JPH09113224A - Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture - Google Patents

Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture

Info

Publication number
JPH09113224A
JPH09113224A JP27038195A JP27038195A JPH09113224A JP H09113224 A JPH09113224 A JP H09113224A JP 27038195 A JP27038195 A JP 27038195A JP 27038195 A JP27038195 A JP 27038195A JP H09113224 A JPH09113224 A JP H09113224A
Authority
JP
Japan
Prior art keywords
mark
dimensional
line segments
dimensional position
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27038195A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tsukamoto
一之 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP27038195A priority Critical patent/JPH09113224A/en
Publication of JPH09113224A publication Critical patent/JPH09113224A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify an image pick-up unit and reduce its production cost. SOLUTION: Mark pictures 3a and 3b, which are formed on the objective surface of an object 1 to be measured according to a mark 3 having two straight lines not parallel to each other, are allowed to be image-formed on an image forming surfaces 7a and 7b provided with one-dimensional optical sensors 6a, 6b, 6c, and 6d, thereby measuring the three-dimensional position and posture of the mark 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は3次元位置姿勢測定
用マーク、及び3次元位置姿勢測定方法及び装置に関
し、特に、マニピュレータ、回転ベルト等の移動体の位
置及び姿勢の測定において、簡素化およびコストダウン
を図り、取扱性を改善した3次元位置姿勢測定用マー
ク、3次元位置姿勢測定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional position / orientation measurement mark, and a three-dimensional position / orientation measurement method and device, and more particularly, to simplifying the measurement of the position and orientation of a moving body such as a manipulator and a rotating belt. The present invention relates to a mark for three-dimensional position / orientation measurement, a three-dimensional position / orientation measurement method and a device for cost reduction and improved handling.

【0002】[0002]

【従来の技術】マニピュレータによって物体を把持、及
び移動するとき、マニピュレータの位置及び姿勢を高速
に、かつ、高い精度で測定しなければならない。従来の
3次元位置姿勢測定装置として、ビジュアルフィードバ
ック制御を行うために、テレビカメラ等の撮像手段を用
いたものがある。この3次元位置姿勢測定装置による
と、テレビカメラ等の撮像手段によって測定対象物を撮
像して3次元の位置及び姿勢の情報を発生し、この3次
元の位置及び姿勢を環境に固定した座標系に変換し、そ
の座標系における目標位置へマニピュレータを移動させ
ている。
2. Description of the Related Art When gripping and moving an object with a manipulator, the position and orientation of the manipulator must be measured at high speed and with high accuracy. 2. Description of the Related Art As a conventional three-dimensional position and orientation measuring device, there is a device using an image pickup means such as a television camera for performing visual feedback control. According to this three-dimensional position / orientation measuring apparatus, an image of an object to be measured is picked up by an image pickup means such as a television camera to generate three-dimensional position / orientation information, and the coordinate system in which the three-dimensional position / orientation is fixed to the environment. , And the manipulator is moved to the target position in the coordinate system.

【0003】このような3次元の位置及び姿勢を測定す
る方法として、測定対象物の3つの特徴点を2台の撮像
手段で撮像するステレオ法による測定が一般に知られて
おり、その他にも特開平3−135718号公報には2
本の平行な直線をステレオ法によって撮像して3次元に
おける位置と姿勢を把握する方法が開示されている。
As a method for measuring such a three-dimensional position and orientation, a stereo method for picking up three characteristic points of an object to be measured by two image pickup means is generally known. It is 2 in Kaihei 3-135718 publication.
A method is disclosed in which parallel lines of a book are imaged by a stereo method to grasp a position and orientation in three dimensions.

【0004】しかし、この3次元位置姿勢測定装置によ
ると、テレビカメラ等の撮像手段にはCCDの2次元セ
ンサが用いられており、1画面のデータ取り込み速度は
1/30秒または1/60秒である。これは、マニピュ
レータのモータ制御装置のフィードバックのサイクルタ
イムが一般に1/1000秒以下であるのに比べて非常
に遅く、高速な位置決め作業には適応できない。また、
1画面の画素が500×500程度であるため、分解能
が十分でなく、更に、処理すべき情報量が多いので、高
速化のためには専用の処理回路が必要になってコストア
ップになる。
However, according to this three-dimensional position / orientation measuring apparatus, a two-dimensional CCD sensor is used as an image pickup means such as a television camera, and the data capturing speed of one screen is 1/30 seconds or 1/60 seconds. Is. This is extremely slow compared to the fact that the feedback cycle time of the motor controller of the manipulator is generally 1/1000 second or less, and cannot be applied to high-speed positioning work. Also,
Since the number of pixels on one screen is about 500 × 500, the resolution is not sufficient, and since the amount of information to be processed is large, a dedicated processing circuit is required for speeding up, resulting in an increase in cost.

【0005】一方、測定対象物の基準位置を測定するこ
とにより、測定対象物の位置と姿勢を測定する位置測定
装置が、特開昭64−18001号公報に開示されてい
る。
On the other hand, a position measuring device for measuring the position and orientation of a measuring object by measuring the reference position of the measuring object is disclosed in Japanese Patent Laid-Open No. 64-18001.

【0006】特開昭64−18001号公報に示される
位置測定装置は、測定対象物の基準位置に豆電球等の点
光源を取り付け、この点光源を集光光学系によって集光
し、集光された光ビームをビームスプリッタで分割し、
分割された光ビームをそれぞれ直交する2方向の1次元
センサで検出し、そのセンサ信号を対応する位置検出回
路に入力して測定対象物の位置を測定している。
In the position measuring device disclosed in Japanese Patent Laid-Open No. 64-18001, a point light source such as a miniature light bulb is attached to a reference position of an object to be measured, and the point light source is condensed by a condensing optical system to condense light. The split light beam is split by a beam splitter,
The divided light beams are detected by two-dimensional one-dimensional sensors that are orthogonal to each other, and the sensor signals are input to the corresponding position detection circuits to measure the position of the measurement target.

【0007】[0007]

【発明が解決しようとする課題】しかし、特開昭64−
18001号公報の位置測定装置によると、結像レン
ズ、かまぼこ型レンズ、ビームスプリッタを含む多種の
光学部品が必要になるので、構成が複雑化し、コスト高
になる。また、豆電球等の点光源を必要とするので、壊
れを防ぐために取り扱いに注意を必要とする。
However, Japanese Unexamined Patent Publication No.
According to the position measuring device of Japanese Patent No. 18001, various optical components including an imaging lens, a kamaboko lens, and a beam splitter are required, so that the configuration becomes complicated and the cost becomes high. In addition, since a point light source such as a miniature bulb is required, care must be taken in handling to prevent breakage.

【0008】従って、本発明の目的は、簡素化を図るこ
とができる3次元位置姿勢測定用マーク、及び3次元位
置姿勢測定方法及び装置を提供することにある。
Therefore, it is an object of the present invention to provide a three-dimensional position / orientation measuring mark and a three-dimensional position / orientation measuring method and apparatus which can be simplified.

【0009】本発明の他の目的は、コストダウンを図
り、取り扱い性を改善することができる3次元位置姿勢
測定用マーク、及び3次元位置姿勢測定方法及び装置を
提供することにある。
Another object of the present invention is to provide a mark for three-dimensional position and orientation measurement, and a method and apparatus for measuring three-dimensional position and orientation, which can reduce the cost and improve the handling property.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を実
現するため、第1の特徴として、所定の平面の領域内に
形成され、1つの交点を提供する平行でない2つの線分
を含み、前記1つの交点は位置測定の基準点であり、前
記2つの線分は姿勢測定の基準線である3次元位置姿勢
測定用マークを提供する。
To achieve the above object, the present invention has, as a first feature, including two non-parallel line segments formed in a predetermined plane region to provide one intersection. The one intersection is a reference point for position measurement, and the two line segments provide a three-dimensional position / orientation measurement mark that is a reference line for attitude measurement.

【0011】上記の3次元位置姿勢測定用マークにおい
て、交点は、所定の領域内に提供されても良く、また、
所定の領域外に提供されても良く、また、2つの線分、
及び2つの線分と交わる少なくとも2つの検出ラインに
よって囲まれる領域の外側に提供されても良く、また、
2つの線分、及び2つの線分と交わる少なくとも2つの
検出ラインによって囲まれる領域の内側に提供されても
良い。
In the above three-dimensional position and orientation measuring mark, the intersection may be provided within a predetermined area, and
It may be provided outside the predetermined area, and also two line segments,
And outside the area surrounded by at least two detection lines intersecting the two line segments, and
It may be provided inside the area surrounded by the two line segments and at least two detection lines intersecting the two line segments.

【0012】本発明は上記の目的を実現するため、第2
の特徴として、1つの交点を提供する平行でない2つの
線分を含み、測定対象物の変位に応じて変位するマーク
を前記測定対象物にある第1の平面に形成し、 第2の
平面に少なくとも2つの1次元光センサを配置し、前記
マークに含まれる前記2つの線分の線分像を前記第2の
平面に2方向に形成して前記少なくとも2つの1次元光
センサに長さ方向の受光強度分布を表わす受光信号を発
生させ、前記受光信号に基づいて前記2つの線分像の前
記少なくとも2つの1次元光センサ上の位置を演算し、
前記少なくとも2つの1次元光センサ上の位置に基づい
て前記マークに含まれる2つの線分によって提供される
前記交点の位置と、前記マークに含まれる前記2つの線
分の姿勢を演算する3次元位置姿勢測定方法を提供す
る。
The present invention has a second object to realize the above object.
As a feature of the above, a mark including two non-parallel line segments that provide one intersection point and that is displaced according to the displacement of the measurement object is formed on the first plane on the measurement object, and the mark is formed on the second plane. At least two one-dimensional photosensors are arranged, line segment images of the two line segments included in the mark are formed in two directions on the second plane, and the at least two one-dimensional photosensors are formed in the longitudinal direction. A light-reception signal representing a light-reception intensity distribution of the two, and the positions of the two line-segment images on the at least two one-dimensional photosensors are calculated based on the light-reception signal.
Three-dimensional calculation of a position of the intersection point provided by two line segments included in the mark and a posture of the two line segments included in the mark based on the positions on the at least two one-dimensional optical sensors A position and orientation measurement method is provided.

【0013】上記の3次元位置姿勢測定方法において、
マークは、測定対象物のエッジを2つの線分の少なくと
も1つの線分として定義して行っても良く、また、2つ
の線分の少なくとも1つの線分として定義される光透過
用の開口を測定対象物に設けることにより行っても良
く、また、測定対象物と反射率が異なる材料を塗布、貼
布、あるいは被覆して2つの線分の少なくとも1つの線
分として定義して行っても良く、また、測定対象物を光
透過性にするとともに、測定対象物に測定対象物と光透
過率が異なる材料を塗布、貼布、あるいは被覆して2つ
の線分の少なくとも1つの線分として定義して行っても
良い。また、少なくとも2つの1次元光センサは、第
3,第4の平面にそれぞれ少なくとも2つ配置し、マー
クに含まれる2つの線分の線分像を第3,第4の平面に
それぞれ形成するようにしても良い。
In the above three-dimensional position and orientation measuring method,
The mark may be defined by defining the edge of the object to be measured as at least one line segment of two line segments, and an opening for light transmission defined as at least one line segment of the two line segments. The measurement may be performed by providing the measurement target, or by applying, pasting, or coating a material having a reflectance different from that of the measurement target and defining it as at least one line segment of two line segments. Good, and also to make the measurement object light-transmissive, and to apply, paste, or cover the measurement object with a material having a light transmittance different from that of the measurement object, so as to form at least one line segment of two line segments. You may define and go. Further, at least two one-dimensional photosensors are arranged on at least two on the third and fourth planes, respectively, and line segment images of two line segments included in the mark are formed on the third and fourth planes, respectively. You may do it.

