. In the present embodiment, the human body or the doll is treated as a rigid body or a deformed body.

本実施形態の合力の解析方法は、図1に示すように、計算工程S10と、反力分布算出工程S20と、合力算出工程S30と、作用線算出工程S40と、重心算出工程S50と、出力工程S60と、安定性評価工程S70とを備える。 As shown in FIG. 1, the method of analyzing the resultant force of the present embodiment includes a calculation step S10, a reaction force distribution calculation step S20, a resultant force calculation step S30, an action line calculation step S40, a center of gravity calculation step S50, and an output. A step S60 and a stability evaluation step S70 are provided.

<計算工程>
本工程では、図2に示すように、弾性を有する物体10に人体20が鉛直方向上方から接触した状態の3次元モデルを作成し、有限要素法(FEM)により物体10の変形量、荷重等を計算する。
<Calculation process>
In this step, as shown in FIG. 2, a three-dimensional model in which the human body 20 is in contact with the elastic object 10 from above in the vertical direction is created, and the deformation amount, load, etc. of the object 10 are created by the finite element method (FEM). To calculate.

物体10としては、例えば乗物や建造物に用いられる柔軟性のあるシートが挙げられる。本実施形態では、人体20は、物体10の上方から着座しており、物体10には人体20の自重による荷重が加わっている。 Examples of the object 10 include a flexible sheet used for a vehicle or a building. In the present embodiment, the human body 20 is seated from above the object 10, and a load due to the weight of the human body 20 is applied to the object 10.

<反力分布算出工程>
本工程では、計算工程S10で得られたFEMの解析結果から、図2に示される物体10と人体20との接触面において人体20が物体10から受ける反力rの3次元空間での分布を求める。
<Reaction force distribution calculation process>
In this step, from the analysis result of FEM obtained in the calculation step S10, the distribution of the reaction force r that the human body 20 receives from the object 10 on the contact surface between the object 10 and the human body 20 shown in FIG. 2 in the three-dimensional space is obtained. Ask.

本実施形態では、反力rを2以上の分力に分解することで、分力毎の分布を求める。具体的には、反力rを垂直抗力と摩擦力とに分解する。垂直抗力は、物体10と人体20との接触面の法線方向の分力である。摩擦力は、物体10と人体20との接触面と平行な方向の分力である。つまり、垂直抗力の方向と摩擦力の方向とは直交する。 In the present embodiment, the reaction force r is decomposed into two or more component forces to obtain the distribution for each component force. Specifically, the reaction force r is decomposed into a normal force and a frictional force. The normal force is a component force in the normal direction of the contact surface between the object 10 and the human body 20. The frictional force is a component force in a direction parallel to the contact surface between the object 10 and the human body 20. That is, the direction of the normal force and the direction of the frictional force are orthogonal to each other.

<合力算出工程>
本工程では、反力の分布を合成した合力を求める。具体的には、反力の分力(本実施形態では垂直抗力及び摩擦力)毎に、分布している分力(つまり荷重)のベクトルを総和する。これにより、分力毎の合力が求められる。
<Coupling force calculation process>
In this step, the resultant force obtained by synthesizing the distribution of reaction forces is obtained. Specifically, the vectors of the distributed component forces (that is, the load) are summed for each component force of the reaction force (normal force and frictional force in this embodiment). As a result, the resultant force for each component force is required.

例えば、点A1(x,y,z)=(2,4,2)に存在する荷重f1(u,v,w)=(1,3,2)の分力r1と、点A2(x,y,z)=(8,2,4)に存在する荷重f2(u,v,w)=(−2,4,1)の分力r2との合力(u,v,w)は、(1−2,3+4,2+1)=(−1,7,3)となる。 For example, with the component force r1 of the load f1 (u 1 , v 1 , w 1 ) = (1, 3, 2) existing at the point A1 (x 1 , y 1 , z 1) = (2, 4, 2). , The component force r2 of the load f2 (u 2 , v 2 , w 2 ) = (-2, 4, 1) existing at the point A2 (x 2 , y 2 , z 2) = (8, 2, 4) The resultant force (u 0 , v 0 , w 0 ) is (1-2, 3 + 4, 2 + 1) = (-1, 7, 3).

