JPH0911229A - Hermetically closed kneading apparatus - Google Patents

Hermetically closed kneading apparatus

Info

Publication number
JPH0911229A
JPH0911229A JP8122645A JP12264596A JPH0911229A JP H0911229 A JPH0911229 A JP H0911229A JP 8122645 A JP8122645 A JP 8122645A JP 12264596 A JP12264596 A JP 12264596A JP H0911229 A JPH0911229 A JP H0911229A
Authority
JP
Japan
Prior art keywords
rotor
long
blade
rotors
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8122645A
Other languages
Japanese (ja)
Other versions
JP2804923B2 (en
Inventor
Isao Takakura
功 高倉
Natsushiro Kino
夏四郎 嬉野
Noribumi Yamada
則文 山田
Yoshinori Kurokawa
好徳 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12264596A priority Critical patent/JP2804923B2/en
Publication of JPH0911229A publication Critical patent/JPH0911229A/en
Application granted granted Critical
Publication of JP2804923B2 publication Critical patent/JP2804923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain homogenous kneading without reducing rubber housing vol. by spirally extending respective rotors around the center axes thereof and providing long blades to each of the rotors having an almost triangular cross-sectional shape in the circumferential direction thereof at an equal angle interval. SOLUTION: Each of rotors 3, 4 has three long blades 18, 19, 20 arranged in the circumferential direction thereof at an equal 120 deg.-interval. The apexes of the respective long blades 18, 19, 20 of each of the rotors having an almost triangular cross-sectional shape become tips 21 keeping a predetermined interval with respect to the inner wall of a chamber 2. The area from the end 18a of the tip 21 of the long blade 18 to the end 19a of the tip 21 of the long blade 19 is the back surface 26 in a rotary direction on the basis of the tip 21 of the long blade 18 and divided into the counteraction surface 22 to the tip 21 of the long blade 18 and the action surface 23 to the tip 21 of the long blade 19 and the action surface 23 is a sump part for guiding kneaded matter to the tip 21 and usually formed into a protruding curved surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゴム状物の混練に
適したバッチ式密閉型混練装置であって、生産性を向上
させたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a batch-type closed kneading apparatus suitable for kneading a rubber-like material, which has improved productivity.

【0002】[0002]

【従来の技術】一般にタイヤ等に使用されるゴムは、生
ゴムと硫黄、カーボン、フィラー等の添加物とを均一に
混ぜたものである。この生ゴムと添加物との混合のため
に密閉型混練装置が使用され、この密閉型混練装置によ
って、ゴムの可塑度の低下とともに添加物の分散の均一
化が図られる。ところで、自動車のラジアルタイヤに用
いられるゴムは硬質であるため、通常のゴムに比較して
添加物の均一な分散が困難である。
2. Description of the Related Art Generally, a rubber used for a tire or the like is a mixture of raw rubber and sulfur, carbon, and additives such as a filler. A closed kneader is used for mixing the raw rubber and the additive, and the closed kneader lowers the plasticity of the rubber and makes the dispersion of the additive uniform. By the way, since rubber used for a radial tire of an automobile is hard, it is difficult to uniformly disperse the additive as compared with ordinary rubber.

【0003】そこで、添加物の均一な分散ができる密閉
型混練装置として、特公昭58−4567号公報、特公
昭58−5094号公報に開示されるものが使用されて
いる。
[0003] Therefore, as a closed kneading apparatus capable of uniformly dispersing additives, those disclosed in Japanese Patent Publication Nos. 58-4567 and 58-5094 are used.

【0004】これら公報に開示される密閉型混練装置
は、断面まゆ型の密閉されたチャンバ内に一対の逆方向
回転のロータを非かみ合いで平行配置し、各ロータは円
周方向等角度で2個の長翼と同じく円周方向等角度で2
個の短翼とからなる合計4翼を有し、これら長翼と短翼
との翼長比や推力比等を適切に設定したものである。す
なわち、合計翼数を2翼から4翼に増やすことによっ
て、混練機能を向上させたものである。
In the hermetic kneading apparatuses disclosed in these publications, a pair of counter-rotating rotors are arranged in parallel in a non-meshing manner in a closed chamber with a cross section of a cocoon shape. As with the long wings, 2 at equal circumferential angles
It has a total of four wings consisting of a plurality of short wings, and the wing length ratio, thrust ratio, and the like of the long wing and the short wing are appropriately set. That is, the kneading function is improved by increasing the total number of blades from two to four.

【0005】昨今、タイヤの品質向上のために、ゴムの
硬度がより高くなったり、混練による分散の程度がより
シビアに求められるようになってきた。すると、上述し
た4翼ロータでも所定の混練時間の間に添加物が均一に
分散せず、長時間の混練が必要になってきた。長時間混
練すると、混練されるゴムの温度が上昇し、加硫反応等
の変質が起きる。そのため、ゴムの温度がある程度まで
上昇すると、一旦ゴムをチャンバから取り出して冷却
し、冷却後のゴムを再度混練するという複数回練りを行
う必要があった。この複数回練りを行うと、密閉型混練
装置の単位時間当たりの生産性が大幅に低下する。
[0005] In recent years, in order to improve the quality of tires, the hardness of rubber has become higher and the degree of dispersion by kneading has been required more severely. Then, even in the above-described four-bladed rotor, the additives are not uniformly dispersed during the predetermined kneading time, and long-time kneading is required. If kneading is performed for a long time, the temperature of the rubber to be kneaded rises, and deterioration such as a vulcanization reaction occurs. Therefore, when the temperature of the rubber has risen to a certain degree, it has been necessary to carry out kneading a plurality of times, such as once taking out the rubber from the chamber, cooling it, and kneading the cooled rubber again. When the kneading is performed a plurality of times, the productivity of the closed kneading device per unit time is significantly reduced.

