JPH09113228A - Film thickness meter - Google Patents

Film thickness meter

Info

Publication number
JPH09113228A
JPH09113228A JP26574495A JP26574495A JPH09113228A JP H09113228 A JPH09113228 A JP H09113228A JP 26574495 A JP26574495 A JP 26574495A JP 26574495 A JP26574495 A JP 26574495A JP H09113228 A JPH09113228 A JP H09113228A
Authority
JP
Japan
Prior art keywords
film thickness
signal
light
film
ccd element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26574495A
Other languages
Japanese (ja)
Inventor
Masato Ikeda
誠人 池田
Junichi Wakasugi
潤一 若杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP26574495A priority Critical patent/JPH09113228A/en
Publication of JPH09113228A publication Critical patent/JPH09113228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a film thickness meter to measure the thickness of a thin film with a high accuracy and, at the same time, to simplify the optical system of the meter by obtaining intensity signals corresponding to individual CCD elements by fetching the light intensity distribution on CCD elements and A/D-converting the distribution, and then, comparing the signals with a threshold. SOLUTION: The intensity of the light which enters CCD elements 3 after the light is reflected by the front and rear surfaces of a cylindrical film 12 sensed by each element 3 is outputted in due time synchronously to a readout timing signal. The light intensity distribution on the elements 3 is obtained by inputting the output and readout timing signal of the element 3 to a synchronous A/D converter 5 after fetching the output and signal from a signal converter 4 and converting the light quantity data on the elements 3 into digital values indicating the intensities of the light. A threshold processor 6 compares a threshold set in a threshold storing means 10 with the intensity distribution and binarizes the distribution into binarized signals by judging whether or not the distribution exceeds the threshold. Then the processor 6 finds the distance between the peaks of the distribution indicated by means of an inter-peak computing means 7 and obtains the actual thickness of the film 12 by multiplying the distance by a coefficient stored in advance in means 11 for storing number of element/ film thickness converting coefficient by means of a multiplying means 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は透明なフィルムの厚
みを測定する膜厚計に関する。
TECHNICAL FIELD The present invention relates to a film thickness meter for measuring the thickness of a transparent film.

【0002】[0002]

【従来の技術】レーザ光線をフィルムに照射し、その表
面、裏面からの反射光の光路差を用いて膜厚を測定する
方法は透明なフィルムの厚みを片側から測定できるため
インフレーションフィルムのようなチューブ状のフィル
ムを外側から測定できるため、非常に有用である。また
この原理の膜厚計のうち半導体レーザ発光素子を発光
に、CCD素子を受光に用いた膜厚計は可動部を持たな
いため工業用にオンラインで使用する場合に耐久性、取
り扱い易さの上で適当であったが、300μm以下の厚
み測定は困難で、その薄物への拡大が望まれていた。
2. Description of the Related Art A method of irradiating a film with a laser beam and measuring the film thickness by using the optical path difference of the reflected light from the front surface and the back surface of the film makes it possible to measure the thickness of a transparent film from one side. This is very useful because the tubular film can be measured from the outside. Further, among the film thickness meters based on this principle, the film thickness meter using the semiconductor laser light emitting element for light emission and the CCD element for light reception has no moving parts, so that it is durable and easy to handle when used online for industrial purposes. Although the above is suitable, it is difficult to measure the thickness of 300 μm or less, and it has been desired to expand the thickness.

【0003】[0003]