<作用線算出工程>
本工程では、人体20におけるモーメントの釣り合いを用いて、合力算出工程S30で求めた合力の作用線を求める。
<Action line calculation process>
In this step, the action line of the resultant force obtained in the resultant force calculation step S30 is obtained by using the balance of the moments in the human body 20.

具体的には、合力の作用線上の点の座標を(x,y,z)とし、各分力rnの作用点におけるZ軸周りのモーメントをMn、X軸周りのモーメントをMn、Y軸周りのモーメントをMnとしたとき、Z軸周りのモーメントが釣り合う関係、X軸周りのモーメントが釣り合う関係、及びY軸周りのモーメントが釣り合う関係は、それぞれ下記式(1−1)、(2−1)及び(3−1)で表される。この3次連立方程式を満たす直線が合力の作用線となる。 Specifically, the coordinates of the points on the action line of the resultant force are (x, y, z), the moment around the Z axis at the action point of each component force rn is M z n, and the moment around the X axis is M x n. , when the moment around the Y axis and the M y n, the relationship moments are balanced around the Z axis, the relationship moments are balanced about the X axis, and relationships that moment are balanced about the Y-axis, the following formulas (1-1 ), (2-1) and (3-1). The straight line that satisfies this cubic system of equations is the line of action of the resultant force.

・x−u・y=ΣMn ・・・(1−1)
・y−v・z=ΣMn ・・・(2−1)
・z−w・x=ΣMn ・・・(3−1)
例えば、上述の分力r1,r2の場合では、これらの合力の作用線におけるZ軸周りのモーメントは、u・x−v・y=7x−(−y)=7x+yとなる。一方、点A1,A2におけるZ軸周りのモーメントの和は、M1+M2=(v・x−u・y)+(v・x−u・y)=3・2−1・4+4・8−(−2)・2=38となる。同様に、点A1,A2におけるX軸周りのモーメントの和は−12となり、Y軸周りのモーメントの和は18となる。したがって、合力の作用線は以下の式(1−2)、(2−2)及び(3−2)の連立方程式{(x−4)/(−1)}={(y−10)/7}={(z−6)/3}として求められる。
v 0・ x−u 0・ y = ΣM z n ・ ・ ・ (1-1)
w 0・ y−v 0・ z = ΣM x n ・ ・ ・ (2-1)
u 0・ z−w 0・ x = ΣM x n ・ ・ ・ (3-1)
For example, in the case of the above-mentioned component forces r1 and r2, the moment around the Z axis in the action line of these resultant forces is u 0 · x−v 0 · y = 7x− (−y) = 7x + y. On the other hand, the sum of the moments around the Z axis at points A1 and A2 is M z 1 + M z 2 = (v 1 · x 1 −u 1 · y 1 ) + (v 2 · x 2 −u 2 · y 2 ) = It becomes 3,2-1,4 + 4.8- (-2), 2 = 38. Similarly, the sum of the moments around the X axis at points A1 and A2 is -12, and the sum of the moments around the Y axis is 18. Therefore, the line of action of the resultant force is the simultaneous equations {(x-4) / (-1)} = {(y-10) / of the following equations (1-2), (2-2) and (3-2). It is calculated as 7} = {(z-6) / 3}.