【0006】このような複数回練りの回数を減じるまた
は、混練性能の向上のための密閉型混練装置として、特
開昭63−47107号公報(USP4871259)
に開示されるものが提案されている。この密閉型混練装
置は、断面まゆ型の密閉されたチャンバ内に一対の逆方
向回転のロータを平行配置し、各ロータは円周方向等角
度で3個の長翼とこの長翼と連続する3個の短翼とを有
し、ゴムの収容容積を増加させるために、各翼の回転方
向背面と各翼の半径方向外端における接線とがなる切り
込み角を40度以上140度以下にしたものである。こ
の回転方向背面の反作用面に存在する切り込みでの材料
の滞留防止のために、一対のロータの中心軸は各翼が互
いにかみ合うように狭められ、長翼と短翼とは連続翼と
して形成されている。
[0006] Japanese Patent Application Laid-Open No. 63-47107 (US Pat. No. 4,871,259) discloses a closed type kneading apparatus for reducing the number of times of kneading a plurality of times or improving kneading performance.
Has been proposed. In this closed type kneading device, a pair of counter-rotating rotors are arranged in parallel in a closed chamber having a cocoon-shaped cross section, and each rotor is continuous with three long blades at equal angles in the circumferential direction. It has three short blades, and in order to increase the accommodation volume of rubber, the cutting angle at which the back surface in the rotational direction of each blade and the tangent line at the radially outer end of each blade is set to 40 degrees or more and 140 degrees or less. It is a thing. In order to prevent stagnation of the material at the cut existing on the reaction surface on the back side in the rotation direction, the central axes of the pair of rotors are narrowed so that the blades mesh with each other, and the long blade and the short blade are formed as continuous blades. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た円周方向等角度で3個の長翼と切り込みを有するロー
タによる密閉型混練装置にあっては、ロータ中心軸間の
距離を短くして翼がかみ合うようにするため、チャンバ
内容積が減少し、切り込みによるゴム収容容積の増加も
限度があり、2個の長翼を有するものに比較してゴム収
容容積の減少は免れなかった。また、ゴム収容容積の減
少を少なくするために、切り込みを深くすると、この部
分でのゴムの滞留によって、フリーカーボンが生じやす
くなるという問題点もある。
However, in the above-mentioned closed kneading apparatus using a rotor having three long blades and a notch at equal angles in the circumferential direction, the distance between the center axes of the rotors is reduced. In order to engage with each other, the volume in the chamber was reduced, and the increase in the rubber storage volume due to the cut was limited. The reduction in the rubber storage volume was inevitable as compared with the one having two long blades. In addition, if the cut is deepened in order to reduce the reduction of the rubber accommodation volume, there is a problem that free carbon is likely to be generated due to the retention of the rubber in this portion.

【0008】請求項1乃至3の発明は、従来の技術の有
するこのような問題点に鑑みてなされたものであり、そ
の目的とするところは、円周方向等角度で3個の長翼を
有する一対のロータを非かみ合いで配設してゴム収容容
積が減少させることなく、均質な混練が得られる密閉型
混練装置を提供しようするものである。
[0008] The inventions of claims 1 to 3 have been made in view of such problems of the prior art, and an object thereof is to provide three long blades at equal angles in the circumferential direction. It is an object of the present invention to provide a closed kneading apparatus capable of obtaining a homogeneous kneading without reducing a rubber accommodation volume by disposing a pair of rotors having no engagement.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明のうち請求項1記載の発明は、断面まゆ型の密閉され
たチャンバを形成するケース部材と、前記チャンバ内に
平行配置され逆方向回転する一対のロータとを備えてな
る密閉型混練装置において、各ロータは中心軸回りに螺
旋状に延びる長翼を円周方向等角度で3個有し、各ロー
タの中心軸は前記長翼が互いにかみ合わない程度に離さ
れ、長翼部分のロータ断面形状が下記(a)〜(d)の
少なくも一つに該当するようにしたものである。 (a)前記ロータ断面形状が略三角形状になる。 (b)前記ロータ断面形状のうち回転方向背面における
反作用面が翼のチップの端を始点とする直線を含む。 (c)前記ロータ断面形状のうち回転方向背面が、一つ
の滑らかな凹近似又は凸近似又は直線近似の曲面で形成
され、前記ロータ断面形状の最大径をDrとし最小径を
Ddとしたとき、0.5<Dd/Dr<0.75の範囲
内に収まる。 (d)前記ロータ断面形状のうち回転方向背面が、一つ
の滑らかな凹近似又は凸近似又は直線近似の曲面で形成
され、前記ロータ断面形状の最大径をDrとし最小径を
Ddとしたとき、0.6<Dd/Dr<0.70の範囲
内に収まる。
The invention according to claim 1 of the present invention which achieves the above object, comprises: a case member forming a closed chamber having a cocoon-shaped cross section; and a case member arranged in parallel in the chamber in a reverse direction. In a closed-type kneading device including a pair of rotating rotors, each rotor has three long blades extending spirally around a central axis at equal angles in the circumferential direction, and the central axis of each rotor is the long blade. Are separated from each other so as not to mesh with each other, and the rotor cross-sectional shape of the long blade portion corresponds to at least one of the following (a) to (d). (A) The cross-sectional shape of the rotor is substantially triangular. (B) In the rotor cross-section, the reaction surface on the back side in the rotation direction includes a straight line starting from the end of the blade tip. (C) When the back surface in the rotation direction of the rotor cross-sectional shape is formed by one smooth concave approximation, convex approximation, or linear approximation curved surface, and the maximum diameter of the rotor cross-section shape is Dr and the minimum diameter is Dd, It is within the range of 0.5 <Dd / Dr <0.75. (D) When the back surface in the rotational direction of the rotor cross-sectional shape is formed by one smooth concave approximation, convex approximation, or linear approximation curved surface, and the maximum diameter of the rotor cross-sectional shape is Dr and the minimum diameter is Dd, It falls within the range of 0.6 <Dd / Dr <0.70.