【発明が解決しようとする課題】薄物の測定が困難な理
由はCCD素子の出力を離散化しないアナログ時系列信
号として処理していたため、CCD素子の搬送波を除去
するためのフィルタが必要でその適用によって波形が鈍
ってしまうためである。この対策としてこれまではレー
ザ光を細くして対処していたが、この反射光のスポット
径がCCD素子を構成する1個1個の受光素子の大きさ
の10倍程度まで小さくなるとCCD素子上では光路差
を区別できてもフィルタの影響で波形が鈍るため測定が
できなくなり大幅な改善は困難であった。また、厚み演
算において厚みをフィルタ処理されたCCD素子信号か
ら演算する場合しきい値を用いた2値化をおこない、そ
の立ち上がり時間の差をもって厚み信号としていたため
反射光の分布形状やそのピークの高さとしきい値の関係
で測定誤差が生じていた。
The reason why it is difficult to measure a thin object is that the output of the CCD element is processed as an analog time-series signal that is not discretized. Therefore, a filter for removing the carrier wave of the CCD element is required and its application. This is because the waveform becomes dull. As a countermeasure against this, the laser light has been made thin so far, but when the spot diameter of this reflected light becomes about 10 times smaller than the size of each light receiving element which constitutes the CCD element, the CCD element is However, even if the optical path difference could be distinguished, the waveform was blunted by the effect of the filter, making measurement impossible and making a significant improvement difficult. Further, when calculating the thickness from the filtered CCD element signal in the thickness calculation, binarization using a threshold value is performed, and the difference in rising time is used as the thickness signal, so that the distribution shape of reflected light and its peak are calculated. There was a measurement error due to the relationship between height and threshold.

【0004】[0004]

【課題を解決するための手段】透明なフィルムの表面と
裏面から反射してくるレーザ光の光路差をCCD素子の
受光位置の差として検出するレーザ光源と該CCD素子
が一体になっている膜厚計において、該CCD素子上の
光強度分布を時系列信号として又は全体を同時に取出
し、該時系列信号の場合は同時に発生する該CCD素子
の読みだし信号により同期的にA/D変換し、また並列
に全体を該同時に取り出した場合は個々の該CCD素子
の出力信号をそれぞれA/D変換し、該CCD素子1個
1個に対する強度信号を得て、該強度信号を予め設定し
たしきい値より大きいか、小さいかの判断をし2値信号
とし、該2値信号に現れた該表面と該裏面からの反射に
よる2つの山の中心間距離をもとめ、この距離を該CC
D素子上での表面と裏面からの反射光の光路差とし、求
められた該中心間距離に予め測定して決定しておいた係
数を乗じることによりフィルムの厚みとして出力し、以
上を1周期としてこれをくり返し行うことによってフィ
ルムの厚み測定を連続的に行うことで上記課題を解決で
きる。
A film in which a laser light source for detecting an optical path difference of laser light reflected from a front surface and a back surface of a transparent film as a difference in a light receiving position of a CCD element and the CCD element are integrated. In the thickness meter, the light intensity distribution on the CCD element is taken out as a time-series signal or in its entirety at the same time, and in the case of the time-series signal, A / D conversion is performed synchronously by the read-out signals of the CCD element generated at the same time, Further, when the whole is taken out in parallel at the same time, the output signals of the individual CCD elements are respectively A / D converted to obtain an intensity signal for each CCD element, and the intensity signal is preset. It is determined whether the value is larger or smaller than the value, a binary signal is obtained, and the distance between the centers of the two peaks due to the reflection from the front surface and the back surface that appears in the binary signal is obtained, and this distance is calculated as the CC value.
The difference between the optical paths of the reflected light from the front surface and the back surface on the D element is used, and the obtained distance between the centers is multiplied by a coefficient determined by measurement in advance to output the film thickness. As a result, the above problem can be solved by continuously measuring the film thickness by repeating this.

【0005】また、膜厚計の上記の処理において、該C
CD素子の出力より得られた該CCD素子の1個1個に
対する該強度信号の自己相関関数を求め中央のピークと
その両側にあるピークのどちらかとの距離を該表面と該
裏面からの反射光の該CCD素子上での該光路差とし、
予め測定して決定しておいた係数を乗じて膜厚とするこ
とで上記課題を解決できる。
In the above process of the film thickness meter, the C
The autocorrelation function of the intensity signal for each of the CCD elements obtained from the output of the CD element is obtained, and the distance between the central peak and either of the peaks on both sides thereof is calculated to obtain the reflected light from the front surface and the back surface. And the optical path difference on the CCD element of
The above problem can be solved by multiplying by a coefficient determined in advance to determine the film thickness.