【0014】本発明は上記の目的を実現するため、第3
の特徴として、測定対象物にある第1の平面に形成さ
れ、1つの交点を提供する平行でない2つの線分を含
み、前記測定対象物の変位に応じて変位するマークと、
第2の平面に前記マークに含まれる前記2つの線分の線
分像を2方向に形成する像形成手段と、前記第2の平面
に配置され、前記2つの線分の線分像に基づいて長さ方
向の受光強度分布を表わす受光信号を出力する少なくと
も2つの1次元光センサと、前記受光信号に基づいて前
記2つの線分像の前記少なくとも2つの1次元光センサ
上の位置を演算する第1の演算手段と、前記少なくとも
2つの1次元光センサ上の位置に基づいて前記マークに
含まれる2つの線分によって提供される前記交点の位置
と、前記マークに含まれる前記2つの線分の姿勢を演算
する第2の演算手段を具備する3次元位置姿勢測定装置
を提供する。
In order to achieve the above object, the present invention provides a third aspect.
And a mark that includes two non-parallel line segments that are formed on a first plane of the measurement object and that provide one intersection, and that is displaced according to the displacement of the measurement object.
An image forming unit that forms line segment images of the two line segments included in the mark in two directions on a second plane; and a line segment image that is arranged on the second plane and is based on the line segment images of the two line segments. And at least two one-dimensional photosensors that output a light-reception signal indicating a light-reception intensity distribution in the longitudinal direction, and the positions of the two line-segment images on the at least two one-dimensional photosensors are calculated based on the light-reception signals. First computing means, the position of the intersection point provided by the two line segments included in the mark based on the positions on the at least two one-dimensional optical sensors, and the two lines included in the mark There is provided a three-dimensional position and orientation measuring apparatus including a second calculation means for calculating the orientation of the minute.

【0015】上記の3次元位置姿勢測定装置において、
マークは、2つの線分の少なくとも1つの線分が測定対
象物のエッジによって構成されるようにしても良く、ま
た、2つの線分の少なくとも1つの線分が測定対象物に
形成された光透過用の開口によって構成されるようにし
ても良く、また、2つの線分の少なくとも1つの線分が
測定対象物に測定対象物と反射率が異なる材料を塗布、
貼布、あるいは被覆することによって構成されるように
しても良い。また、測定対象物は光透過性の材料によっ
て構成され、マークは、前記2つの線分の少なくとも1
つの線分が測定対象物に光透過性の材料と異なる光透過
性を有する材料を塗布、貼布、あるいは被覆することに
よって構成されても良い。像形成手段は、2つの線分の
線分像を第3,第4の平面にそれぞれ形成する構成を有
し、少なくとも2つの1次元光センサは、第3,第4の
平面にそれぞれ少なくとも2つ配置される構成としても
良い。
In the above three-dimensional position and orientation measuring device,
The mark may be configured such that at least one line segment of the two line segments is constituted by an edge of the measurement target, and at least one line segment of the two line segments is a light beam formed on the measurement target. It may be configured by an aperture for transmission, and at least one line segment of two line segments is coated with a material having a reflectance different from that of the measurement target,
You may make it comprised by sticking or covering. Also, the measurement object is made of a light-transmissive material, and the mark is at least one of the two line segments.
The two line segments may be formed by applying, pasting, or coating a material having a light transmissivity different from the light transmissive material on the measurement target. The image forming means has a configuration for forming line segment images of two line segments on the third and fourth planes, respectively, and at least two one-dimensional photosensors have at least two on the third and fourth planes, respectively. It is also possible to have a configuration in which two are arranged.

【0016】[0016]

【発明の実施の形態】以下、本発明の3次元位置姿勢測
定用マーク、及び3次元位置姿勢測定方法及び装置を図
面を参照しつつ説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A three-dimensional position and orientation measuring mark, and a three-dimensional position and orientation measuring method and apparatus according to the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の第1の形態例における3
次元位置姿勢測定装置を示し、対象表面2にマーク3が
形成された測定対象物1と、マーク3を含む対象表面2
の反射光を集光する結像レンズ4a,4bと、2つの結
像面7a,7bに配置され、結像レンズ4a,4bの集
光によって形成されたマーク像3a,3bを撮像する1
次元光センサ6a,6b及び6c,6dと、同期信号発
生回路10から出力されるタイミング信号に基づいて1
次元光センサ6a,6b,6c,6dを駆動する駆動回
路11a,11b,11c,11dと、1次元光センサ
6a,6b,6c,6dから出力される光強度信号を増
幅するアンプ12a,12b,12c,12dと、増幅
された光強度信号をデジタル信号に変換するA/D変換
器13a,13b,13c,13dと、デジタル信号に
変換された光強度信号をメモリ制御回路15から出力さ
れる書き込み信号に基づいて記憶するためのメモリ14
と、メモリ制御回路15から出力される読み出し信号に
基づいてメモリ14から出力される光強度信号を入力し
て測定対象物1の3次元の位置と姿勢を演算するプロセ
ッサ16と、プロセッサ16における3次元の位置及び
姿勢の演算結果を表示する表示部17とを有する。
FIG. 1 shows a third embodiment of the present invention.
A three-dimensional position / orientation measuring apparatus is shown, in which an object to be measured 1 having a mark 3 formed on an object surface 2 and an object surface 2 including the mark 3 are shown.
Imaging lenses 4a and 4b for condensing reflected light of 2 and imaging marks 3a and 3b formed on the two imaging surfaces 7a and 7b by condensing the imaging lenses 4a and 4b 1
1 based on the timing signals output from the three-dimensional photosensors 6a, 6b and 6c, 6d and the synchronization signal generation circuit 10.
Driving circuits 11a, 11b, 11c, 11d for driving the dimensional optical sensors 6a, 6b, 6c, 6d, and amplifiers 12a, 12b for amplifying light intensity signals output from the one-dimensional optical sensors 6a, 6b, 6c, 6d, 12c, 12d, A / D converters 13a, 13b, 13c, 13d for converting the amplified light intensity signal into a digital signal, and writing of the light intensity signal converted into the digital signal from the memory control circuit 15 Memory 14 for storing based on signals
And a processor 16 for inputting the light intensity signal output from the memory 14 based on the read signal output from the memory control circuit 15 to calculate the three-dimensional position and orientation of the measurement object 1, and 3 in the processor 16. The display unit 17 displays the calculation result of the dimensional position and orientation.

【0018】マーク3は、交点Pを有する平行でない直
線L1 ,L2 を有し、対象表面2と反射率が異なる塗料
を表面に塗布するか、インクでシールなどに印刷したも
のを対象表面2に貼り付けて形成しても良く、あるいは
対象表面2と反射率が異なる材質の部材を貼り付けて形
成しても良い。本形態例では、白色の対象表面2の表面
に黒色塗料を塗布してマーク3を形成している。
The mark 3 has non-parallel straight lines L 1 and L 2 having an intersection point P, and a paint having a reflectance different from that of the target surface 2 is applied to the surface, or a mark printed with ink is printed on the target surface. It may be formed by adhering it to No. 2 or by adhering a member made of a material having a reflectance different from that of the target surface 2. In the present embodiment, the mark 3 is formed by applying black paint on the surface of the white target surface 2.

【0019】マーク3の直線L1 ,L2 は3本以上あっ
ても良く、そのうち条件を満たす2本に着目すれば良
い。これらの直線は連続線,あるいは不連続線であって
も良く、所定の長さの線分が定義されれば良い。
There may be three or more straight lines L 1 and L 2 of the mark 3, and attention should be paid to two lines satisfying the condition. These straight lines may be continuous lines or discontinuous lines, and a line segment having a predetermined length may be defined.

【0020】図1の構成において、測定対象物1は図示
しない照明部から照射される光が反射することによっ
て、対象表面2に設けられるマーク3の形状に基づくマ
ーク像3a,3bが結像面7a,7bに形成される。即
ち、このマーク像3a,3bは結像レンズ4a,4bに
よって集光されて1次元光センサ6a,6bが設けられ
る結像面7a、及び1次元光センサ6c,6dが設けら
れる結像面7bに結像する。1次元光センサ6a,6
b,6c,6dは1次元CCDや受光素子アレイ等であ
り、結像面7a,7bに結像されるマーク像3a,3b
が交差する位置の画素における光強度、及びその他の部
分の光強度に基づいて受光レベルの分布を表わす光強度
信号をアンプ12a,12b,12c,12dに出力す
る。アンプ12a,12b,12c,12dで増幅され
た光強度信号はA/D変換器13a,13b,13c,
13dにおいてデジタル信号に変換される。メモリ制御
回路15はプロセッサ16から出力される制御信号によ
って書き込み信号及び読み出し信号を出力し、書き込み
信号に基づいてメモリ14に光強度信号をストアさせ、
読み出し信号に基づいて光強度信号をプロセッサ16に
出力させる。プロセッサ16はメモリ14から入力され
る光強度信号に基づいて測定対象物1の3次元における
位置と姿勢を演算し、その演算結果を表示部17に出力
させる。
In the configuration of FIG. 1, the measurement object 1 is reflected by light emitted from an illumination unit (not shown), so that mark images 3a and 3b based on the shape of the mark 3 provided on the object surface 2 are formed on the image plane. 7a, 7b. That is, the mark images 3a and 3b are condensed by the image forming lenses 4a and 4b to form an image forming surface 7a on which the one-dimensional optical sensors 6a and 6b are provided, and an image forming surface 7b on which the one-dimensional optical sensors 6c and 6d are provided. Image on. One-dimensional optical sensor 6a, 6
Reference numerals b, 6c and 6d are one-dimensional CCDs, light receiving element arrays and the like, and mark images 3a and 3b formed on the image forming surfaces 7a and 7b.
Based on the light intensities of the pixels at the positions intersecting with each other and the light intensities of other portions, light intensity signals representing the distribution of the light receiving level are output to the amplifiers 12a, 12b, 12c, 12d. The light intensity signals amplified by the amplifiers 12a, 12b, 12c and 12d are A / D converters 13a, 13b, 13c,
It is converted into a digital signal in 13d. The memory control circuit 15 outputs a write signal and a read signal according to the control signal output from the processor 16, stores the light intensity signal in the memory 14 based on the write signal,
The light intensity signal is output to the processor 16 based on the read signal. The processor 16 calculates the three-dimensional position and orientation of the measuring object 1 based on the light intensity signal input from the memory 14, and outputs the calculation result to the display unit 17.