【0010】長翼が3個になると、ロータの表面積が増
えるため、混練物が冷却され、混練時間を長くできる。
各ロータ中心軸が長翼がかみ合わない程度に離れている
と、チャンバ内容積が減少しない。非かみ合いロータで
あるが故に、ロータ断面形状のうち、翼のチップから見
てロータの回転方向にある作用面に十分な混練物を取り
込む必要があるが、この良好な取り込みのためにはロー
タ断面形状の特に回転方向背面(翼のチップから見てロ
ータの反回転方向にある面)における反作用面の形状が
重要である。この反作用面を普通の凸状にしたり、逆に
凹状にすると、作用面前方に取り込まれる混練物が減少
するということが実験的に確かめられた。具体的には、
前記した(a)〜(b)の少なくとも一つを充足する比
較的平坦な反作用面とする必要がある。ここで、反作用
面とは、回転方向背面のうち、翼のチップの回転方向背
面側(反回転方向側)のチップ端と、このチップ端から
チップ間距離の1/2乃至9/10だけ反回転方向に離
れた点との間に存在する面をいう。
When the number of long blades becomes three, the surface area of the rotor increases, so that the kneaded material is cooled and the kneading time can be lengthened.
If the center axes of the rotors are separated from each other so that the long blades do not engage with each other, the volume in the chamber does not decrease. Because of the non-meshing rotor, it is necessary to take in sufficient kneaded material on the working surface in the direction of rotation of the rotor as viewed from the blade tip, of the rotor cross-sectional shape. Of particular importance is the shape of the reaction surface on the rear side in the rotational direction (the surface in the anti-rotation direction of the rotor when viewed from the blade tip). It has been experimentally confirmed that, when the reaction surface is formed into a normal convex shape or, conversely, a concave shape, the kneaded material taken in front of the working surface is reduced. In particular,
It is necessary to have a relatively flat reaction surface that satisfies at least one of the above (a) and (b). Here, the reaction surface is defined as the tip of the tip of the tip of the blade of the blade in the rotation direction, which is opposite to the tip of the blade in the direction of rotation (opposite to the rotation direction). It refers to a plane that exists between points that are separated in the rotation direction.

【0011】また請求項2記載の発明は、請求項1の発
明において、前記ロータが前記長翼部分のロータ断面形
状と同様の断面を持つ3個の短翼を有し、該長翼と前記
短翼とが不連続となったものである。
According to a second aspect of the present invention, in the first aspect of the present invention, the rotor has three short blades having a cross section similar to the rotor cross section of the long blade portion. The short wing is discontinuous.

【0012】長翼と短翼が不連続であると、チャンバ内
の軸方向の混練物の活発な流動が生じるため、分散度の
チャンバ内のばらつきが少なくなる。
If the long blades and the short blades are discontinuous, an active flow of the kneaded material in the chamber occurs in the chamber, so that the dispersion of the degree of dispersion in the chamber is reduced.

【0013】また請求項3記載の発明は、請求項2の発
明において、前記不連続翼のロータの長短の翼長比が
0.1〜0.67の範囲となったものである。
According to a third aspect of the present invention, in the second aspect of the invention, the rotor blade length ratio of the discontinuous blade is in the range of 0.1 to 0.67.

【0014】不連続翼の長翼に対する短翼の翼長比が
0.1〜0.67であると、チャンバ内の軸方向の流動
が確実に生じるため、分散度のチャンバ内における軸方
向のばらつきが少なくなる。
[0014] When the blade length ratio of the short blades to the long blades of the discontinuous blades is 0.1 to 0.67, the axial flow in the chamber is surely generated. Variation is reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の一例を図面
に基づいて説明する。図1は密閉型混練装置の要部断面
図、図2はロータの展開図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a main part of a closed kneading apparatus, and FIG. 2 is a developed view of a rotor.