【0006】さらに、膜厚計の上記処理において該CC
D素子の出力より得られた該CCD素子の1個1個に対
する該強度信号の処理で該表面、該裏面からの該反射光
が存在する時間範囲を記録して、次回の処理では該信号
の該記録された該時間範囲より予め設定された範囲だけ
広い時間範囲のみ処理対象とすることで処理に必要な時
間を減少できることを見いだした。
Further, in the above processing of the film thickness meter, the CC
By processing the intensity signal for each of the CCD elements obtained from the output of the D element, the time range in which the reflected light from the front surface and the back surface exists is recorded, and the signal of the signal is recorded in the next processing. It has been found that the time required for processing can be reduced by treating only a time range that is wider than the recorded time range by a preset range.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に図1〜図10を用いて説明する。図1では全体の構成
を示し、図2ではCCD素子各素子上での受光光量の強
度分布を、図3から図5で処理中の信号の内容を示す。
図1の1から4は市販のレーザ式膜厚計を構成する部分
である。本発明においては光学系とレーザ光源及びCC
D素子の駆動のみに使用している。レーザ光源2から照
射されたレーザ光が円筒状のフィルム12の表面と裏面
で反射し、異なる光路を通ってCCD素子3に入射す
る。従って直線上に受光素子が配置されたCCD素子3
上には表面と裏面から反射された光の2つの強度分布が
存在する。このCCD素子上に現れる光強度分布を図2
に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to FIGS. FIG. 1 shows the entire configuration, FIG. 2 shows the intensity distribution of the amount of received light on each element of the CCD element, and FIGS. 3 to 5 show the contents of the signal being processed.
1 to 4 in FIG. 1 are parts constituting a commercially available laser type film thickness meter. In the present invention, the optical system, the laser light source, and the CC
It is used only for driving the D element. Laser light emitted from the laser light source 2 is reflected by the front surface and the back surface of the cylindrical film 12, and enters the CCD element 3 through different optical paths. Therefore, the CCD element 3 in which the light receiving element is arranged on a straight line
There are two intensity distributions of the light reflected from the front surface and the back surface. The light intensity distribution appearing on this CCD element is shown in FIG.
Shown in

【0008】このようにCCD素子3上の素子1個1個
の感じた光強度は通常のCCD素子3では読みだしタイ
ミング信号に同期して時間追って出力される。この出力
とCCD素子3の読みだしタイミング信号を信号変換器
4より取出して同期式A/Dコンバータ5へ入力する。
同期式A/Dコンバータ5ではCCD素子3の読み出し
タイミング信号を元に図2に示される各受光するCCD
素子3上の光量データをそれぞれの強度を示すディジタ
ル値に変換する。従ってCCD素子3の読み出し時の搬
送波にまったく影響されずに、図2に示されるCCD素
子3上の光強度分布を得ることができる。ここでは見易
さのためにこの波形は間を直線で補間した図3の実線の
形で図示する。これで波形はディジタル化されたため、
これ以降の処理はコンピュータのソフトウエアで容易に
実現できる。もちろんハードウエアを用いて実現するこ
とも可能である。
As described above, the light intensity sensed by each of the elements on the CCD element 3 is output by the normal CCD element 3 in synchronism with the reading timing signal. This output and the read timing signal of the CCD element 3 are taken out from the signal converter 4 and input to the synchronous A / D converter 5.
In the synchronous A / D converter 5, each light receiving CCD shown in FIG. 2 is based on the read timing signal from the CCD element 3.
The light amount data on the element 3 is converted into a digital value indicating each intensity. Therefore, the light intensity distribution on the CCD element 3 shown in FIG. 2 can be obtained without being affected by the carrier wave at the time of reading the CCD element 3. Here, for ease of viewing, this waveform is illustrated in the form of a solid line in FIG. Now that the waveform is digitized,
Subsequent processing can be easily realized by computer software. Of course, it can also be realized by using hardware.