7x+y−38=0 ・・・(1−2)
3y−7z+12=0 ・・・(2−2)
3x+z−18=0 ・・・(3−2)
<重心算出工程>
本工程は、反力分布算出工程S20、合力算出工程S30及び作用線算出工程S40と並行して行われる工程である。本工程では、計算工程S10で得られたFEMの解析結果から、図2に示される人体20の重心Gを求める。
7x + y-38 = 0 ... (1-2)
3y-7z + 12 = 0 ... (2-2)
3x + z-18 = 0 ... (3-2)
<Center of gravity calculation process>
This step is a step performed in parallel with the reaction force distribution calculation step S20, the resultant force calculation step S30, and the action line calculation step S40. In this step, the center of gravity G of the human body 20 shown in FIG. 2 is obtained from the analysis result of FEM obtained in the calculation step S10.

<出力工程>
本工程では、図3及び図4Aに示すように、作用線算出工程S40で求めた合力の作用線L1を出力する。また、本工程では、重心算出工程S50で求めた人体20の重心Gを出力する。具体的には、これまでの計算に用いたFEMの解析結果上に、作用線L1及び重心Gを重ねて出力する。
<Output process>
In this step, as shown in FIGS. 3 and 4A, the action line L1 of the resultant force obtained in the action line calculation step S40 is output. Further, in this step, the center of gravity G of the human body 20 obtained in the center of gravity calculation step S50 is output. Specifically, the action line L1 and the center of gravity G are superimposed and output on the analysis result of the FEM used in the calculations so far.

本工程では、例えば反力の分力である垂直抗力及び摩擦力毎に作用線L1を表示してもよいし、これらを重ねて表示してもよい。なお、図3は、作用線L1が重心Gを通る鉛直線L2と重なっている状態を示し、図4Aは、作用線L1と鉛直線L2とがずれている状態を示す。 In this step, for example, the action line L1 may be displayed for each of the normal force and the frictional force, which are the component forces of the reaction force, or these may be displayed in an overlapping manner. Note that FIG. 3 shows a state in which the action line L1 overlaps with the vertical line L2 passing through the center of gravity G, and FIG. 4A shows a state in which the action line L1 and the vertical line L2 are deviated from each other.

また、本工程では、作用線L1上に、合力の大きさ及び向きを示す矢印Rを表示する。この矢印Rの表示方法は、図5に示すように、平面算出工程S61と、交点算出工程S62と、矢印仮定工程S63と、矢印表示工程S64とを有する。 Further, in this step, an arrow R indicating the magnitude and direction of the resultant force is displayed on the action line L1. As shown in FIG. 5, the method for displaying the arrow R includes a plane calculation step S61, an intersection calculation step S62, an arrow assumption step S63, and an arrow display step S64.

(平面算出工程)
本工程では、重心Gを通り、作用線L1の方向ベクトルを法線ベクトルとする仮想平面を求める。
(Plane calculation process)
In this step, a virtual plane that passes through the center of gravity G and has the direction vector of the action line L1 as the normal vector is obtained.

(交点算出工程)
本工程では、平面算出工程S61で求めた仮想平面と作用線L1との交点Pの座標を求める。
(Intersection calculation process)
In this step, the coordinates of the intersection P of the virtual plane and the action line L1 obtained in the plane calculation step S61 are obtained.

(矢印仮定工程)
本工程では、矢印Rの太さ及び長さを仮定する。矢印Rの太さ及び長さは合力の大きさに合わせて適宜設定することができる。例えば、太さを一定(例えば20mm)とし、長さを合力1N当たり1mmとなるように決定してもよい。なお、矢印Rの方向は、作用線L1の方向ベクトルと同じ方向である。
(Arrow assumption process)
In this step, the thickness and length of the arrow R are assumed. The thickness and length of the arrow R can be appropriately set according to the magnitude of the resultant force. For example, the thickness may be constant (for example, 20 mm), and the length may be determined to be 1 mm per 1 N of resultant force. The direction of the arrow R is the same as the direction vector of the action line L1.

(矢印表示工程)
本工程では、交点算出工程S62で求めた交点Pを始点として、矢印仮定工程S63で仮定した矢印Rを描写する。
(Arrow display process)
In this step, the arrow R assumed in the arrow assumption step S63 is drawn starting from the intersection P obtained in the intersection calculation step S62.