【0016】図1において、ケース部材1は、フローテ
ィングウェイト11及びドロップドア12を有するケー
シング13と、ケーシング13の紙面厚み方向両端に設
けられる図示されないエンドプレートとからなる。この
ケース部材1の内部に図示のような断面まゆ型のチャン
バ2が形成される。このチャンバ2の断面まゆ型の形状
は、左室14と右室15と連通部分としてのブリッジ1
6とからなる。一対の左右のロータ3,4は中心軸17
a,17bで回転自在に軸支される。中心軸17a,1
7bの間隔はロータ3,4の最大径Drより大きいた
め、ロータ3,4は非かみ合い状態で図示の矢印a,b
のように逆方向に回転する。ゴム状材料はフローティン
グウェイト11の押し込みによってチャンバ2内に投入
され、ロータ3,4による混練を経たのちドロップドア
12を開けることによって排出される。
In FIG. 1, the case member 1 includes a casing 13 having a floating weight 11 and a drop door 12, and end plates (not shown) provided at both ends of the casing 13 in the thickness direction of the drawing. Inside the case member 1, a chamber 2 having a cross-sectional eyebrows type as shown in the figure is formed. The shape of the cross section of the chamber 2 is a bridge 1 as a communicating part with the left chamber 14 and the right chamber 15.
6 A pair of left and right rotors 3 and 4 have a central shaft 17.
It is rotatably supported at a and 17b. Center shaft 17a, 1
7b is larger than the maximum diameter Dr of the rotors 3 and 4, the rotors 3 and 4 are not engaged with each other and the arrows a and b shown
Rotate in the opposite direction. The rubber-like material is put into the chamber 2 by pushing the floating weight 11, kneaded by the rotors 3 and 4, and then discharged by opening the drop door 12.

【0017】図示のように、ロータ3,4は円周方向1
20度等分配置の3個の長翼18,19,20を有して
いる。各長翼18,19,20の頂上はチャンバ2の内
壁と所定間隔を維持したチップ21となっている。長翼
18におけるチップ21の端18aから長翼19におけ
るチップ21の端19aまでは、長翼18のチップ21
を基準とした時の回転方向背面26であり、長翼18の
チップ21についての反作用面22と、長翼19のチッ
プ21についての作用面23に区分される。作用面23
は混練物をチップ21に導くための溜まり部分であり、
通常は凸曲面で形成される。反作用面22はブリッジ1
6部分の混練物を作用面側に取り込む為に重要な役割を
果たす部分であり、長翼18のチップ21の端18aを
始点とする直線になっている。この反作用面22は作用
面23より長いため、ロータ3,4の全体が略三角形状
になっており、後述する図6の如き回転鋸歯形状や図7
の如きふっくら形状とは明瞭に区別される。
As shown in the figure, the rotors 3 and 4 are
It has three long wings 18, 19, 20 which are equally spaced at 20 degrees. The top of each of the long blades 18, 19, and 20 is a chip 21 that maintains a predetermined distance from the inner wall of the chamber 2. From the end 18a of the tip 21 of the long wing 18 to the end 19a of the tip 21 of the long wing 19, the tip 21 of the long wing 18
, And is divided into a reaction surface 22 for the tip 21 of the long wing 18 and an operation surface 23 for the tip 21 of the long wing 19. Working surface 23
Is a pool portion for guiding the kneaded material to the chip 21,
Usually, it is formed with a convex curved surface. Reaction surface 22 is bridge 1
This is a part that plays an important role in taking in the six parts of the kneaded material on the working surface side, and is a straight line starting from the end 18a of the tip 21 of the long wing 18. Since the reaction surface 22 is longer than the operation surface 23, the whole of the rotors 3 and 4 has a substantially triangular shape, and a rotational saw tooth shape as shown in FIG.
Is clearly distinguished from the plump shape.