【0009】以下に波形処理方法について説明する。該
波形を6から11で示される厚み演算手段を用いて膜厚
へと変換する。しきい値処理装置6ではしきい値記録手
段10に設定された予め実験によって適当な値に定めら
れたしきい値17と該強度分布を比較してこれをを越す
か越さないかの判断を行い、その結果を図4のように矩
形波として得る。もちろんしきい値の決定は予め行わ
ず、毎回の波形から例えばしきい値上のデータの割合が
一定になるような指標を用いてその場で計算することも
可能である。次にピーク間演算手段7で示される該強度
分布の山の間の距離を測定する方法を説明する。図4の
データを元に図3の反射光15、16で表わされた山の
中央の時間差を演算する。そのためには例えば左端から
順番に18、19、20、21で示される立ち上がりと
立ち下がりまでの素子数を求め、それをX1、X2、X
3、X4とすると(X3+X4―X1―X2)/2とい
う演算により行うことができる。次に掛け算手段8によ
り予め設定され記録手段11に貯えられたたCCD素子
3の素子数差から膜厚へ変換する係数を該距離にかける
ことによって実際の膜厚を得ることができる。このよう
にして得られる厚みを出力手段9によって外部に出力及
び表示することができる。この後同一の測定を繰り返す
ことにより連続した膜厚測定を行うことができる。
The waveform processing method will be described below. The waveform is converted into a film thickness using the thickness calculating means indicated by 6 to 11. The threshold value processing device 6 compares the intensity distribution with a threshold value 17 which is set in the threshold value recording means 10 and which is set to an appropriate value by an experiment, and judges whether or not the intensity distribution is exceeded. And obtain the result as a rectangular wave as shown in FIG. Of course, the threshold value may not be determined in advance, and it is also possible to perform the calculation on the spot from the waveform for each time using an index such that the ratio of the data on the threshold value is constant. Next, a method of measuring the distance between the peaks of the intensity distribution indicated by the peak-to-peak calculation means 7 will be described. Based on the data of FIG. 4, the time difference between the centers of the mountains represented by the reflected lights 15 and 16 of FIG. 3 is calculated. For that purpose, for example, the number of elements from the left end to the rising edge and the falling edge shown in the order of 18, 19, 20, 21 is calculated, and is calculated as X1, X2, X.
3 and X4, the calculation can be performed by (X3 + X4-X1-X2) / 2. Next, the actual film thickness can be obtained by multiplying the distance by a coefficient for converting the difference in the number of CCD elements 3 stored in the recording unit 11 preset by the multiplying unit 8 into the film thickness. The thickness thus obtained can be output and displayed outside by the output means 9. After this, the same measurement is repeated to enable continuous film thickness measurement.

【0010】次に別の実施の形態を説明する。上記膜厚
計を実現する場合において膜厚となるべきCCD素子3
上の2つのピーク間を測定するために図3で示される光
強度信号の自己相関関数をとると図5となり、0の部分
を除く最初のピークの場所が2つの山の間の距離とな
る。この手段を図1の6、7、10に換え、膜厚計を構
成した。
Next, another embodiment will be described. CCD device 3 which should have a film thickness when realizing the above film thickness meter
Taking the autocorrelation function of the light intensity signal shown in FIG. 3 to measure between the upper two peaks, the result is shown in FIG. 5, and the location of the first peak excluding the 0 part is the distance between the two peaks. . This means was replaced with 6, 7 and 10 in FIG. 1 to construct a film thickness meter.

【0011】さらに別の実施の形態を説明する。上記膜
厚演算のための時間が十分でないときは図6に示したよ
うに波形選択装置12を同期式ADコンバータ5としき
い値処理装置6の間に挿入し、反射光存在領域記録手段
13でX1で表わされた素子番号とX4で表わされる素
子番号を記録しておき、次回の演算では端の素子から演
算するのではなく記録された値と反射光存在領域拡張長
さ記録手段14に保存された予め決められた変動範囲δ
を用いて、X1ーδとX4+δの範囲のみを取出して上
記の膜厚演算対象にすることで処理時間を短縮すること
ができる。X1はセンサ1と被測定フィルム12の位置
関係で決定されるが、測定毎には大きく変化することは
ない。従って変動範囲δを予め適当な値に設定しておく
ことができる。
Another embodiment will be described. When the time for the film thickness calculation is not sufficient, the waveform selection device 12 is inserted between the synchronous AD converter 5 and the threshold value processing device 6 as shown in FIG. The element number represented by X1 and the element number represented by X4 are recorded, and in the next calculation, the recorded value and the reflected light existing area extension length recording means 14 are not calculated from the end element. Predetermined variation range δ saved
Using, the processing time can be shortened by taking out only the range of X1−δ and X4 + δ and making it the target of the above film thickness calculation. X1 is determined by the positional relationship between the sensor 1 and the film 12 to be measured, but does not change significantly between measurements. Therefore, the fluctuation range δ can be set to an appropriate value in advance.