<安定性評価工程>
本工程では、出力工程S60で出力された作用線L1、重心G、及び矢印Rの位置関係に基づき、人体20の安定性を評価する。
<Stability evaluation process>
In this step, the stability of the human body 20 is evaluated based on the positional relationship between the action line L1, the center of gravity G, and the arrow R output in the output step S60.

例えば、図3に示すように、作用線L1が重心Gを通る鉛直線L2と重なっている場合は、人体20の安定性が良く、座り心地又は乗り心地がよいと評価できる。一方、図4Aに示すように、作用線L1と鉛直線L2とがずれている場合は、図4Bに示すように、人体20が回転し易く安定性が悪いと評価できる。 For example, as shown in FIG. 3, when the action line L1 overlaps with the vertical line L2 passing through the center of gravity G, it can be evaluated that the stability of the human body 20 is good and the sitting comfort or riding comfort is good. On the other hand, when the action line L1 and the vertical line L2 are deviated from each other as shown in FIG. 4A, it can be evaluated that the human body 20 is easily rotated and the stability is poor as shown in FIG. 4B.

[1−3.効果]
以上詳述した実施形態によれば、以下の効果が得られる。
(1a)反力の分布から合力を求め、さらにその合力の作用線L1を出力するので、可視化された作用線L1によって人体20の安定性を視覚的に評価できる。また、摩擦力を考慮して合力の作業線を出力することができるので、より現実的に人体20の挙動の評価を行うことができる。
[1-3. effect]
According to the embodiment described in detail above, the following effects can be obtained.
(1a) Since the resultant force is obtained from the distribution of the reaction force and the action line L1 of the resultant force is output, the stability of the human body 20 can be visually evaluated by the visualized action line L1. Further, since the work line of the resultant force can be output in consideration of the frictional force, the behavior of the human body 20 can be evaluated more realistically.

(1b)合力の作用線L1に加え、人体20の重心Gを出力することで、人体20の重心Gと合力の作用線L1との位置関係を把握できるので、より効果的に人体20の挙動を評価できる。 (1b) By outputting the center of gravity G of the human body 20 in addition to the action line L1 of the resultant force, the positional relationship between the center of gravity G of the human body 20 and the action line L1 of the resultant force can be grasped, so that the behavior of the human body 20 can be grasped more effectively. Can be evaluated.

(1c)反力を分解した分力毎の合力を求めることで、反力を任意の方向の分力に分解してそれぞれ可視化できるため、物体10の形状や使用状況等に合わせた最適な評価が可能となる。 (1c) By finding the resultant force for each component force obtained by decomposing the reaction force, the reaction force can be decomposed into component forces in any direction and visualized, so that the optimum evaluation is made according to the shape and usage conditions of the object 10. Is possible.

(1d)反力を垂直抗力及び摩擦力の2つの分力に分解し、それぞれの合力を求めることで、例えば、シートに着座した人体20に対する反力による挙動をより的確に評価できる。 (1d) By decomposing the reaction force into two components, the normal force and the frictional force, and obtaining the respective resultant forces, for example, the behavior due to the reaction force with respect to the human body 20 seated on the seat can be evaluated more accurately.

(1e)有限要素法の解析結果上に合力の作用線L1を出力することで、合力を求めるための計算から合力の作用線L1の出力結果確認までを同一の画面で行うことができる。そのため、作業性が向上する。 (1e) By outputting the action line L1 of the resultant force on the analysis result of the finite element method, it is possible to perform from the calculation for obtaining the resultant force to the confirmation of the output result of the action line L1 of the resultant force on the same screen. Therefore, workability is improved.