【0021】図2は、物体座標系と結像面7a,7bに
おける2次元座標系の対応関係を示し、仮想的に結像面
7a,7bを主点OL ,OR を有する結像レンズ(図示
せず)の前に配置した光学系構成としており、以下の記
載においては説明を容易にするために、この光学系構成
を用いて説明する。
FIG. 2 shows the correspondence between the object coordinate system and the two-dimensional coordinate system on the image forming planes 7a and 7b. The image forming lens has virtual points O L and O R on the image forming planes 7a and 7b. The optical system configuration is arranged in front of (not shown), and in the following description, this optical system configuration will be used for ease of explanation.

【0022】物体座標を(x,y,z)、1次元光セン
サ6a,6bが設けられる結像面7aでの2次元座標を
(hL ,vL ),1次元光センサ6c,6dが設けられ
る結像面7bでの2次元座標を(hR ,vR )として、
1次元光センサ6a,6bを有する撮像ユニットのカメ
ラパラメータをC、1次元光センサ6c,6dを有する
撮像ユニットのカメラパラメータをBとすると、カメラ
パラメータC、Bは式(1)及び式(2)によって
The object coordinates are (x, y, z), the two-dimensional coordinates on the image plane 7a on which the one-dimensional photosensors 6a, 6b are provided are (h L , v L ), and the one-dimensional photosensors 6c, 6d are Let the two-dimensional coordinates on the provided image plane 7b be (h R , v R ),
Assuming that the camera parameter of the image pickup unit having the one-dimensional photosensors 6a and 6b is C and the camera parameter of the image pickup unit having the one-dimensional photosensors 6c and 6d is B, the camera parameters C and B are expressed by the equations (1) and (2). ) By

【0023】[0023]

【数1】 (Equation 1)

【0024】[0024]

【数2】 と表される。(Equation 2) It is expressed as

【0025】また、物体座標と結像面7a,7bにおけ
る2次元座標は、媒介変数f,gを用いて 〔fhL fvL f〕t =C〔x,y,z,1〕t −−−(3) 〔ghR gvR g〕t =B〔x,y,z,1〕t −−−(4) と表わすことができる。ここで、〔〕t は転置行列を表
わす。
The object coordinates and the two-dimensional coordinates on the image planes 7a and 7b are [fh L fv L f] t = C [x, y, z, 1] t −− using the parameters f and g. -(3) [gh R gv R g] t = B [x, y, z, 1] t --- (4). Here, [] t represents a transposed matrix.

【0026】マーク3の直線L1 ,L2 は、結像面7a
に結像することによって交点PL 及び直線L1L,L2L
有するマーク像3aを形成し、結像面7bに結像するこ
とによって交点PR 及び直線L1R,L2Rを有するマーク
像3bを形成する。
The straight lines L 1 and L 2 of the mark 3 are formed by the image plane 7a.
The mark image 3a having the intersection point P L and the straight lines L 1L and L 2L is formed by forming an image on the image plane, and the mark image 3b having the intersection point P R and the straight lines L 1R and L 2R is formed by forming an image on the image forming surface 7b. To form.

【0027】図3(a)は、結像面7aに形成されたマ
ーク像3a、図3(b)は、結像面7bに形成されたマ
ーク像3bを示し、1次元光センサ6a,6bとマーク
像3aとが交わる点A11とA21からマーク像3aの直線
1Lが復元され、1次元光センサ6a,6bとマーク像
3aとが交わる点A12,A22からマーク像3aの直線L
2Lが復元される。結像面7bに形成されるマーク像3b
についても同様に、1次元光センサ6c,6dとマーク
像3bとが交わる点D11とD21からマーク像3aの直線
1Rが復元され、1次元光センサ6c,6dとマーク像
3bとが交わる点D12,D22からマーク像3bの直線L
2Rが復元される。
FIG. 3A shows the mark image 3a formed on the image forming surface 7a, and FIG. 3B shows the mark image 3b formed on the image forming surface 7b. The one-dimensional photosensors 6a and 6b. From the points A 11 and A 21 where the mark image 3a intersects with the mark image 3a, and the straight line L 1L of the mark image 3a is restored, and from the points A 12 and A 22 where the one-dimensional optical sensors 6a and 6b intersect the mark image 3a, Straight line L
2L is restored. Mark image 3b formed on the image plane 7b
Similarly, the straight line L 1R of the mark image 3a is restored from the points D 11 and D 21 where the one-dimensional photosensors 6c and 6d and the mark image 3b intersect, and the one-dimensional photosensors 6c and 6d and the mark image 3b are A straight line L of the mark image 3b from the intersecting points D 12 and D 22
2R is restored.

【0028】図4は、結像面7aにおけるマーク像3a
の直線L1L,L2Lの位置と1次元光センサ6a,6bの
信号出力との関係を示し、マーク3の直線L1 ,L2
一定の幅を持つ線であり、その像L1L,L2Lの部位では
センサ値は低くなる。よって、マーク像3aの直線
1L,L2Lの位置qij(i=1,2、j=1,2)は、
図5に示すように、その近傍で適当な閾値I以下の範囲
の画素データを用いて、例えば、斜線で示す部分の重心
位置として求める。そのときの重心位置qijは、例え
ば、式(1)で演算する。
FIG. 4 shows the mark image 3a on the image plane 7a.
Shows the relationship between the positions of the straight lines L 1L and L 2L and the signal outputs of the one-dimensional photosensors 6a and 6b. The straight lines L 1 and L 2 of the mark 3 are lines having a constant width, and their images L 1L and The sensor value is low at the L 2 L portion. Therefore, the positions q ij (i = 1, 2, j = 1, 2) of the straight lines L 1L , L 2L of the mark image 3a are
As shown in FIG. 5, using the pixel data in the vicinity of an appropriate threshold value I or less, for example, the barycentric position of the shaded portion is obtained. The barycentric position q ij at that time is calculated by, for example, Expression (1).

【0029】[0029]

【数3】 ここで、D(q)は画素qにおける出力値、Dbはバッ
クグランドレベルを表わす。
(Equation 3) Here, D (q) represents the output value of the pixel q, and Db represents the background level.

【0030】また、i番目の1次元光センサが結像面7
aでの2次元座標系で 〔hL ,vL t =q〔aLi,bLit +〔cLi,dLit (i=1,2) −−−(6) (ここで、〔aLi,bLit は大きさが画素ピッチの方
向ベクトル、〔cLi,d Lit は1次元光センサの端の
画素の中心座標、qは画素番号である。)と表されると
き、1次元光センサ6a,6b上のマーク像3aの位置
は、式(2)により結像面7aでの2次元座標(hL
L )に変換される。よって、A11〜A22はq11〜q22
を式(2)に代入することにより得られる。そして、A
ijを(hij,vij)とするとき、直線L1L,L2Lの結像
面7aにおける直線の方程式は L1L:(h21−h11)(vL −v11)=(v21−v11)(hL −h11) −−−(7) L2L:(h22−h12)(vL −v12)=(v22−v12)(hL −h12) −−−(8) となる。D11〜D22についても同様の演算を行うことに
よって、直線L1R,L2Rの結像面7bにおける直線の方
程式を得ることができる。
Further, the i-th one-dimensional optical sensor is formed on the image plane 7
In the two-dimensional coordinate system at a, [hL, VL]t= Q [aLi, BLi]t+ [CLi, DLi]t (I = 1, 2) --- (6) (where [aLi, BLi]tIs the pixel pitch
Vector, [cLi, D Li]tIs at the end of the one-dimensional optical sensor
The center coordinates of the pixel, q is the pixel number. )
Position of the mark image 3a on the one-dimensional optical sensors 6a and 6b
Is the two-dimensional coordinate (hL,
vL) Is converted to. Therefore, A11~ Atwenty twoIs q11~ Qtwenty two
Is obtained by substituting in the equation (2). And A
ij(Hij, Vij), The straight line L1L, L2LImage of
The equation of the straight line on the surface 7a is L1L: (Htwenty one-H11) (VL-V11) = (Vtwenty one-V11) (HL-H11) --- (7) L2L: (Htwenty two-H12) (VL-V12) = (Vtwenty two-V12) (HL-H12) --- (8). D11~ Dtwenty twoFor the same calculation
Therefore, the straight line L1R, L2RStraight line on the image plane 7b of
The equation can be obtained.

【0031】次に、上記の過程で求めたマーク像3a,
3bの直線L1L,L2L,L1R,L2Rに基づいてマーク3
の直線L1 ,L2 の交点Pの位置を求める。求め方には
いくつかの方法があるが、例えば、マーク3の直線
1 ,L2 の物体座標系における直線の方程式を求め、
その交点を演算しても良い。しかし、撮像時の撮像素子
による読み取り誤差やモデル誤差等により、演算される
直線L1 ,L2 は、ねじれの関係になることがある。こ
のような場合には直線L1 ,L2 が最も接近する直線L
1 ,L2 上の位置の中間点を交点Pとすることも考えら
れる。
Next, the mark image 3a obtained in the above process,
Mark 3 based on straight lines L 1L , L 2L , L 1R and L 2R of 3b
The position of the intersection point P of the straight lines L 1 and L 2 is obtained. There are several methods for obtaining the line, for example, the line equation of the lines L 1 and L 2 of the mark 3 in the object coordinate system is obtained,
The intersection may be calculated. However, the calculated straight lines L 1 and L 2 may have a twist relationship due to a reading error or a model error of the image pickup device during image pickup. In such a case, the straight line L 1 , L 2 is the closest line L
It is also conceivable to set the midpoint between the positions on 1 and L 2 as the intersection point P.

【0032】マーク3の直線L1 ,L2 の交点Pの位置
を求める他の方法として、結像面7a,7bの2次元座
標系における直線L1L,L2Lの交点PL ,直線L1R,L
2Rの交点PR から三角測量の原理に基づいて交点Pを求
める方法がある。以下、三角測量の原理に基づく交点P
の演算方法を説明する。
As another method for obtaining the position of the intersection P of the straight lines L 1 and L 2 of the mark 3, the intersections P L and L 1R of the straight lines L 1L and L 2L in the two-dimensional coordinate system of the image planes 7a and 7b. , L
There is a method of finding the intersection point P from the intersection point P R of 2R based on the principle of triangulation. Below, the intersection point P based on the principle of triangulation
The calculation method of is explained.