【0012】以上説明した膜厚計を用いてインフレーシ
ョンフィルムの周方向の厚みを正確なフィルム上の位置
と対応させて計測することができる。このときは図7に
示すセンサ1を回転移動させ、その時の角度をロータリ
ーエンコーダ23で検出し取込むようにインターフェー
スを設置する。この構成でセンサ1をまず適当な速度で
時計回りに回転させ、適当な角度毎に膜厚を本発明によ
る膜厚計22により測定し、記録手段24に記録してお
く。従って記録手段24の中の記録位置はフィルムの膜
厚を測定した位置に対応している。1回転の測定が終了
したら次に同じ速度でセンサ1を反時計回りに回転させ
測定を行い、記録手段25に記録しておく。取得するデ
ータの個数は時計回り、反時計回りで同数で、必要とす
る回転方向の角度分解能によって決まるが、実験では2
56分割とした。もちろん記録手段24及び25におけ
る個数と分解能が一致していれば測定時のデータ個数は
一致している必要はない。ただし、必要な角度分解能を
満たす個数以上は必要である。
By using the film thickness meter described above, the thickness of the inflation film in the circumferential direction can be measured in correspondence with the accurate position on the film. At this time, the sensor 1 shown in FIG. 7 is rotationally moved, and the interface is installed so that the angle at that time is detected by the rotary encoder 23 and taken in. With this configuration, the sensor 1 is first rotated clockwise at an appropriate speed, the film thickness is measured by the film thickness meter 22 according to the present invention at each appropriate angle, and recorded in the recording means 24. Therefore, the recording position in the recording means 24 corresponds to the position where the film thickness is measured. When the measurement for one rotation is completed, the sensor 1 is rotated counterclockwise at the same speed to perform the measurement, and the measurement is recorded in the recording means 25. The number of data to be acquired is the same in both clockwise and counterclockwise directions. It depends on the required angular resolution in the rotation direction.
It was divided into 56. Of course, it is not necessary that the numbers of data at the time of measurement match if the numbers in the recording means 24 and 25 match the resolution. However, more than the number satisfying the required angular resolution is required.

【0013】これらのデータはセンサが対象となるイン
フレーションフィルムに接触して回転した場合図8に示
す様に正しい角度と厚みの関係29の点線で示した本来
の角度から測定結果30、31で示すように前後に同じ
角度ずつずれたものとなっている。記録手段24及び2
5に貯えられた厚みデータは相互相関関数計算手段26
によって演算され、図9のような波形が得られる。も
し、センサ1の回転に伴うインフレフィルムの回転移動
がなければ記録手段24、25にたくわれられた測定結
果30、31の波形は一致し、図9の相互相関関数は中
央にピークを持つはずである。図8のようにずれがある
場合、図9の相互相関関数のピークは中央よりずれ、こ
のずれが測定結果30、31の波形ずれを示すことにな
る。測定結果30、31はそれぞれ前後にずれているの
で検出されたずれの1/2が実際のずれになる。最終的
に記録手段24ないし25に貯えられたデータを相互相
関関数演算手段26により演算されたずれ分だけデータ
をずらす装置データずらし器27により補正を行い、出
力装置28へ角度と対応した厚みを書き出し、図10に
示す出力を得る。なお、このずらし操作により後または
前へはみ出したデータはずらし操作によって空白になっ
た前または後の部分を補充する事によって1周分のデー
タを欠落なくずらすことができる。以上の実施の形態に
よりこれまでは困難であった比較的薄い膜の厚み検出及
び周方向の移動測定による膜の移動補正が実施できる。
These data are shown as measurement results 30 and 31 from the original angle shown by the dotted line of the correct angle-thickness relationship 29 as shown in FIG. 8 when the sensor contacts the blown film and rotates. As you can see, they are offset from each other by the same angle. Recording means 24 and 2
The thickness data stored in 5 is the cross-correlation function calculation means 26.
And a waveform as shown in FIG. 9 is obtained. If there is no rotational movement of the inflation film due to the rotation of the sensor 1, the waveforms of the measurement results 30 and 31 applied to the recording means 24 and 25 agree, and the cross-correlation function of FIG. 9 should have a peak in the center. Is. When there is a shift as in FIG. 8, the peak of the cross-correlation function in FIG. 9 shifts from the center, and this shift indicates the waveform shift of the measurement results 30, 31. Since the measurement results 30 and 31 deviate back and forth, 1/2 of the detected deviations are the actual deviations. Finally, the data stored in the recording means 24 to 25 is corrected by the device data shifter 27 that shifts the data by the shift calculated by the cross-correlation function calculating means 26, and the thickness corresponding to the angle is output to the output device 28. Write out and get the output shown in FIG. Note that the data for one rotation can be shifted without omission by replenishing the portion before or after the data that has become blank due to the data shifting operation, which has protruded backward or forward by this shifting operation. According to the above-described embodiment, it is possible to perform the film movement correction by detecting the thickness of the relatively thin film and measuring the movement in the circumferential direction, which have been difficult until now.