(1f)出力された合力の作用線L1、重心G、及び矢印Rに基づき、人体20の挙動を評価するので、従来よりも容易かつ的確に物体10上における人体20の安定性を評価することができる。 (1f) Since the behavior of the human body 20 is evaluated based on the action line L1, the center of gravity G, and the arrow R of the output resultant force, the stability of the human body 20 on the object 10 is evaluated more easily and accurately than before. Can be done.

[2.他の実施形態]
以上、本開示の実施形態について説明したが、本開示は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[2. Other embodiments]
Although the embodiments of the present disclosure have been described above, it goes without saying that the present disclosure is not limited to the above-described embodiments and can take various forms.

(2a)上記実施形態の合力の解析方法において、人体の代わりに人体を模した人形(いわゆるマネキン)を使用してもよい。本開示は、人形の挙動を評価することにも適用できる。 (2a) In the method of analyzing the resultant force of the above embodiment, a doll imitating a human body (so-called mannequin) may be used instead of the human body. The present disclosure can also be applied to evaluate the behavior of a doll.

(2b)上記実施形態の合力の解析方法は、1つの物体10に対し、複数の人体又は人形が接触した状態を対象としてもよい。この場合は、人体又は人形毎に反力の合力を求め、この合力をさらに合成することで全体の合力を求めることができる。また、人体又は人形の重心は、それぞれの重心を合成した重心を全体の重心として扱うことができる。 (2b) The method of analyzing the resultant force of the above embodiment may target a state in which a plurality of human bodies or dolls are in contact with one object 10. In this case, the resultant force of the reaction force can be obtained for each human body or the doll, and the total resultant force can be obtained by further synthesizing the resultant force. Further, as for the center of gravity of the human body or the doll, the center of gravity obtained by combining the respective centers of gravity can be treated as the entire center of gravity.

(2c)上記実施形態の合力の解析方法において、例えば人体の各部位に対応する複数の剛体をジョイントで接続した変形体で人体又は人形をモデル化してもよい。また、変形する人体の一部(例えば頭部のみ)の安定性を評価する場合には、物体から受ける反力の合力に加えて、その人体の一部の境界面に作用する力と、その力によるモーメントとを用いて安定性の評価を行ってもよい。 (2c) In the method of analyzing the resultant force of the above embodiment, for example, a human body or a doll may be modeled by a deformed body in which a plurality of rigid bodies corresponding to each part of the human body are connected by a joint. In addition, when evaluating the stability of a part of the deforming human body (for example, only the head), in addition to the resultant force of the reaction force received from the object, the force acting on the boundary surface of a part of the human body and its Stability may be evaluated using the moment due to force.

(2d)上記実施形態の合力の解析方法において、重心の算出及び出力は必ずしも行う必要はない。また、重心の算出及び出力を行う場合も、必ずしも合力の作用線と重ねて表示する必要はない。 (2d) In the method of analyzing the resultant force of the above embodiment, it is not always necessary to calculate and output the center of gravity. Also, when calculating and outputting the center of gravity, it is not always necessary to display it on top of the action line of the resultant force.

(2e)上記実施形態の合力の解析方法において、必ずしも反力を2以上の分力に分解する必要はない。また、反力を分力に分解する場合も、必ずしも垂直抗力と摩擦力とに分解する必要はない。 (2e) In the method of analyzing the resultant force of the above embodiment, it is not always necessary to decompose the reaction force into two or more component forces. Further, when the reaction force is decomposed into a component force, it is not always necessary to decompose the reaction force into a normal force and a frictional force.

(2f)上記実施形態の合力の解析方法において、合力の作用線及び人体又は人形の重心は、必ずしもFEMの解析結果上に出力する必要はない。つまり、FEMの解析結果とは別の画面等に合力の作用線及び重心を表示してもよい。 (2f) In the method of analyzing the resultant force of the above embodiment, the action line of the resultant force and the center of gravity of the human body or the doll do not necessarily have to be output on the analysis result of FEM. That is, the action line and the center of gravity of the resultant force may be displayed on a screen or the like different from the FEM analysis result.