【0033】まず、対象表面2の物体座標と結像面7
a,7bの2次元座標の関係式である式(3)を展開す
る。 fhL =C11x+C12y+C13z+C14 −−−(9) fvL =C21x+C22y+C23z+C24 −−−(10) f =C31x+C32y+C33z+C34 −−−(11) (9)−f×(11)及び(10)−f×(11)より 0=(C11−C31L )x+(C12−C32L )y +(C13−C33L )z+(C14−C34L ) −−−(12) 0=(C21−C31L )x+(C22−C32L )y +(C23−C33L )z+(C24−C34L ) −−−(13) を得る。また、式(4)を展開して ghR =B11x+B12y+B13z+B14 −−−(14) gvR =B21x+B22y+B23z+B24 −−−(15) g =B31x+B32y+B33z+B34 −−−(16) (14)−g×(16)及び(15)−g×(16)よ
り 0=(B11−B31R )x+(B12−B32R )y +(B13−B33R )z+(B14−B34R ) −−−(17) 0=(B21−B31R )x+(B22−B32R )y +(B23−B33R )z+(B24−B34R ) −−−(18) を得る。式(12)(13)(17)(18)のうち、
例えば、式(12)(13)(17)を用いて
First, the object coordinates of the target surface 2 and the image plane 7
Formula (3), which is a relational expression of two-dimensional coordinates of a and 7b, is developed. fh L = C 11 x + C 12 y + C 13 z + C 14 --- (9) fv L = C 21 x + C 22 y + C 23 z + C 24 --- (10) f = C 31 x + C 32 y + C 33 z + C 34 --- (11) (9) -f × (11) and (10) -f than × (11) 0 = (C 11 -C 31 h L) x + (C 12 -C 32 h L) y + (C 13 -C 33 h L) z + (C 14 -C 34 h L) --- (12) 0 = (C 21 -C 31 v L) x + (C 22 -C 32 v L) y + (C 23 -C 33 v L) z + (C 24 -C 34 v L) --- obtain (13). Further, by expanding the formula (4), gh R = B 11 x + B 12 y + B 13 z + B 14 −−− (14) gv R = B 21 x + B 22 y + B 23 z + B 24 −− (15) g = B 31 x + B 32 y + B 33 z + B 34 −−− (16) From (14) −g × (16) and (15) −g × (16) 0 = (B 11 −B 31 h R ) x + (B 12 −B 32 h R ) y + (B 13 -B 33 h R) z + (B 14 -B 34 h R) --- (17) 0 = (B 21 -B 31 v R) x + (B 22 -B 32 v R) y + obtain (B 23 -B 33 v R) z + (B 24 -B 34 v R) --- (18). Among formulas (12), (13), (17) and (18),
For example, using equations (12) (13) (17)

【0034】[0034]

【数4】 (Equation 4)

【0035】[0035]

【数5】 とすると F=QV −−−(19) となり、(hL ,vL )をPL の座標、(hR ,vR
をPR の座標とすると、Qの逆行列が存在するとき V=Q-1F −−−(20) となるので、交点Pの3次元での位置が求められる。
(Equation 5) Then, F = QV --- (19), (h L , v L ) is the coordinate of P L , and (h R , v R )
Is the coordinate of P R , V = Q −1 F −−− (20) when the inverse matrix of Q exists, so the three-dimensional position of the intersection point P can be obtained.

【0036】式(12)(13)(17)(18)に基
づいて3式を選ぶ方法は4通りあるが、それぞれについ
て式(20)を演算し、最後に4通りの平均を取ること
によって交点Pを求めても良い。
There are four ways to select the three expressions based on the expressions (12), (13), (17) and (18). By calculating the expression (20) for each of them, and finally taking the average of the four ways. The intersection point P may be obtained.

【0037】次に、3次元における測定対象物1の姿勢
を求める方法を説明する。3次元での測定対象物1の姿
勢はロール,ピッチ,ヨー角及びオイラー角等で表わす
ことができ、マーク3の直線L1 の方向ベクトルr1
直線L2 の方向ベクトルr2を特定することによって求
めることができる。以下に、方向ベクトルr1 及びr 2
の求め方を説明する。
Next, the posture of the measuring object 1 in three dimensions
The method of obtaining is explained. Appearance of measurement object 1 in three dimensions
Force is expressed by roll, pitch, yaw angle, Euler angle, etc.
Can be, straight line L of mark 31Direction vector r of1When
Straight line LTwoDirection vector r ofTwoBy identifying
Can be Below, the direction vector r1And r Two
Explain how to obtain.

【0038】図2において、平面F1Lはレンズ主点OL
を通り、マーク像3aの直線L1L及びマーク3の直線L
1 を含む平面、平面F2Lはレンズ主点OL を通り、マー
ク像3aの直線L2L及びマーク3の直線L2 を含む平
面、平面F1Rはレンズ主点ORを通り、マーク像3bの
直線L1R及びマーク3の直線L1 を含む平面、平面F2R
はレンズ主点OR を通り、マーク像3bの直線L2R及び
マーク3の直線L2 を含む平面である。方向ベクトルr
1 を求めるにあたって、平面F1Lの方程式を求める。
In FIG. 2, the plane F 1L is the lens principal point O L.
, The straight line L 1L of the mark image 3a and the straight line L of the mark 3
A plane including 1 , a plane F 2L passes through the lens principal point O L , a plane including a straight line L 2L of the mark image 3 a and a straight line L 2 of the mark 3, a plane F 1R passes through the lens principal point O R , and the mark image 3 b plane including the straight line L 1 of the straight line L 1R and the mark 3 of the plane F 2R
Passes through the lens principal point O R, is a plane containing the straight line L 2 of the straight line L 2R and mark 3 mark images 3b. Direction vector r
In obtaining 1 , the equation of the plane F 1L is obtained.

【0039】まず、式(3)よりfを消去すると hL =(C11x+C12y+C13z+C14) /(C31x+C32y+C33z+C34) −−−(21) vL =(C21x+C22y+C23z+C24) /(C31x+C32y+C33z+C34) −−−(22) となり、これらをマーク像3aの直線L1Lの方程式
(7)に代入して整理すると F1L : a1Lx+b1Ly+c1Lz+d1L=0 −−− (23) a1Lx=n1 (C21−v1131)−m1 (C11−h1131) b1Ly=n1 (C22−v1132)−m1 (C12−h1132) c1Lz=n1 (C23−v1133)−m1 (C13−h1133) d1L=n1 (C24−v1134)−m1 (C14−h1134) n1 =h21−h111 =v21−v11 となり、このことから平面F1Lの法線ベクトルf1L
(a1L,b1L,c1L)と求められる。同様に演算するこ
とによって平面F2L,F1R,F2Rの法線ベクトルf 2L
1R,f2Rが求められる。
First, if f is deleted from equation (3), hL= (C11x + C12y + C13z + C14) / (C31x + C32y + C33z + C34) --- (21) vL= (Ctwenty onex + Ctwenty twoy + Ctwenty threez + Ctwenty four) / (C31x + C32y + C33z + C34) --- (22) and these are straight lines L of the mark image 3a.1LEquation
Substituting into (7) and rearranging F1L : A1Lx + b1Ly + c1Lz + d1L= 0 −−− (23) a1Lx = n1(Ctwenty one-V11C31) -M1(C11-H11C31) B1Ly = n1(Ctwenty two-V11C32) -M1(C12-H11C32) C1Lz = n1(Ctwenty three-V11C33) -M1(C13-H11C33) D1L= N1(Ctwenty four-V11C34) -M1(C14-H11C34) N1= Htwenty one-H11 m1= Vtwenty one-V11 And from this, the plane F1LNormal vector f of1LIs
(A1L, B1L, C1L) Is required. Can be calculated in the same way
Plane F by2L, F1R, F2RNormal vector f of 2L,
f1R, F2RIs required.

【0040】ところで、マーク3の直線L1 は、平面F
1Lと平面F1Rの交線であることから、方向ベクトルr1
は平面F1Lと平面F1Rの法線ベクトルf1L,f1Rに対し
て垂直となるので r1 =f1L×f1R −−−(24) として求められ、同様に、マーク3の直線L2 は、平面
2Lと平面F2Rの交線であることから、方向ベクトルr
2 は平面F2Lと平面F2Rの法線ベクトルf2L,f 2Rに対
して垂直となるので r2 =f2L×f2R −−−(25) として求められる。また、対象表面2の法線ベクトルq
は、方向ベクトルr1 及びr1 に対して垂直となること
から q=r1 ×r2 −−−(26) として求められる。
By the way, the straight line L of the mark 31Is the plane F
1LAnd plane F1RDirection vector r1
Is the plane F1LAnd plane F1RNormal vector f of1L, F1RAgainst
Is vertical, so r1= F1L× f1R --- (24), similarly, the straight line L of the mark 3 is obtained.TwoIs the plane
F2LAnd plane F2RDirection vector r
TwoIs the plane F2LAnd plane F2RNormal vector f of2L, F 2RTo
And it becomes vertical, so rTwo= F2L× f2R --- (25) Also, the normal vector q of the target surface 2
Is the direction vector r1And r1To be perpendicular to
From q = r1× rTwo --- (26)

【0041】次に、上記の過程で求めた対象表面2の法
線ベクトルq及び直線L1 の方向ベクトルr1 に基づい
て、測定対象物1の3次元における姿勢(ロール,ピッ
チ,ヨー角)を演算する過程を以下に説明する。
Next, based on the normal vector q of the target surface 2 and the direction vector r 1 of the straight line L 1 obtained in the above process, the three-dimensional posture (roll, pitch, yaw angle) of the measuring object 1 is obtained. The process of calculating is described below.

【0042】方向ベクトルr1 の単位ベクトルr1e(r
1x,r1y,r1z)(ただしr1x>0)がx軸と平行にな
るとき、及び法線ベクトルqの単位法線ベクトルq
e (qx、qy 、qz )(ただしqz >0)がz軸と平
行となるときのマーク3の姿勢を基準の姿勢とすると、
以下の関係式が得られる。 r1x=cos(θr )cos(θp ) −−−(27) r1y=sin(θr )cos(θp ) −−−(28) r1z=−sin(θp ) −−−(29) qx =cos(θr )sin(θp )cos(θy ) + sin(θr )sin(θy )−−−(30) qy =sin(θr )sin(θp )cos(θy ) − cos(θr )sin(θy )−−−(31) qz =cos(θp )cos(θy ) −−−(32) 式(29)を変形することによって、ピッチθp は θp =−sin-1(r1z) −−−(33) 式(27)及び式(28)より、ロールθr は θr =tan-1(r1y/r1x) −−−(34) 更に、式(32)を変形し cos(θy )=qz /cos(θp ) −−−(35) 式(35)を式(30)に代入するとともに、式(3
3)で求めたピッチθp 及び式(34)で求めたロール
θr を代入することによって、ヨー角θy は θy =sin−1{(qx −qz ・cos(θy )tan(θp )) /sin(θr )} −−−(36) として求めることができる。
A unit vector r 1e of the direction vector r 1 (r
1x , r 1y , r 1z ) (where r 1x > 0) is parallel to the x-axis, and the unit normal vector q of the normal vector q
If the posture of the mark 3 when e (q x , q y , q z ) (where q z > 0) is parallel to the z axis is the reference posture,
The following relational expression is obtained. r 1x = cos (θ r ) cos (θ p ) −−− (27) r 1y = sin (θ r ) cos (θ p ) −−− (28) r 1z = −sin (θ p ) −−− (29) q x = cos (θ r ) sin (θ p ) cos (θ y ) + sin (θ r ) sin (θ y ) −−− (30) q y = sin (θ r ) sin (θ p ) Cos (θ y ) −cos (θ r ) sin (θ y ) −−− (31) q z = cos (θ p ) cos (θ y ) −− (32) Transforming equation (29). Thus, the pitch θ p is θ p = −sin −1 (r 1z ) −−− (33) From the equations (27) and (28), the roll θ r is θ r = tan −1 (r 1y / r 1x ) −−− (34) Further, by modifying the equation (32), cos (θ y ) = q z / cos (θ p ) −− (35) Substituting the equation (35) into the equation (30), Expression (3
By substituting the pitch θ p obtained in 3) and the roll θ r obtained by the equation (34), the yaw angle θ y is θ y = sin−1 {(q x −q z · cos (θ y ) tan (? P )) / sin (? R )} --- (36).