【0014】[0014]

【発明の効果】従来と同じレーザ光源とCCD素子受光
素子を用いてもこれまでより薄物の測定が可能で、高精
度な測定が可能となった。また、同じ厚みのものを測定
する場合にはこれまでより太いレーザ光を使用すること
ができ、光学系を簡略化することもできる。本方式によ
る膜厚計は片側からしか測定することのできないインフ
レーションフィルムを測定する場合に特に有効である。
EFFECTS OF THE INVENTION Even if the same laser light source and CCD light receiving element as in the prior art are used, it is possible to measure thinner objects than before, and high-precision measurement is possible. Further, when measuring the same thickness, a thicker laser beam can be used, and the optical system can be simplified. The film thickness meter according to the present method is particularly effective when measuring an inflation film that can be measured only from one side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜厚計の全体構成図。FIG. 1 is an overall configuration diagram of a film thickness meter of the present invention.

【図2】図1のCCD素子上の光強度分布。FIG. 2 is a light intensity distribution on the CCD device of FIG.

【図3】図2の信号のディジタル化光強度分布。FIG. 3 is a digitized light intensity distribution of the signal of FIG.

【図4】図3の2値化光強度分布。FIG. 4 is a binarized light intensity distribution of FIG.

【図5】図4の光強度分布の自己相関関数。5 is an autocorrelation function of the light intensity distribution of FIG.

【図6】本発明の演算範囲絞り込み機能をもった膜厚計
の全体構成図。
FIG. 6 is an overall configuration diagram of a film thickness meter having a calculation range narrowing function of the present invention.

【図7】本発明のインフレーションフィルム周方向膜厚
分布測定の全体構成図。
FIG. 7 is an overall configuration diagram for measuring a film thickness distribution in the circumferential direction of an inflation film of the present invention.

【図8】図7の膜厚計の接触移動によるフィルム移動の
影響。
FIG. 8 shows the influence of film movement due to the contact movement of the film thickness meter of FIG.

【図9】図8波形の相互相関関数。FIG. 9 is a cross-correlation function of the waveform of FIG.

【図10】図7で得られた正しい角度と膜厚の関係出
力。
FIG. 10 is a relation angle-thickness relationship output obtained in FIG. 7.

【符号の説明】[Explanation of symbols]