(2g)上記実施形態の合力の解析方法において、安定性評価工程は必須の構成ではない。したがって、出力された合力の作用線に基づいて、人体又は人形の安定性以外の評価を行ってもよい。 (2g) In the method of analyzing the resultant force of the above embodiment, the stability evaluation step is not an essential configuration. Therefore, an evaluation other than the stability of the human body or the doll may be performed based on the action line of the output resultant force.

(2h)上記実施形態の合力の解析方法は、2次元の解析にも適用できる。例えば、解析の対象として、物体10を靴底として、人体の足に作用する反力における合力の解析を行うことができる。 (2h) The method of analyzing the resultant force of the above embodiment can also be applied to a two-dimensional analysis. For example, it is possible to analyze the resultant force in the reaction force acting on the foot of the human body with the object 10 as the sole of the shoe as the object of analysis.

(2i)上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 (2i) The functions of one component in the above embodiment may be dispersed as a plurality of components, or the functions of the plurality of components may be integrated into one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above embodiment may be added or replaced with the configuration of the other embodiment. It should be noted that all aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

10…物体、20…人体。 10 ... an object, 20 ... a human body.

Claims (5)

情報処理装置を用いて、弾性を有する物体に対し、人体又は人体を模した人形による荷重を加えた際に、前記人体又は前記人形が前記物体から受ける反力の合力を解析する方法であって、
前記情報処理装置は、
前記物体と前記人体又は前記人形との接触面において前記人体又は前記人形が前記物体から受ける反力の分布を求める工程と、
前記反力の分布を合成した合力を求める工程と、
前記人体又は前記人形におけるモーメントの釣り合いを用いて、前記合力の作用線を求める工程と、
前記合力の作用線を出力する工程と、
前記人体又は前記人形の重心を求める工程と、
前記合力の作用線と前記重心を通る鉛直線とのずれが小さいほど、安定性が高いと評価する工程と、
実行する、合力の解析方法。
A method of analyzing the resultant force of the reaction force that the human body or the doll receives from the object when a load by a human body or a doll that imitates the human body is applied to an elastic object by using an information processing device. ,
The information processing device
A step of obtaining the distribution of the reaction force received by the human body or the doll from the object on the contact surface between the object and the human body or the doll.
The process of obtaining the resultant force by synthesizing the distribution of the reaction force and
The step of obtaining the action line of the resultant force by using the balance of the moments in the human body or the doll, and
The process of outputting the action line of the resultant force and
The process of finding the center of gravity of the human body or the doll,
The step of evaluating that the smaller the deviation between the line of action of the resultant force and the vertical line passing through the center of gravity, the higher the stability.
The execution, analysis method of the resultant force.
請求項1に記載の合力の解析方法であって、
前記出力する工程では、前記人体又は前記人形の重心を出力する、合力の解析方法。
The method for analyzing the resultant force according to claim 1.
In the output step, a method for analyzing a resultant force that outputs the center of gravity of the human body or the doll.
請求項1又は請求項2に記載の合力の解析方法であって、
前記反力の分布を求める工程では、前記反力を2以上の分力に分解することで、前記分力毎の分布を求め、
前記合力を求める工程では、前記分力毎の合力を求める、合力の解析方法。
The method for analyzing the resultant force according to claim 1 or 2.
In the step of obtaining the distribution of the reaction force, the distribution of each component force is obtained by decomposing the reaction force into two or more component forces.
In the step of obtaining the resultant force, an analysis method of the resultant force for obtaining the resultant force for each component force.
請求項3に記載の合力の解析方法であって、
前記2以上の分力は、垂直抗力及び摩擦力である、合力の解析方法。
The method for analyzing the resultant force according to claim 3.
A method for analyzing a resultant force, wherein the two or more component forces are a normal force and a frictional force.
請求項1から請求項4のいずれか1項に記載の合力の解析方法であって、
前記反力の分布を求める工程では、有限要素法により反力を求め、
前記出力する工程では、有限要素法の解析結果上に前記合力の作用線を出力する、合力の解析方法。
The method for analyzing a resultant force according to any one of claims 1 to 4.
In the step of obtaining the distribution of the reaction force, the reaction force is obtained by the finite element method.
In the output step, a method of analyzing the resultant force, which outputs the action line of the resultant force on the analysis result of the finite element method.
JP2017116890A 2017-06-14 2017-06-14 Analysis method of resultant force Active JP6900795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116890A JP6900795B2 (en) 2017-06-14 2017-06-14 Analysis method of resultant force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116890A JP6900795B2 (en) 2017-06-14 2017-06-14 Analysis method of resultant force