【0043】図6は、プロセッサ16における演算処理
過程を示すフローチャートであり、ステップS1
2 ,S3 ,S4 ,S5 でマーク3の位置を求めること
ができ、ステップS1 ,S2 ,S3 ,S6 ,S7
8 ,S9 でマーク3の姿勢を求めることができる。
FIG. 6 is a flow chart showing the arithmetic processing steps in the processor 16, in which steps S 1 ,
S 2, S 3, S 4 , S 5 at it is possible to obtain the position of the mark 3, Step S 1, S 2, S 3 , S 6, S 7,
It is possible to determine the attitude of the mark 3 in S 8, S 9.

【0044】マーク3の形状は、図7(a)に示すよう
に、直線L1 ,L2 は離れていてその延長線上に交点
(図示せず)があっても良く、図7(b)に示すよう
に、交差した形であっても良い。また、マーク3の直線
1 ,L2 は1次元光センサによる読み取りライン18
a,18bにおいて直線と検知されれば良いことから、
図7(c)に示すように、不連続であっても良い。ま
た、図7(d)に示すように、直線L1 ,L2 をくり抜
いたように形成したマークでも良い。また、図7(e)
に示すように、輪郭線を直線L1 ,L2 として使用する
マーク3を形成しても良い。また、溝や凸部によってマ
ーク3を形成しても良い。また、直線状の光源を使用し
たり、蛍光塗料を塗布して形成しても良い。また、測定
対象物1が光透過性であれば、光透過率の異なる材料の
部材でマーク3を形成しても良い。更に、測定する対象
が、板状のように薄い部材であれば、マーク3の替わり
に開口を設け、測定対象物1を挟み、撮像ユニット5と
反対側から光を照射して漏れてくる光を検出しても良
い。
As shown in FIG. 7 (a), the mark 3 may have a shape in which the straight lines L 1 and L 2 are separated from each other and there is an intersection (not shown) on the extension line thereof. As shown in, the shape may be crossed. Further, the straight lines L 1 and L 2 of the mark 3 are the read lines 18 by the one-dimensional photosensor.
Since it is only necessary to detect a straight line at a and 18b,
As shown in FIG. 7C, it may be discontinuous. Further, as shown in FIG. 7D, a mark formed by hollowing out straight lines L 1 and L 2 may be used. FIG. 7 (e)
As shown in FIG. 3, the marks 3 whose contour lines are used as the straight lines L 1 and L 2 may be formed. Further, the mark 3 may be formed by a groove or a convex portion. Alternatively, a linear light source may be used, or a fluorescent paint may be applied to form the light source. Further, if the measurement object 1 is light transmissive, the mark 3 may be formed by a member made of a material having different light transmissivity. Further, if the object to be measured is a thin member such as a plate, an opening is provided instead of the mark 3, the object to be measured 1 is sandwiched, and light leaking from the side opposite to the imaging unit 5 is emitted. May be detected.

【0045】図8は、図7(e)に示すマークの輪郭線
を直線L1 ,L2 とみなして撮像ユニット(図示せず)
によって撮像し、交点PL を有する2つの直線L1L,L
2Lよりなるマーク像3aとして利用するものであり、1
次元光センサ6a,6bの信号出力レベルに所定の閾値
Iを設けることによってマーク像3aの直線位置q11
22を検出する。図4と共通する部分については共通す
る引用数字及び引用符号を附しているので、重複する説
明は省略する。
FIG. 8 regards the contour lines of the mark shown in FIG. 7E as straight lines L 1 and L 2 and an image pickup unit (not shown).
Captured by the two straight lines L 1L having an intersection point P L, L
It is used as a mark image 3a composed of 2L.
By providing a predetermined threshold value I for the signal output levels of the three-dimensional photosensors 6a and 6b, the linear position q 11 of the mark image 3a
to detect the q 22. The same parts as those in FIG. 4 are designated by the same reference numerals and reference numerals, and the duplicated description will be omitted.

【0046】図9は、平行でない直線状のエッジL1
2 を有する測定対象物1を撮像ユニット5a,5bで
撮像するようにしたものであり、エッジ像L1L,L2L
1R,L2Rを1次元光センサ6a,6b,6c,6dで
検出することによって測定対象物1のエッジL1 ,L2
をマークの代わりとすることができる。
FIG. 9 shows that non-parallel straight edges L 1 ,
The object to be measured 1 having L 2 is imaged by the imaging units 5a and 5b, and the edge images L 1L , L 2L ,
The edges L 1 and L 2 of the measuring object 1 are detected by detecting L 1R and L 2R by the one-dimensional optical sensors 6a, 6b, 6c and 6d.
Can be used instead of the mark.

【0047】図10は、結像面7における1次元光セン
サ6a,6bの配置の変形例を示し、(a)のように1
次元光センサ6a,6bを非平行に配置したり、(b)
のように直交して配置する構成としても良い。
FIG. 10 shows a modified example of the arrangement of the one-dimensional photosensors 6a and 6b on the image plane 7, and as shown in FIG.
The two-dimensional optical sensors 6a and 6b are arranged non-parallel to each other, or (b)
The configuration may be such that they are arranged orthogonally.

【0048】図11は、1次元光センサ6a,6bの配
置の他の変形例を示す。(a)では、直線L1Lが1次元
光センサ6a,6bに結像し、直線L2Lが1次元光セン
サ6b,6cに結像している。(b)では、直線L1L
1次元光センサ6a,6bに結像し、直線L2Lが1次元
光センサ6c,6dに結像している。(c)では、直線
1Lが1次元光センサ6a,6bに結像し、直線L2L
1次元光センサ6b,6cに結像している。(d)で
は、交点PL が1次元光センサ6a,6bによって形成
される領域内に位置している。一方、(b)では交点P
L が1次元光センサ6a,6bによって形成される領域
外に位置している。
FIG. 11 shows another modification of the arrangement of the one-dimensional photosensors 6a and 6b. In (a), the straight line L 1L is imaged on the one-dimensional optical sensors 6a and 6b, and the straight line L 2L is imaged on the one-dimensional optical sensors 6b and 6c. In (b), the straight line L 1L is imaged on the one-dimensional optical sensors 6a and 6b, and the straight line L 2L is imaged on the one-dimensional optical sensors 6c and 6d. In (c), the straight line L 1L is imaged on the one-dimensional optical sensors 6a and 6b, and the straight line L 2L is imaged on the one-dimensional optical sensors 6b and 6c. In (d), the intersection point P L is located within the region formed by the one-dimensional photosensors 6a and 6b. On the other hand, in (b), the intersection point P
L is located outside the area formed by the one-dimensional optical sensors 6a and 6b.

【0049】図12は、結像レンズ4aによって結像さ
れるマーク像3aと、結像レンズ4bによって結像され
るマーク像3bとを結像面7に設けられる1次元光セン
サ6a、6bによって検出する3次元位置姿勢測定装置
の変形例を示す。図1と共通する部分については共通す
る引用数字及び引用符号を附しているので、重複する説
明は省略する。
In FIG. 12, the mark image 3a formed by the image forming lens 4a and the mark image 3b formed by the image forming lens 4b are provided by the one-dimensional optical sensors 6a, 6b provided on the image forming surface 7. The modification of the three-dimensional position-and-orientation measuring device to detect is shown. The same parts as those in FIG. 1 are designated by the same reference numerals and reference numerals, and the duplicated description will be omitted.

【0050】次に、マーク像3aの直線L1 ,L2 の交
点PLの検出精度を検討する。例えば、図13に示すよ
うに、結像面7aでの2次元座標系において、1次元光
センサ6a,6bがvL =1及びvL =−1、直線
1L,L2Lの交点が(0,w)、直線L1Lが1次元光セ
ンサ6bとなす角度が45度、直線L1L,L2Lのなす角
度が90度とし、このときの交点PL の座標(hL ,v
L )の検出精度を検討する。
Next, the detection accuracy of the intersection P L of the straight lines L 1 and L 2 of the mark image 3a will be examined. For example, as shown in FIG. 13, in the two-dimensional coordinate system on the image plane 7a, the one-dimensional photosensors 6a and 6b have v L = 1 and v L = -1, and the intersections of the straight lines L 1L and L 2L are ( 0, w), the angle formed by the straight line L 1L and the one-dimensional optical sensor 6b is 45 degrees, and the angle formed by the straight lines L 1L and L 2L is 90 degrees, and the coordinates (h L , v) of the intersection point P L at this time are set.
Consider the detection accuracy of L ).

【0051】1次元光センサ6a,6bにおける直線L
1L,L2Lの検出誤差が、平均零、標準偏差σS の正規分
布にそれぞれ従うとき、交点PL の座標(hL ,vL
の検出誤差をシミュレートすると、それらの標準偏差σ
h 、σv
Straight line L in the one-dimensional photosensors 6a and 6b
When the detection errors of 1L and L 2L follow the normal distribution of mean zero and standard deviation σ S , respectively, the coordinates (h L , v L ) of the intersection point P L
Simulating the detection error of, their standard deviation σ
h and σ v are

【0052】[0052]

【数6】 と近似される。(Equation 6) Is approximated.

【0053】図14にこのグラフを示す。w=0のと
き、つまり交点PL が1次元光センサ6a,6bの中心
にあるほど検出精度が高いことが示されている。直線L
1Lの傾きや直線L1L,L2Lのなす角の値が異なる場合で
も、σh 、σv の絶対値は異なるが、交点PL が1次元
光センサ6a,6bの中心にあるほど検出精度が高いと
いう特徴は同様である。また、1次元光センサ6a,6
bが平行になっていない場合でも、同じように直線
1L,L2Lの交点PL が比較的内側にあるほど検出精度
が高い。このことも、シミュレーションにより確認され
た。
FIG. 14 shows this graph. It is shown that when w = 0, that is, the intersection P L is located at the center of the one-dimensional optical sensors 6a and 6b, the detection accuracy is higher. Straight line L
Although the absolute values of σ h and σ v are different even if the value of the inclination of 1L and the angle formed by the straight lines L 1L and L 2L are different, the detection accuracy increases as the intersection point P L is located at the center of the one-dimensional optical sensors 6a and 6b. The characteristics of high are similar. In addition, the one-dimensional optical sensors 6a, 6
Even when b is not parallel, the detection accuracy is higher as the intersection P L of the straight lines L 1L and L 2L is relatively inside. This was also confirmed by simulation.