【0018】図2はロータ3,4の展開形状を示してい
る。円周方向120度毎の長翼18,19,20はロー
タ3,4の中心に向かって混練物を移動させるようにロ
ータ3,4の一方の軸方向端から傾斜角θで螺旋状に延
び、途中で途切れている。この途切れ部分18b,19
b,20bの間からロータ3,4の他方の軸方向端に延
びる短翼30,31,32が設けられている。長翼1
8,19,20と短翼30,31,32が不連続である
ため、混練物は矢印cのようにロータ軸方向に蛇行しな
がら移動する。なお、長翼18,19,20の途切れ部
分18b,19b,20bと短翼30,31,32の途
切れ部分30b,31b,32bは円周方向一列に並ん
でいるが、二点鎖線のように短翼30,31,32を延
ばしてオーバーラップ部分を作ると、このオーバーラッ
プ部分での翼の数が増えるため、混練機能がより増大す
る。なお、このオーバーラップ部分及び長短翼の途切れ
部分18b,19b,20b,30b,31b,32b
が周方向に並ぶ部分のロータ断面形状は6角形に近似す
る形状になる。すなわち、図1のロータ断面形状は長翼
18,19,20や短翼30,31,32だけの部分の
断面を示している。
FIG. 2 shows a developed shape of the rotors 3 and 4. The long blades 18, 19, and 20 at every 120 degrees in the circumferential direction spirally extend from one axial end of the rotors 3 and 4 at an inclination angle θ so as to move the kneaded material toward the center of the rotors 3 and 4. Is interrupted on the way. The breaks 18b, 19
Short wings 30, 31, and 32 are provided extending from b and 20b to the other axial ends of the rotors 3 and 4. Long wing 1
Since the 8, 19, 20 and the short blades 30, 31, 32 are discontinuous, the kneaded material moves while meandering in the direction of the rotor axis as shown by the arrow c. The discontinuous portions 18b, 19b, 20b of the long wings 18, 19, 20 and the discontinuous portions 30b, 31b, 32b of the short wings 30, 31, 32 are arranged in a line in the circumferential direction. When the short wings 30, 31, and 32 are extended to form an overlap portion, the number of wings at the overlap portion increases, so that the kneading function further increases. In addition, the overlapping portions and the broken portions 18b, 19b, 20b, 30b, 31b, 32b of the long and short blades.
However, the cross-sectional shape of the rotor in the portion arranged in the circumferential direction is a shape approximating a hexagon. That is, the rotor cross-sectional shape in FIG. 1 shows a cross section of only the long blades 18, 19, 20 and the short blades 30, 31, 32.

【0019】[0019]

【実施例】つぎに、図1で説明した密閉型混練装置の性
能に関する実験例を以下に説明する。図3の如き非かみ
合い6翼ロータ3,4の性能を図3の如き非かみ合い4
翼ロータ51,52と対比しつつ説明する。図3の如
く、実験に用いた非かみ合い4翼ロータ51,52は作
用面及び反作用面とも凸形状であり、全体として小判型
断面になっている。また実験には二次元試験機を用い、
同一の回転数、同一の投入材料量で、同一時間混練した
後の両者の材料温度を測定した。
Next, an experimental example relating to the performance of the closed kneading apparatus described in FIG. 1 will be described below. The performance of the non-meshing 6 blade rotors 3 and 4 as shown in FIG.
The description will be made in comparison with the blade rotors 51 and 52. As shown in FIG. 3, the non-meshing four-blade rotors 51 and 52 used in the experiment have convex shapes on both the working surface and the reaction surface, and have an oval cross section as a whole. A two-dimensional testing machine was used for the experiment,
After kneading with the same rotation speed and the same amount of input material for the same time, both material temperatures were measured.

【0020】図3のグラフに示されるように、混練終了
時の材料温度は相当の開きがあり、6翼ロータ3,4の
ほうが4翼ロータ51,52より冷却能力が高いことが
判る。また、図4に示されるように、ムーニ粘度低下効
率で示される可塑化の程度も、6翼ロータ3,4のほう
が4翼ロータ51,52より高く、6翼ロータ3,4の
ほうが可塑面での混練機能に優れることが判る。
As shown in the graph of FIG. 3, it can be seen that the material temperatures at the end of kneading vary considerably, and that the six-bladed rotors 3 and 4 have a higher cooling capacity than the four-bladed rotors 51 and 52. Also, as shown in FIG. 4, the degree of plasticization indicated by the Mooney viscosity reduction efficiency is higher for the six-bladed rotors 3 and 4 than for the four-blade rotors 51 and 52, and for the six-bladed rotors 3 and 4, the plastic surface is higher. It can be seen that the kneading function is excellent.

【0021】更に、図2の如きロータによる三次元試験
で6翼ロータと4翼ロータを比較した。長短翼の円周方
向のずれ角α=60°、翼長比0.1の6翼ロータと、
長短翼の円周方向のずれ角α=90°、翼長比0.2の
4翼ロータとの分配性能を比較した一実験例が図5に示
される。図5によると、チャンバ内全体の分散度のばら
つきで示される分配性能も、6翼ロータのほうが4翼ロ
ータより高く、6翼ロータのほうが分配面における混練
機能に優れることが判る。
Further, a six-blade rotor and a four-blade rotor were compared in a three-dimensional test using a rotor as shown in FIG. A 6-blade rotor having a circumferential shift angle α = 60 ° of the long and short blades and a blade length ratio of 0.1,
FIG. 5 shows an experimental example comparing the distribution performance of a long-short blade with a 4-blade rotor having a circumferential deviation angle α = 90 ° and a blade length ratio of 0.2. According to FIG. 5, the distribution performance indicated by the dispersion of the degree of dispersion throughout the chamber is higher for the six-bladed rotor than for the four-bladed rotor, and it is understood that the six-bladed rotor has a better kneading function on the distribution surface.

【0022】つぎに、ロータの反作用面の形状が及ぼす
影響を図1のロータ形状と図6(第1比較例)及び図7
(第2比較例)のロータ形状とを対比しつつ説明する。
なお、実験には前述した二次元試験機を用いた。
Next, the influence of the shape of the reaction surface of the rotor exerted will be described with reference to the rotor shape of FIG. 1 and FIGS. 6 (first comparative example) and FIG.
A description will be given in comparison with the rotor shape of the second comparative example.
Note that the two-dimensional testing machine described above was used for the experiment.