1 センサ 2 レーザ光源 3 CCD素子 4 信号変換器 5 同期式AD変換器 6 しきい値処理装置 7 ピーク間演算手段 8 かけ算手段 9 演算結果出力手段 10 しきい値記憶手段 11 素子数膜厚変換係数記憶手段 12 被測定フィルム 13 反射光存在領域記録手段 14 反射光存在領域拡張長さ記録手段 15 フィルム表面による反射光 16 フィルム裏面による反射光 17 しきい値 18 表面反射光強度分布立ち上がり 19 表面反射光強度分布立ち下がり 20 裏面反射光強度分布立ち上がり 21 裏面反射光強度分布立ち下がり 22 本発明による膜厚計 23 角度測定器 24 時計回り測定時厚み分布の記録手段 25 反時計回り測定時厚み分布の記録手段 26 相互相関関数演算手段 27 データずらし器 28 出力装置 29 正しい角度と厚みの関係(推定) 30 時計回りでの角度と厚みの測定結果 31 反時計回りでの角度と厚みの測定結果 32 ずれ量計算結果 DESCRIPTION OF SYMBOLS 1 sensor 2 laser light source 3 CCD element 4 signal converter 5 synchronous AD converter 6 threshold processing device 7 peak-to-peak calculation means 8 multiplication means 9 calculation result output means 10 threshold value storage means 11 element number film thickness conversion coefficient Storage means 12 Film to be measured 13 Reflected light existing area recording means 14 Reflected light existing area extended length recording means 15 Reflected light from film surface 16 Reflected light from film back surface 17 Threshold 18 Surface reflected light intensity distribution rise 19 Surface reflected light Intensity distribution fall 20 Back surface reflected light intensity distribution rising 21 Back surface reflected light intensity distribution falling 22 Film thickness gauge 23 according to the present invention 23 Angle measuring device 24 Recording means for clockwise thickness distribution 25 Measurement of counterclockwise thickness distribution Means 26 Cross-correlation function computing means 27 Data shifter 28 Output device 29 Correct angle A relationship between the thickness (estimated) 30 of the angle and the thickness of the measurement results 31 counterclockwise angle and thickness of the clockwise measurement result 32 shift amount calculation results

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明なフィルムの表面と裏面から反射し
てくるレーザ光の光路差をCCD素子の受光位置の差と
して検出するレーザ光源と該CCD素子が一体になって
いる膜厚計において、該CCD素子上の光強度分布を時
系列信号として又は全体を同時に取出し、該時系列信号
の場合は同時に発生する該CCD素子の読みだし信号に
より同期的にA/D変換し、また並列に全体を該同時に
取り出した場合は個々の該CCD素子の出力信号をそれ
ぞれA/D変換し、該CCD素子1個1個に対する強度
信号を得て、該強度信号を予め設定したしきい値より大
きいか小さいかの判断をし2値信号とし、該2値信号に
現れた該表面と該裏面からの反射による2つの山の中心
間距離を求め、この距離を該CCD素子上での表面と裏
面からの反射光の光路差とし、求められた該中心間距離
に予め測定して決定しておいた係数を乗じることにより
フィルムの厚みとして出力し、以上を1周期としてこれ
をくり返し行えるシステム構成を有する膜厚計。
1. A film thickness meter in which a laser light source for detecting an optical path difference of laser light reflected from a front surface and a back surface of a transparent film as a difference between light receiving positions of a CCD element and the CCD element are integrated, The light intensity distribution on the CCD element is taken out as a time-series signal or the whole is taken out at the same time, and in the case of the time-series signal, it is synchronously A / D-converted by the read-out signals of the CCD element which are generated at the same time, and the whole is put in parallel. In the case of taking out simultaneously, the output signals of the individual CCD elements are respectively A / D converted to obtain an intensity signal for each CCD element, and whether the intensity signal is larger than a preset threshold value or not. It is judged whether it is small or not, and a binary signal is obtained, and the distance between the centers of the two peaks appearing in the binary signal due to reflection from the front surface and the back surface is obtained, and this distance is determined from the front surface and the back surface on the CCD element Reflected light A film thickness meter having a system configuration in which the obtained distance between centers is used as a road difference and is multiplied by a coefficient determined in advance to output the thickness of a film, and the above is repeated for one cycle.
【請求項2】 請求項1において、該CCD素子の出力
より得られた該CCD素子の1個1個に対する該強度信
号の自己相関関数を求め中央のピークとその両側にある
ピークのどちらかとの距離を該表面と該裏面からの反射
光の該CCD素子上での該光路差とし、該係数を乗じて
膜厚とする膜厚計。
2. The autocorrelation function of the intensity signal for each of the CCD elements obtained from the output of the CCD element according to claim 1, wherein an autocorrelation function of the center signal and either of the peaks on both sides thereof are obtained. A film thickness meter in which the distance is defined as the optical path difference of the reflected light from the front surface and the back surface on the CCD element and the coefficient is multiplied to obtain the film thickness.
【請求項3】 請求項1又は2において該CCD素子の
出力より得られた該CCD素子の1個1個に対する該強
度信号の処理で該表面、該裏面からの該反射光が存在す
る時間範囲を記録して、次回の処理では該信号の該記録
された該時間範囲より予め設定された範囲だけ広い時間
範囲のみ処理対象として処理に必要な時間を減少させた
膜厚計。
3. The time range in which the reflected light from the front surface and the back surface exists in the processing of the intensity signal for each of the CCD elements obtained from the output of the CCD element according to claim 1 or 2. In the next processing, the film thickness meter reduces the time required for processing by processing only a time range that is wider than the recorded time range of the signal by a preset range.
JP26574495A 1995-10-13 1995-10-13 Film thickness meter Pending JPH09113228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26574495A JPH09113228A (en) 1995-10-13 1995-10-13 Film thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26574495A JPH09113228A (en) 1995-10-13 1995-10-13 Film thickness meter