Publications (2)

Publication Number Publication Date
JP2019003371A JP2019003371A (en) 2019-01-10
JP6900795B2 true JP6900795B2 (en) 2021-07-07

Family

ID=65006880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116890A Active JP6900795B2 (en) 2017-06-14 2017-06-14 Analysis method of resultant force

Country Status (1)

Country Link
JP (1) JP6900795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020111789A (en) 2019-01-11 2020-07-27 三菱マテリアル株式会社 Copper alloy material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440759B2 (en) * 2004-12-17 2010-03-24 本田技研工業株式会社 Method for estimating floor reaction force of biped walking object
JP5937482B2 (en) * 2012-10-04 2016-06-22 トヨタ紡織株式会社 Supporting force analysis method for supporting members
JP5920724B2 (en) * 2012-11-06 2016-05-18 美津濃株式会社 Information processing apparatus, information processing method, and information processing program

Also Published As

Publication number Publication date
JP2019003371A (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US11498216B2 (en) Remote control manipulator system and control device
Neves et al. Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations
Poulard et al. Thoracic response targets for a computational model: a hierarchical approach to assess the biofidelity of a 50th-percentile occupant male finite element model
Magnenat-Thalmann et al. From Physics-based Simulation to the Touching of Textiles: The HAPTEX Project.
JP2005140727A (en) Strain gauge type sensor and strain gauge type sensor unit using the same
Kulkarni et al. Spatial ANCF/CRBF beam elements
JP2020046185A (en) Method and apparatus for analyzing optimization of vibration characteristic of vehicle body
Kullaa Virtual sensing of structural vibrations using dynamic substructuring
JP6900795B2 (en) Analysis method of resultant force
D'Ambrogio et al. A unified approach to substructuring and structural modification problems
Kim et al. Experimental and numerical investigation of nonlinear dynamics and snap-through boundaries of post-buckled laminated composite plates
Alessandro et al. Postural comfort inside a car: development of an innovative model to evaluate the discomfort level
Howard et al. Physics-based seated posture prediction for pregnant women and validation considering ground and seat pan contacts
Tian et al. Computerized task risk assessment using digital human modeling based Job Risk Classification Model
Harms et al. Does loose fitting matter? Predicting sensor performance in smart garments.
JPH10281945A (en) Riding comfort evaluating device
Panchaphongsaphak et al. Three-dimensional touch interface for medical education
JP5920724B2 (en) Information processing apparatus, information processing method, and information processing program
JP3831348B2 (en) Clothes design support device and program
TWI402489B (en) Method for measuring inclination angle of plane via electronic device
Moschonas et al. Novel human factors for ergonomy evaluation in virtual environments using virtual user models
JP5970868B2 (en) Dummy measuring device
Díaz-Rodríguez et al. Dynamic parameter identification of subject-specific body segment parameters using robotics formalism: case study head complex
Wang et al. Three-dimensional modeling of supine human and transport system under whole-body vibration
JP2021131633A (en) Steel structure model transformation device and steel structure model transformation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R151 Written notification of patent or utility model registration

Ref document number: 6900795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151