【0023】図6(第1比較例)のロータ61,62は
回転方向背面67におけるチップの端からチップの端ま
でを、反作用面63と作用面64に略等分し、反作用面
63を凹形状にし、作用面64を凸形状にしたものであ
る。図7(第2比較例)のロータ71,72は回転方向
背面76におけるチップの端からチップの端までを、反
作用面73と作用面74に略等分し、反作用面73を凸
形状にし、作用面74も凸形状にしたものである。
In the rotors 61 and 62 of FIG. 6 (first comparative example), the portion from the tip end to the tip end on the back surface 67 in the rotational direction is substantially equally divided into the reaction surface 63 and the operation surface 64, and the reaction surface 63 is recessed. The working surface 64 is formed in a convex shape. In the rotors 71 and 72 in FIG. 7 (second comparative example), the portion from the tip end to the tip end on the back surface 76 in the rotation direction is substantially equally divided into a reaction surface 73 and an operation surface 74, and the reaction surface 73 is made convex. The working surface 74 is also made convex.

【0024】図6(第1比較例)の凹形状の反作用面6
3となったロータ61,62では、ロータ62の反作用
面のボイド65とブリッジ16付近のボイド66のよう
に比較的大きなボイドが生じている。このことは、ブリ
ッジ16付近から作用面に取り込まれる材料が減少する
ことを意味している。また、反作用面のボイド65に起
因すると想定されるフリーカーボンの発生が確認され
た。
The concave reaction surface 6 shown in FIG. 6 (first comparative example)
In the rotors 61 and 62 of No. 3, relatively large voids are generated, such as the void 65 on the reaction surface of the rotor 62 and the void 66 near the bridge 16. This means that the amount of material taken into the working surface from near the bridge 16 is reduced. Further, generation of free carbon, which is assumed to be caused by the void 65 on the reaction surface, was confirmed.

【0025】図7(第2比較例)の凸形状の反作用面7
3となったロータ71,72では、ブリッジ16付近の
ボイド75のように比較的大きなボイドが生じている。
このことは、ブリッジ16付近から作用面に取り込まれ
る材料が減少することを意味している。
The reaction surface 7 having a convex shape shown in FIG. 7 (second comparative example)
In the rotors 71 and 72 having the number 3, relatively large voids are generated like the void 75 near the bridge 16.
This means that the amount of material taken into the working surface from near the bridge 16 is reduced.

【0026】ところが、図1(本発明例)の直線による
反作用面22となったロータ3,4では、ブリッジ16
付近のボイド25が生じるものの、その程度が図6(第
1比較例)や図7(第2比較例)ものに比較して少な
い。このことは、ブリッジ16付近から作用面に取り込
まれる材料がそれほど減少しないことを意味している。
すなわち、ロータ3,4を非かみ合いにしても、ロータ
3,4の反作用面の形状を適切にすることで、かみ合い
状態に匹敵する作用面への材料の取り込みが確保でき
る。
However, in the rotors 3 and 4 having the reaction surfaces 22 formed by the straight lines in FIG.
Although voids 25 are generated in the vicinity, the degree thereof is smaller than those in FIG. 6 (first comparative example) and FIG. 7 (second comparative example). This means that the material taken into the working surface from near the bridge 16 does not decrease so much.
That is, even if the rotors 3 and 4 are not meshed with each other, it is possible to ensure that the reaction surfaces of the rotors 3 and 4 have appropriate shapes so that the material can be taken into the working surface equivalent to the meshing state.

【0027】このことは、図8のロータ形状差に基づく
ムーニ粘度低下効率の差によって明確に示される。ムー
ニ粘度低下効率は、直線(本発明例)、凸形状(第2比
較例)、凹形状(第1比較例)の反作用面形状の順に良
くなっている。すなわち、回転方向背面における反作用
面形状を直線近似であってどちらかと言えば凸形状に近
い平坦なものにすると、作用面に取り込まれる材料が多
くなり、チップでの混練機会を増大させることができ
る。
This is clearly shown by the difference in Mooney viscosity reduction efficiency based on the rotor shape difference in FIG. The Mooney viscosity reduction efficiency is improved in the order of the reaction surface shape of the straight line (example of the present invention), the convex shape (second comparative example), and the concave shape (first comparative example). That is, if the reaction surface shape on the back side in the rotational direction is a linear approximation and is rather flat, which is rather convex, the material taken in the operation surface increases, and the chance of kneading with the chip can be increased. .

【0028】図1のロータの回転方向背面における反作
用面形状は直線であるか、又は、ロータ全体が略三角形
状になっている場合を説明した。要するに、ロータ断面
形状のうち回転方向背面における反作用面が、一つの滑
らかな凹近似又は凸近似又は直線近似の曲面で形成さ
れ、作用面の凸形状に滑らかにつなぐことが重要であ
る。このような観点から、種々の平坦度の反作用面を有
するロータ形状を検証した結果に以下に説明する。
The case where the reaction surface shape on the back side in the rotation direction of the rotor in FIG. 1 is a straight line or the whole rotor is substantially triangular has been described. In short, it is important that the reaction surface on the back side in the rotation direction of the rotor cross-sectional shape is formed by one smooth concave approximation, convex approximation, or linear approximation curved surface, and is smoothly connected to the convex shape of the operation surface. From this point of view, the results of verification of rotor shapes having reaction surfaces of various flatnesses will be described below.