【0054】次に、図15に示すように、結像面7aで
の2次元座標系において、1次元光センサ6a,6b,
6cがvL =1、hL =−1及びhL =1、直線L1L
2Lの交点が(0,w)、直線L1Lが1次元光センサ6
aとなす角度が45度、直線L1LとL2Lのなす角度が9
0度、のときの交点PL の座標(hL ,vL )の検出精
度を検証する。
Next, as shown in FIG. 15, in the two-dimensional coordinate system on the image plane 7a, the one-dimensional optical sensors 6a, 6b,
6c has v L = 1, h L = −1 and h L = 1, a straight line L 1L ,
The intersection of L 2L is (0, w), and the straight line L 1L is the one-dimensional optical sensor 6
The angle with a is 45 degrees, and the angle between the straight lines L 1L and L 2L is 9
The detection accuracy of the coordinates (h L , v L ) of the intersection point P L at 0 degree is verified.

【0055】1次元光センサ6a,6b,6cにおける
直線L1L,L2Lの位置の検出誤差が、平均零、標準偏差
σS の正規分布にそれぞれ従うとき、交点PL の座標
(hL,vL )の検出誤差をシミュレートする。
[0055] 1-dimensional photosensor 6a, 6b, linear L 1L in 6c, the detection error of the position of the L 2L has an average zero, when following each normal distribution of standard deviation sigma S, the intersection P L of the coordinates (h L, Simulate the detection error of v L ).

【0056】図16は、それらの標準偏差σh 、σv
示す。この場合も直線L1L,L2Lの交点PL が内側にあ
るほど検出精度が高い。
FIG. 16 shows those standard deviations σ h and σ v . Also in this case, the detection accuracy is higher as the intersection P L of the straight lines L 1L and L 2L is closer to the inside.

【0057】以上のように、1次元光センサが2つの場
合も、3つの場合でも、マーク像の直線の交点位置の検
出精度を少しでも高めるには、図11(c),(d)に
示すようにマーク像の直線の交点が1次元光センサの内
側になるように、マーク像及び1次元光センサを設定す
る必要がある。また、3次元の位置の演算は、左右のマ
ーク像の交点位置のデータを用いて行うため、測定精度
を向上させるために、マーク像の直線の交点が1次元光
センサで囲まれる領域の内側になるように、マーク及び
1次元光センサを配置することが望ましい。
As described above, in order to improve the detection accuracy of the intersection point position of the straight line of the mark image as much as possible in both cases of the two-dimensional photosensors and the three-dimensional photosensors, FIGS. As shown, it is necessary to set the mark image and the one-dimensional photosensor so that the intersection of the straight lines of the mark image is inside the one-dimensional photosensor. Further, since the calculation of the three-dimensional position is performed by using the data of the position of the intersection of the left and right mark images, in order to improve the measurement accuracy, the intersection of the straight lines of the mark image is inside the area surrounded by the one-dimensional optical sensor. It is desirable to arrange the mark and the one-dimensional photosensor so that

【0058】図17は、本発明の第2の形態における3
次元位置姿勢測定装置を示し、この3次元位置姿勢測定
装置は光を透過する材質で構成され、対象表面2に交点
Pを持った直線L1 ,L2 を有するマーク3が形成され
る測定対象物1と、測定対象物1に向けて2方向から光
を照射する光源21a,21bと、受光面20に1次元
光センサ6a,6bが平行に配置される1次元イメージ
入力部19と、1次元光センサ6a,6bから出力され
る1次元イメージデータに基づいてマーク3の位置及び
姿勢を演算する演算部9を有する。
FIG. 17 shows a third embodiment of the present invention.
A three-dimensional position-and-orientation measuring device is shown. This three-dimensional position-and-orientation measuring device is made of a light-transmitting material, and a target 3 on which a mark 3 having straight lines L 1 and L 2 having an intersection point P is formed. An object 1, light sources 21a and 21b for irradiating light to the object 1 to be measured from two directions, and a one-dimensional image input unit 19 in which one-dimensional optical sensors 6a and 6b are arranged in parallel on a light-receiving surface 20, and The calculation unit 9 calculates the position and orientation of the mark 3 based on the one-dimensional image data output from the two-dimensional photosensors 6a and 6b.

【0059】マーク3は、測定対象物1と透過率が異な
り、1次元光センサ6a,6b上で光量分布の変化とし
てマーク位置が検出できれば良く、例えば、透過率の低
い塗料を塗布することによって形成されている。光源2
1a,21bは、ランプ22a,22bから照射される
光を投光レンズ23a,23bで平行光として測定対象
物1に照射する。1次元イメージ入力部19は、光源2
1a,21bから照射される光によって形成されるマー
ク像3a,3bを受光面20で受光する。受光面20に
設けられている1次元光センサ6a,6bは投影される
マーク像3a,3bの直線L1L,L2L,L1R,L2Rが横
切るように配置されている。演算部9は、1次元イメー
ジ入力部とのインターフェイス機能を備えたマイクロコ
ンピューター等である。また、第2の形態における3次
元位置姿勢測定装置のシステムブロック図は、図12と
共通していることから、重複する説明を省略する。
The mark 3 has a different transmittance from the object 1 to be measured, and it is sufficient that the mark position can be detected as a change in the light amount distribution on the one-dimensional photosensors 6a and 6b. For example, by applying a paint having a low transmittance. Has been formed. Light source 2
1a and 21b irradiate the measuring object 1 with the light emitted from the lamps 22a and 22b as parallel light by the light projecting lenses 23a and 23b. The one-dimensional image input unit 19 uses the light source 2
The mark images 3a and 3b formed by the light emitted from 1a and 21b are received by the light receiving surface 20. One-dimensional optical sensor 6a provided on the light receiving surface 20, 6b mark image 3a being projected, 3b of the straight line L 1L, L 2L, L 1R , are arranged such L 2R crosses. The calculation unit 9 is a microcomputer or the like having an interface function with the one-dimensional image input unit. Further, the system block diagram of the three-dimensional position and orientation measuring apparatus according to the second embodiment is common to that in FIG. 12, and thus redundant description will be omitted.

【0060】次に、第2の形態における3次元位置姿勢
測定装置によって、3次元の位置と姿勢を演算する方法
について説明する。
Next, a method of calculating a three-dimensional position and orientation by the three-dimensional position and orientation measuring apparatus according to the second embodiment will be described.

【0061】図18は、マーク3が形成されている測定
対象物1と、1次元光センサ6a,6bが設けられる受
光面20との3次元座標系における位置関係を示し、x
y平面は受光面20上に定義している。光源21a,2
1b(いずれも図示せず)から照射される光に基づいて
受光面20に投影されるマーク像3a,3bの方向は、
方向ベクトルk(kx ,ky ,kz )、m(mx
y ,mz )と平行な方向であるものとする。
FIG. 18 shows the positional relationship in the three-dimensional coordinate system between the measuring object 1 on which the mark 3 is formed and the light receiving surface 20 on which the one-dimensional optical sensors 6a and 6b are provided, and x
The y plane is defined on the light receiving surface 20. Light sources 21a, 2
The direction of the mark images 3a and 3b projected on the light receiving surface 20 based on the light emitted from 1b (neither is shown) is
Direction vector k (k x, k y, k z), m (m x,
It is assumed that the direction is parallel to m y , m z ).

【0062】次に、投影されたマーク像3a,3bの直
線L1L,L2L,L1R,L2Rの方程式を求める。1次元光
センサ6a,6bは、図4に示したように、マーク像3
a,3bの直線L1L,L2L,L1R,L2Rと交差する位置
の光量に応じた検出信号を出力する。この1次元光セン
サ6a,6bの検出信号に基づいて、受光面20の1次
元光センサの直線の方程式とマーク像3a,3bの直線
1L,L2L,L1R,L 2Rとが交わる位置A11〜A22及び
11〜D22を求め、A11とA21から直線L1Lを復元し、
12とA22から直線L2Lを復元し、D11とD21から直線
1Rを復元し、D12とD22から直線L2Rを復元する。
Next, the projected mark images 3a and 3b are directly
Line L1L, L2L, L1R, L2RSolve for the equation. One-dimensional light
As shown in FIG. 4, the sensors 6a and 6b have the mark image 3
Straight line L of a and 3b1L, L2L, L1R, L2RPosition intersecting with
The detection signal is output according to the light intensity of the. This one-dimensional optical sensor
Based on the detection signals of the sensors 6a and 6b, the primary of the light receiving surface 20
Linear equation of original optical sensor and straight line of mark images 3a, 3b
L1L, L2L, L1R, L 2RPosition A where intersects with11~ Atwenty twoas well as
D11~ Dtwenty twoAnd ask for A11And Atwenty oneFrom straight line L1LRestore
A12And Atwenty twoFrom straight line L2LRestore D11And Dtwenty oneStraight from
L1RRestore D12And Dtwenty twoFrom straight line L2RTo restore.

【0063】次に、復元された直線L1L,L2L,L1R
2Rから対象表面2におけるマーク3の直線L1 ,L2
の交点P(x,y,z)の位置を求める。まず、マーク
像3aの直線L1L,L2Lの交点をPL (xL ,yL )、
マーク像3bの直線L1R,L 2Rの交点をPR (xR ,y
R )とすると、方向ベクトルkとベクトルPPL は平行
であるので、以下の関係式 kz /kx =z/(x−xL ) −−−(37) kz /ky =z/(y−yL ) −−−(38) が得られる。また、方向ベクトルmとベクトルPPR
平行であるので、以下の関係式 mz /mx =z/(x−xR ) −−−(39) mz /my =z/(y−yR ) −−−(40) が得られる。式(37)(38)(39)(40)の連
立方程式を解くと x=(kx ・mz ・xR −kz ・mx ・xL )/(kx ・mz −kz ・mx ) −−−(41) y=(ky ・mz ・xR −kz ・my ・xL )/(ky ・mz −kz ・my ) −−−(42) z=kz ・mz (xR −xL )/(kx ・mz −kz ・mx ) −−−(43) あるいは z=kz ・mz (xR −xL )/(ky ・mz −ky ・mx ) −−−(44) となって交点Pの位置が求められる。
Next, the restored straight line L1L, L2L, L1R,
L2RTo the straight line L of the mark 3 on the target surface 21, LTwo
The position of the intersection point P (x, y, z) of is obtained. First, mark
Straight line L of image 3a1L, L2LThe intersection ofL(XL, YL),
Straight line L of the mark image 3b1R, L 2RThe intersection ofR(XR, Y
R), The direction vector k and the vector PPLAre parallel
Therefore, the following relational expression kz/ Kx= Z / (xxL) --- (37) kz/ Ky= Z / (y-yL) --- (38) is obtained. Also, the direction vector m and the vector PPRIs
Since they are parallel, the following relational expression mz/ Mx= Z / (xxR) --- (39) mz/ My= Z / (y-yR) --- (40) is obtained. Expressions (37) (38) (39) (40)
Solving the equations, x = (kx・ Mz・ XR-Kz・ Mx・ XL) / (Kx・ Mz-Kz・ Mx) --- (41) y = (ky・ Mz・ XR-Kz・ My・ XL) / (Ky・ Mz-Kz・ My) --- (42) z = kz・ Mz(XR-XL) / (Kx・ Mz-Kz・ Mx) --- (43) or z = kz・ Mz(XR-XL) / (Ky・ Mz-Ky・ Mx) --- (44) and the position of the intersection P is obtained.