Publications (1)

Publication Number Publication Date
JPH09113228A true JPH09113228A (en) 1997-05-02

Family

ID=17421402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26574495A Pending JPH09113228A (en) 1995-10-13 1995-10-13 Film thickness meter

Country Status (1)

Country Link
JP (1) JPH09113228A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088243A1 (en) * 2004-03-10 2005-09-22 Tokyo University Of Agriculture And Technology Tlo Co. Ltd. Three-dimensional shape measuring system and three-dimensional shape measuring method
JP2007520077A (en) * 2004-01-30 2007-07-19 東京エレクトロン株式会社 Method and system for monitoring wear of parts
CN114812457A (en) * 2022-06-28 2022-07-29 太原理工大学 Light path alignment self-adjusting laser ultrasonic metal composite plate thickness measuring device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520077A (en) * 2004-01-30 2007-07-19 東京エレクトロン株式会社 Method and system for monitoring wear of parts
JP4782699B2 (en) * 2004-01-30 2011-09-28 東京エレクトロン株式会社 Method and system for monitoring wear of parts
WO2005088243A1 (en) * 2004-03-10 2005-09-22 Tokyo University Of Agriculture And Technology Tlo Co. Ltd. Three-dimensional shape measuring system and three-dimensional shape measuring method
CN114812457A (en) * 2022-06-28 2022-07-29 太原理工大学 Light path alignment self-adjusting laser ultrasonic metal composite plate thickness measuring device and method

Similar Documents

Publication Publication Date Title
US4602242A (en) Encoder for photoelectric measuring devices
US4158507A (en) Laser measuring system for inspection
JP2546823B2 (en) Position detection method and device
EP1688711B1 (en) Optical encoder
EP2110645B1 (en) Absolute position length measurement type encoder
US6723287B1 (en) Measuring system for automatic chemical analyzer
JP2003130688A (en) Rotary encoder device
JP4215220B2 (en) Surface inspection method and surface inspection apparatus
JPH09113228A (en) Film thickness meter
JP2635913B2 (en) Length measuring or angle measuring method
US4533250A (en) Readout apparatus for a ring laser angular rate sensor
JP3245003B2 (en) Distance measuring apparatus and method
JPH041845B2 (en)
JPH05196451A (en) Length measuring or angle measuring device
JP2929307B2 (en) Angle measuring method and speed measuring device
EP1258701B1 (en) A process for reading fractions of an interval between contiguous photo-sensitive elements in a linear optical sensor
JP4191953B2 (en) Calibration method of laser scanning dimension measuring machine
JPH0335111A (en) Absolute position detecting device
JPH0141925B2 (en)
JP2942906B2 (en) Electronic level device
JPH047803B2 (en)
WO1991010288A2 (en) Position sensor
JPS6324110A (en) Optical position detecting device
JPH02272310A (en) Rotation angle measuring instrument
EP2733469A2 (en) Measurement apparatus, measurement method, and absolute encoder

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A02 Decision of refusal

Effective date: 20040803

Free format text: JAPANESE INTERMEDIATE CODE: A02