【0029】図9に示されるように、平坦度を規定する
のに、ロータ断面形状の最小径をDdとし最大径をDr
としたときのDd/Drの比率を用いた。図示例では、
一つの滑らかな凹近似又は凸近似又は直線近似の曲面で
回転方向背面が形成され、この回転方向背面のうち半分
以上且つ9/10程度以内までが平坦度の高い反作用面
とし、残りを凸形状又は平坦な作用面としたものであ
る。この場合図示のように、0.5<Dd/Dr<0.
75が許容範囲であり、図6や図7のものと明瞭の混練
度の差が生じる範囲である。ただし、0.6<Dd/D
r<0.70に抑え、できるだけ反作用面を直線に近づ
けることが好ましい。
As shown in FIG. 9, to define the flatness, the minimum diameter of the rotor cross-sectional shape is set to Dd, and the maximum diameter is set to Dr.
And the ratio of Dd / Dr was used. In the example shown,
The back surface in the rotational direction is formed by one smooth concave approximation, convex approximation, or linear approximation surface, and more than half and up to about 9/10 of the back surface in the rotation direction are reaction surfaces with high flatness, and the rest are convex shapes. Alternatively, it is a flat working surface. In this case, as shown, 0.5 <Dd / Dr <0.
75 is an allowable range, which is a range in which a clear difference in the degree of kneading from that of FIGS. 6 and 7 occurs. However, 0.6 <Dd / D
It is preferable to keep r <0.70 and make the reaction surface as close to a straight line as possible.

【0030】前述したテストは主として二次元テストの
結果によるものであるため、三次元形状によるテストで
翼の軸方向の影響を調べた結果を以下に説明する。図2
の如く長翼と短翼の不連続翼の場合の疑似材料の混練テ
ストの結果を連続翼(図2において、長翼の途切れ部分
18b,19b,20bに短翼の30b,31b,32
bを一致させたもの)と対比しつつ説明する。図10は
6翼の連続又は不連続の結果を示し、図11は4翼の連
続又は不連続の結果を示す。6翼又は4翼いずれの場合
も、不連続翼のほうが連続翼に比較してチャンバ内全体
の分散度のばらつきが少なくなっており、不連続翼のほ
うが連続翼より優れる。
Since the above-mentioned test is mainly based on the result of the two-dimensional test, the result of examining the influence of the blade in the axial direction by the test using the three-dimensional shape will be described below. FIG.
As shown in FIG. 2, the result of the kneading test of the pseudo material in the case of the discontinuous wing of the long wing and the short wing is shown in the continuous wing (in FIG.
This will be described in comparison with the case where b is matched). FIG. 10 shows the results of 6 blades continuous or discontinuous, and FIG. 11 shows the results of 4 blades continuous or discontinuous. In any of the six blades and the four blades, the discontinuous blade has less variation in the degree of dispersion throughout the chamber than the continuous blade, and the discontinuous blade is superior to the continuous blade.

【0031】また、図2の如く不連続翼であって長翼と
短翼の翼長比の影響を、図2の6翼ロータを使用し翼長
比を変化させた場合の疑似材料の混練テストの結果を図
12を用いて説明する。図12において、翼長比が小さ
いほうが良好な分配性能を有しているが、翼長比が0.
67の場合でも使用可能な分配性能であり、翼長比が
0.1未満になると形態的にロータを製造することが困
難になるため、適正な翼長比は0.1〜0.67の範囲
である。
Further, as shown in FIG. 2, the influence of the blade length ratio between the long blade and the short blade, which is a discontinuous blade, is kneaded with the pseudo material when the blade length ratio is changed by using the 6-blade rotor shown in FIG. The test results will be described with reference to FIG. In FIG. 12, the smaller the blade length ratio, the better the distribution performance, but the blade length ratio is 0.
Even in the case of 67, the distribution performance can be used, and when the blade length ratio is less than 0.1, it is difficult to form the rotor morphologically. Therefore, the appropriate blade length ratio is 0.1 to 0.67. It is a range.