【0064】次に、マーク3の姿勢の求め方を以下に説
明する。マーク像3a,3bの直線L1L,L2L,L1R
2Rの方向ベクトルをそれぞれt1L,t2L,t1R,t2R
とするとき、対象表面2の法線ベクトルq、マーク3の
直線L1 の方向ベクトルr1、マーク3の直線L2 の方
向ベクトルr2 は、以下の式 r1 =(t1L×k)×(t1R×m) −−−(44) r2 =(t2L×k)×(t2R×m) −−−(45) q=r1 ×r2 −−−(46) によって求められる。
Next, how to obtain the attitude of the mark 3 will be described below. Straight lines L 1L , L 2L , L 1R of the mark images 3a and 3b,
The direction vectors of L 2R are t 1L , t 2L , t 1R and t 2R, respectively.
Then, the normal vector q of the target surface 2, the direction vector r 1 of the straight line L 1 of the mark 3, and the direction vector r 2 of the straight line L 2 of the mark 3 are expressed by the following equation r 1 = (t 1L × k) determined by × (t 1R × m) --- (44) r 2 = (t 2L × k) × (t 2R × m) --- (45) q = r 1 × r 2 --- (46) To be

【0065】更に、法線ベクトルをq(qx ,qy ,q
z )(ただしqz >0)、マーク3の直線L1 の方向ベ
クトルr1 を(r1x,r1y,r1z)(ただしr1y>0)
として、法線ベクトルqがz軸と平行で、マーク3の直
線L1 がy軸と平行なときのマーク3の姿勢を基準の姿
勢とすると、各座標軸回りの傾きは、第1の実施の形態
で示した式(21)(22)(23)によって求めるこ
とができる。
Furthermore, the normal vector is q (q x , q y , q
z ) (where q z > 0) and the direction vector r 1 of the straight line L 1 of the mark 3 is (r 1x , r 1y , r 1z ) (where r 1y > 0)
Assuming that the reference posture is the posture of the mark 3 when the normal vector q is parallel to the z-axis and the straight line L 1 of the mark 3 is parallel to the y-axis, the inclination around each coordinate axis is the same as in the first embodiment. It can be obtained by the equations (21), (22) and (23) shown in the form.

【0066】図19は、演算部9における演算処理過程
を示すフローチャートであり、ステップS1 ,S2 ,S
3 ,S4 ,S5 でマーク3の位置を求めることができ、
ステップS1 ,S2 ,S3 ,S6 ,S7 ,S8 でマーク
3の姿勢を求めることができる。
FIG. 19 is a flow chart showing the arithmetic processing process in the arithmetic unit 9, and steps S 1 , S 2 , S
The position of the mark 3 can be obtained with 3 , S 4 , and S 5 ,
The posture of the mark 3 can be obtained in steps S 1 , S 2 , S 3 , S 6 , S 7 , and S 8 .

【0067】以上の形態例では、測定対象物1に反射光
を利用する場合、あるいは測定対象物1の透過光を利用
する場合であっても、マークが形成される対象表面は1
次元光センサで検出される範囲において平面である必要
がある。しかし、対象表面が完全な平面でなくとも、例
えば、緩やかな曲面であっても、曲面の度合いに応じた
精度でマークの3次元における位置及び姿勢の測定を行
うことは可能である。
In the above embodiment, the target surface on which the mark is formed is 1 even when the reflected light is used for the measuring object 1 or the transmitted light of the measuring object 1 is used.
It needs to be flat in the range detected by the two-dimensional photosensor. However, even if the target surface is not a perfect flat surface, for example, even if it is a gentle curved surface, it is possible to measure the position and orientation of the mark in three dimensions with accuracy according to the degree of the curved surface.

【0068】[0068]

【発明の効果】以上説明した通り、本発明の3次元位置
姿勢測定用マーク、及び3次元位置姿勢測定方法及び装
置によると、対象表面に設けられ、1つの交点を提供す
る平行でない2つの線分を含むマークに応じて少なくと
も2本の1次元光センサで検出される少なくとも2つの
マーク像に基づいて3次元における位置と姿勢を演算す
るようにしたため、3次元位置姿勢測定装置の簡素化を
図るとともにコストダウンを図ることができる。
As described above, according to the mark for three-dimensional position / orientation measurement, and the method and apparatus for three-dimensional position / orientation measurement of the present invention, two non-parallel lines provided on the target surface and providing one intersection point. Since the position and orientation in three dimensions are calculated based on at least two mark images detected by at least two one-dimensional optical sensors according to the mark including the minute, the simplification of the three-dimensional position and orientation measuring device is achieved. It is possible to reduce the cost as well as to reduce the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における3次元位置
姿勢測定装置を示す説明図である。
FIG. 1 is an explanatory diagram showing a three-dimensional position and orientation measuring apparatus according to a first embodiment of the present invention.

【図2】物体座標系と結像面における2次元座標系との
関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between an object coordinate system and a two-dimensional coordinate system on an image plane.

【図3】結像面に形成されるマーク像を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a mark image formed on an image plane.

【図4】第1の実施の形態の結像面における1次元光セ
ンサとマーク像の直線の位置の関係を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the relationship between the position of the straight line of the one-dimensional photosensor and the mark image on the image plane of the first embodiment.

【図5】第1の実施の形態における重心の算出の説明図
である。
FIG. 5 is an explanatory diagram of calculation of a center of gravity according to the first embodiment.

【図6】第1の実施の形態において3次元の位置と姿勢
を演算するフローチャートである。
FIG. 6 is a flowchart for calculating a three-dimensional position and orientation in the first embodiment.

【図7】第1の実施の形態におけるマークの変形例を示
す説明図である。
FIG. 7 is an explanatory diagram showing a modified example of the mark according to the first embodiment.

【図8】第1の実施の形態においてマークの輪郭線を直
線として使用する変形例を示す説明図である。
FIG. 8 is an explanatory diagram showing a modification in which the contour line of the mark is used as a straight line in the first embodiment.

【図9】マークとして測定対象物のエッジを利用する変
形例において、結像面における1次元光センサとマーク
像の直線の位置関係を示す説明図である。
FIG. 9 is an explanatory diagram showing a positional relationship between a one-dimensional optical sensor and a straight line of a mark image on an image forming plane in a modification in which an edge of a measurement target is used as a mark.

【図10】(a)及び(b)は結像面における1次元光
センサの配置の変形例を示す説明図である。
10A and 10B are explanatory diagrams showing a modification of the arrangement of the one-dimensional photosensors on the image plane.

【図11】(a)〜(d)はマークの読み取り形態の変
形例を示す説明図である。
11A to 11D are explanatory views showing a modification of the mark reading mode.

【図12】撮像ユニットの変形例を示す説明図である。FIG. 12 is an explanatory diagram showing a modified example of the image pickup unit.

【図13】マーク像の直線の交点の位置と2つの1次元
光センサの位置関係を示す説明図である。
FIG. 13 is an explanatory diagram showing a positional relationship between the intersections of straight lines of a mark image and two one-dimensional optical sensors.

【図14】図13におけるマーク像の直線の交点の位置
と交点位置検出誤差の標準偏差のグラフである。
14 is a graph of the position of the intersection of the straight lines of the mark image in FIG. 13 and the standard deviation of the intersection position detection error.

【図15】マーク像の直線の交点の位置と3つの1次元
光センサの位置関係を示す説明図である。
FIG. 15 is an explanatory diagram showing the positional relationship between the intersections of the straight lines of the mark image and the three one-dimensional photosensors.

【図16】図15におけるマーク像の直線の交点の位置
と交点位置検出誤差の標準偏差のグラフである。
16 is a graph of the position of the intersection of the straight lines of the mark image in FIG. 15 and the standard deviation of the intersection position detection error.

【図17】本発明の第2の実施の形態における3次元位
置姿勢測定装置を示す説明図である。
FIG. 17 is an explanatory diagram showing a three-dimensional position and orientation measuring apparatus according to the second embodiment of the present invention.

【図18】第2の実施の形態における受光面の1次元光
センサとマーク像の直線の位置関係を示す説明図であ
る。
FIG. 18 is an explanatory diagram showing the positional relationship between the one-dimensional optical sensor on the light-receiving surface and the straight line of the mark image in the second embodiment.

【図19】第2の実施の形態において3次元の位置と姿
勢を演算するフローチャートである。
FIG. 19 is a flowchart for calculating a three-dimensional position and orientation according to the second embodiment.

【符号の説明】[Explanation of symbols]

1,測定対象物 2,対象表面 3,マーク 3a,3b,マーク像 4a,4b,結像レンズ 5a,5b,撮像ユニット 6a,6b,6c,6d,1次元光センサ 7a,7b,結像面 9,演算部 10,同期信号発生器 11a,11b,11c,11d,駆動回路 12a,12b,12c,12d,アンプ 13a,13b,13c,13d,A/D変換器 14,メモリ 15,メモリ制御回路 16,プロセッサ 17,表示部 18a,18b,18c,読み取りライン 19,1次元イメージ入力部 20,受光面 L1 ,L2 ,マークの直線 L1 ’,L2 ’,マーク像の直線 P,マークの交点 P’,マーク像の交点1, measurement object 2, target surface 3, marks 3a, 3b, mark images 4a, 4b, imaging lenses 5a, 5b, imaging units 6a, 6b, 6c, 6d, one-dimensional photosensors 7a, 7b, imaging surface 9, arithmetic unit 10, synchronization signal generator 11a, 11b, 11c, 11d, drive circuit 12a, 12b, 12c, 12d, amplifier 13a, 13b, 13c, 13d, A / D converter 14, memory 15, memory control circuit 16, processor 17, display sections 18a, 18b, 18c, reading line 19, one-dimensional image input section 20, light receiving surfaces L 1 , L 2 , mark straight lines L 1 ', L 2 ', mark image straight line P, mark Intersection P ', intersection of mark images

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 所定の平面の領域内に形成され、1つの
交点を提供する平行でない2つの線分を含み、前記1つ
の交点は位置測定の基準点であり、前記2つの線分は姿
勢測定の基準線であることを特徴とする3次元位置姿勢
測定用マーク。
1. Includes two non-parallel line segments formed in a region of a given plane and providing one intersection, said one intersection being a reference point for position measurement, said two line segments being poses A three-dimensional position / orientation measurement mark, which is a measurement reference line.
【請求項2】 前記交点は、前記所定の領域内に提供さ
れる請求項第1項記載の3次元位置姿勢測定用マーク。
2. The three-dimensional position-and-orientation measurement mark according to claim 1, wherein the intersection is provided within the predetermined area.
【請求項3】 前記交点は、前記所定の領域外に提供さ
れる請求項第1項記載の3次元位置姿勢測定用マーク。
3. The three-dimensional position-and-orientation measurement mark according to claim 1, wherein the intersection is provided outside the predetermined area.
【請求項4】 前記交点は、前記2つの線分、及び前記
2つの線分と交わる少なくとも2つの検出ラインによっ
て囲まれる領域の外側に提供される請求項第2項記載の
3次元位置姿勢測定用マーク。
4. The three-dimensional position and orientation measurement according to claim 2, wherein the intersection is provided outside an area surrounded by the two line segments and at least two detection lines intersecting with the two line segments. Mark for.
【請求項5】 前記交点は、前記2つの線分、及び前記
2つの線分と交わる少なくとも2つの検出ラインによっ
て囲まれる領域の内側に提供される請求項第2項記載の
3次元位置姿勢測定用マーク。
5. The three-dimensional position and orientation measurement according to claim 2, wherein the intersection point is provided inside an area surrounded by the two line segments and at least two detection lines intersecting with the two line segments. Mark for.
【請求項6】 1つの交点を提供する平行でない2つの
線分を含み、測定対象物の変位に応じて変位するマーク
を前記測定対象物にある第1の平面に形成し、 第2の平面に少なくとも2つの1次元光センサを配置
し、 前記マークに含まれる前記2つの線分の線分像を前記第
2の平面に2方向に形成して前記少なくとも2つの1次
元光センサに長さ方向の受光強度分布を表わす受光信号
を発生させ、 前記受光信号に基づいて前記2つの線分像の前記少なく
とも2つの1次元光センサ上の位置を演算し、 前記少なくとも2つの1次元光センサ上の位置に基づい
て前記マークに含まれる2つの線分によって提供される
前記交点の位置と、前記マークに含まれる前記2つの線
分の姿勢を演算することを特徴とする3次元位置姿勢測
定方法。
6. A mark that includes two non-parallel line segments that provide one intersection and that is displaced in response to the displacement of the measurement target is formed on a first plane of the measurement target, and a second plane is formed. At least two one-dimensional photosensors are disposed on the second plane, the line segment images of the two line segments included in the mark are formed in two directions on the second plane, and the lengths of the at least two one-dimensional photosensors are increased. A light-reception signal representing a light-reception intensity distribution in a direction, and calculating positions of the two line-segment images on the at least two one-dimensional photosensors based on the light-reception signals. A three-dimensional position / orientation measuring method, characterized in that the position of the intersection point provided by two line segments included in the mark and the posture of the two line segments included in the mark are calculated based on the position of .
【請求項7】 前記マークは、前記測定対象物のエッジ
を前記2つの線分の少なくとも1つの線分として定義し
て行う請求項第6項記載の3次元位置姿勢測定方法。
7. The three-dimensional position / orientation measuring method according to claim 6, wherein the mark is defined by defining an edge of the measuring object as at least one line segment of the two line segments.
【請求項8】 前記マークは、前記2つの線分の少なく
とも1つの線分として定義される光透過用の開口を前記
測定対象物に設けることにより行う請求項第6項記載の
3次元位置姿勢測定方法。
8. The three-dimensional position / orientation according to claim 6, wherein the mark is formed by providing an opening for light transmission defined as at least one line segment of the two line segments in the measurement object. Measuring method.
【請求項9】 前記マークは、前記測定対象物と反射率
が異なる材料を塗布、貼布、あるいは被覆して前記2つ
の線分の少なくとも1つの線分として定義して行う請求
項第6項記載の3次元位置姿勢測定方法。
9. The mark is defined as at least one line segment of the two line segments by applying, pasting, or coating a material having a reflectance different from that of the measurement object. The three-dimensional position and orientation measuring method described.
【請求項10】 前記マークは、前記測定対象物を光透
過性にするとともに、前記測定対象物に前記測定対象物
と光透過率が異なる材料を塗布、貼布、あるいは被覆し
て前記2つの線分の少なくとも1つの線分として定義し
て行う請求項第6項記載の3次元位置姿勢測定方法。
10. The mark is made to be light transmissive to the measurement object, and a material having a light transmittance different from that of the measurement object is applied to, adhered to, or coated on the measurement object. The three-dimensional position-and-orientation measuring method according to claim 6, which is defined as at least one line segment.
【請求項11】 前記少なくとも2つの1次元光センサ
は、第3,第4の平面にそれぞれ少なくとも2つ配置
し、 前記マークに含まれる前記2つの線分の線分像を前記第
3,第4の平面にそれぞれ形成する3次元位置姿勢測定
方法。
11. The at least two one-dimensional photosensors are respectively arranged in at least two on the third and fourth planes, and the line segment images of the two line segments included in the mark are arranged on the third and third planes. A three-dimensional position and orientation measuring method formed on each of the four planes.
【請求項12】 測定対象物にある第1の平面に形成さ
れ、1つの交点を提供する平行でない2つの線分を含
み、前記測定対象物の変位に応じて変位するマークと、 第2の平面に前記マークに含まれる前記2つの線分の線
分像を2方向に形成する像形成手段と、 前記第2の平面に配置され、前記2つの線分の線分像に
基づいて長さ方向の受光強度分布を表わす受光信号を出
力する少なくとも2つの1次元光センサと、 前記受光信号に基づいて前記2つの線分像の前記少なく
とも2つの1次元光センサ上の位置を演算する第1の演
算手段と、 前記少なくとも2つの1次元光センサ上の位置に基づい
て前記マークに含まれる2つの線分によって提供される
前記交点の位置と、前記マークに含まれる前記2つの線
分の姿勢を演算する第2の演算手段を具備することを特
徴とする3次元位置姿勢測定装置。
12. A mark that includes two non-parallel line segments that are formed on a first plane of an object to be measured and that provide one intersection, and that is displaced in response to the displacement of the object to be measured. Image forming means for forming the line segment images of the two line segments included in the mark in two directions on a plane; and a length arranged on the second plane based on the line segment images of the two line segments. At least two one-dimensional photosensors that output a light-reception signal that represents a light-reception intensity distribution in a direction, and a first position that calculates the positions of the two line-segment images on the at least two one-dimensional photosensors based on the light-reception signals. The calculating means, the position of the intersection point provided by the two line segments included in the mark based on the positions on the at least two one-dimensional optical sensors, and the posture of the two line segments included in the mark. Second operator to calculate 3-dimensional position and orientation measuring apparatus characterized by comprising a.
【請求項13】 前記マークは、前記2つの線分の少な
くとも1つの線分が前記測定対象物のエッジによって構
成される請求項第12項記載の3次元位置姿勢測定装
置。
13. The three-dimensional position-and-orientation measuring apparatus according to claim 12, wherein in the mark, at least one line segment of the two line segments is configured by an edge of the measurement target.
【請求項14】 前記マークは、前記2つの線分の少な
くとも1つの線分が前記測定対象物に形成された光透過
用の開口によって構成される請求項第12項記載の3次
元位置姿勢測定装置。
14. The three-dimensional position / orientation measurement according to claim 12, wherein the mark is formed by an opening for light transmission in which at least one line segment of the two line segments is formed in the measurement object. apparatus.
【請求項15】 前記マークは、前記2つの線分の少な
くとも1つの線分が前記測定対象物に前記測定対象物と
反射率が異なる材料を塗布、貼布、あるいは被覆するこ
とによって構成される請求項第12項記載の3次元位置
姿勢測定装置。
15. The mark is formed by applying, pasting, or covering at least one line segment of the two line segments on the measurement target with a material having a reflectance different from that of the measurement target. The three-dimensional position-and-orientation measuring apparatus according to claim 12.
【請求項16】 前記測定対象物は光透過性の材料によ
って構成され、前記マークは、前記2つの線分の少なく
とも1つの線分が前記測定対象物に前記光透過性の材料
と異なる光透過性を有する材料を塗布、貼布、あるいは
被覆することによって構成される請求項第12項記載の
3次元位置姿勢測定装置。
16. The measurement target is made of a light transmissive material, and at least one line segment of the two line segments of the mark has a light transmission property different from that of the light transmissive material to the measurement target. The three-dimensional position-and-orientation measuring apparatus according to claim 12, wherein the three-dimensional position-and-orientation measuring apparatus is configured by applying, pasting, or coating a material having properties.
【請求項17】 前記像形成手段は、前記2つの線分の
線分像を第3,第4の平面にそれぞれ形成する構成を有
し、 前記少なくとも2つの1次元光センサは、第3,第4の
平面にそれぞれ少なくとも2つ配置される構成を有する
請求項第12項記載の3次元位置姿勢測定装置。
17. The image forming means has a structure for forming line segment images of the two line segments on a third and a fourth plane, respectively, and the at least two one-dimensional photosensors are provided on the third and fourth planes. The three-dimensional position-and-orientation measuring apparatus according to claim 12, having a configuration in which at least two are arranged on each of the fourth planes.
JP27038195A 1995-10-18 1995-10-18 Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture Pending JPH09113224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27038195A JPH09113224A (en) 1995-10-18 1995-10-18 Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27038195A JPH09113224A (en) 1995-10-18 1995-10-18 Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture

Publications (1)

Publication Number Publication Date
JPH09113224A true JPH09113224A (en) 1997-05-02

Family

ID=17485473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27038195A Pending JPH09113224A (en) 1995-10-18 1995-10-18 Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture

Country Status (1)

Country Link
JP (1) JPH09113224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717683B1 (en) 1998-09-30 2004-04-06 Pentax Corporation Target for photogrammetric analytical measurement system
JP2005227194A (en) * 2004-02-16 2005-08-25 Casio Comput Co Ltd Projector, angle detecting method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717683B1 (en) 1998-09-30 2004-04-06 Pentax Corporation Target for photogrammetric analytical measurement system
JP2005227194A (en) * 2004-02-16 2005-08-25 Casio Comput Co Ltd Projector, angle detecting method, and program

Similar Documents

Publication Publication Date Title
US6128405A (en) System for processing three-dimensional shape data
EP1643210B1 (en) Method and apparatus for measuring shape of an object
KR101601331B1 (en) System and method for three-dimensional measurment of the shape of material object
US5018854A (en) Three dimensional imaging device
CN102132125B (en) Calibration of a profile measuring system
US20150054918A1 (en) Three-dimensional scanner
JPH02264808A (en) Three-dimensional curved surface configuration measuring instrument
JP2002509259A (en) Method and apparatus for three-dimensional inspection of electronic components
JPH11513483A (en) Method and apparatus for determining position and orientation
US20030142203A1 (en) Omnidirectional visual system, image processing method, control program, and readable recording medium
WO1997006406A1 (en) Distance measuring apparatus and shape measuring apparatus
JPH09113223A (en) Non-contacting method and instrument for measuring distance and attitude
JP3493403B2 (en) 3D measuring device
JPH09113224A (en) Mark for measuring three-dimensional position posture and method and device for measuring three-dimensional position posture
JP3111869B2 (en) Two-dimensional position and orientation measurement method and apparatus
JPH1114327A (en) Three-dimensional shape measuring method and device therefor
CN101308014A (en) System and method for determining position posture adopting multi- bundle light
JP3514029B2 (en) Two-dimensional position and orientation measurement method and apparatus, control apparatus for image recording apparatus, and control apparatus for manipulator
JPH11118435A (en) Wheel measuring device
JP2011059009A (en) Position measuring object, position measuring system, arithmetic unit for position measurement, and program
JP4028118B2 (en) Fiber dive angle measuring method and system
JPH05143156A (en) Device for recognizing environment
JPH09113218A (en) Method and device for position measurement of imaging object in imaging surface
JPH10185520A (en) Method for detecting center of laser beam receiving point
TW201508413A (en) Three-dimensional scanner