【0032】以上の実施例の説明により、本発明にかか
る断面形状の6翼長短翼不連続が優れるということが明
確になったが、6翼長短翼連続であっても4翼長短翼不
連続より優れ、本発明の範囲内であるのでこのことを図
13及び図14により説明する。まず、テストに用いた
6翼長短翼連続のロータ3′,4′の展開形状を図13
により説明する。円周方向120度毎の連続翼18′,
19′,20′はロータ3′,4′の内側に向かって混
練物を移動させるようにロータ3′,4′の一方の軸方
向端から傾斜角θで螺旋状に延び、途中部分18b′,
19b′,20b′で逆方向の傾斜角で螺旋状に延びて
端に至っている。傾斜角θの螺旋の部分が長翼であっ
て、逆方向螺旋の部分が短翼になっており、長短の翼長
比は図2と同様となっている。このような6翼長短連続
ロータと比較するため、4翼で長短不連続ロータを使用
した。この4翼長短不連続ロータは図2の長短翼の組が
一組減って二組になり、180°の位相差でもって二組
の長短翼を配設したものである。
From the above description of the embodiment, it has been clarified that the six-blade long and short wing discontinuity of the sectional shape according to the present invention is excellent. This is explained with reference to FIGS. 13 and 14 because it is better and within the scope of the invention. First, the developed shape of the rotors 3 ', 4' having a continuous length of 6 blades and short blades used in the test is shown in FIG.
This will be described below. Continuous wing 18 'every 120 degrees in the circumferential direction,
Numerals 19 'and 20' extend helically from one axial end of the rotors 3 'and 4' at an inclination angle θ so as to move the kneaded material toward the inside of the rotors 3 'and 4'. ,
At 19b 'and 20b', they extend spirally at an inclination angle in the opposite direction to the ends. The spiral portion having the inclination angle θ is a long blade, and the reverse spiral portion is a short blade, and the blade length ratio between long and short is the same as that in FIG. For comparison with such a six-blade long and short continuous rotor, a four-blade long and short discontinuous rotor was used. In this four-blade long / short discontinuous rotor, the set of long and short blades in FIG. 2 is reduced by one to two sets, and two sets of long and short blades are arranged with a phase difference of 180 °.

【0033】前述した4翼長短不連続ロータと6翼長短
翼連続ロータの場合のばらつきの程度を図14で説明す
る。図14で明瞭なように、4翼長短不連続ロータに比
較すると、6翼長短不連続ロータのみならず、6翼長短
連続ロータもすぐれた特性を有していることが判る。す
なわち、6翼であって図1の如き所定断面形状を有する
非噛み合いロータであることが重要であって、6翼長短
翼不連続又は6翼長短翼連続の差は最適な実施例と次善
の実施例という差にすぎない。
FIG. 14 shows the degree of variation in the case of the above-mentioned four-bladed-short rotor and the six-bladed short-blade continuous rotor. As is clear from FIG. 14, when compared with the four-blade short-continuous rotor, not only the six-blade short-short rotor but also the six-blade short-continuous rotor have excellent characteristics. That is, it is important that the rotor has six blades and is a non-interlocking rotor having a predetermined cross-sectional shape as shown in FIG. 1. It is merely a difference of the embodiment.

【0034】[0034]

【発明の効果】以上説明したように、本発明のうち請求
項1の発明は、非かみ合いで円周方向等角度で3個の長
翼を有し、この長翼の回転方向背面の反作用面の形状を
比較的平坦にすることによって、冷却能力が増加して混
練回数を減少し、チャンバ内有効容積の減少を極力少な
くしたので、従来の非かみ合い不連続4翼ロータや、切
り込み付きかみ合い連続3翼ロータによる混練装置に比
較して生産効率を向上させることができるという効果を
奏する。また、切り込み付きかみ合い連続3翼ロータで
生じやすい、フリーカーボンの出現を防止できるという
効果を奏する。
As described above, the first aspect of the present invention has three long blades which are not meshed with each other and are equiangular in the circumferential direction. By making the shape relatively flat, the cooling capacity was increased, the number of kneadings was reduced, and the decrease in the effective volume in the chamber was reduced as much as possible. There is an effect that the production efficiency can be improved as compared with a kneading apparatus using a three-bladed rotor. Further, there is an effect that the appearance of free carbon can be prevented, which is likely to occur in a continuous three-bladed rotor with a notched mesh.

【0035】請求項2の発明は、請求項1の効果に加え
て、長翼と短翼とが不連続であるため、チャンバ内の分
散度が均一になり、混練品質を向上させることができる
という効果を奏する。
According to the second aspect of the invention, in addition to the effect of the first aspect, since the long blades and the short blades are discontinuous, the degree of dispersion in the chamber becomes uniform, and the kneading quality can be improved. This has the effect.

【0036】請求項3記載の発明は、請求項2の効果に
加えて、長翼と短翼が不連続であって、長短の翼長比が
0.1〜0.67であるため、チャンバ内の特に軸方向
の分散度が均一になり、混練品質を更に向上させること
ができるという効果を奏する。
According to a third aspect of the present invention, in addition to the effect of the second aspect, the long wing and the short wing are discontinuous and the length ratio of the long wing to the short wing is 0.1 to 0.67. In particular, the degree of dispersion in the axial direction becomes uniform, and the kneading quality can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の密閉型混練装置の要部断面図である。FIG. 1 is a sectional view of a main part of a closed kneading apparatus of the present invention.

【図2】本発明装置のロータの展開図である。FIG. 2 is a development view of a rotor of the device of the present invention.

【図3】本発明装置のロータによる混練終了時材料温度
を示すグラフ図である。
FIG. 3 is a graph showing a material temperature at the end of kneading by a rotor of the apparatus of the present invention.

【図4】本発明装置のロータによるムーニー粘度低下効
率を示すグラフ図である。
FIG. 4 is a graph showing Mooney viscosity reduction efficiency by a rotor of the apparatus of the present invention.

【図5】本発明装置のロータによるチャンバ内分散の程
度を示すグラフ図である。
FIG. 5 is a graph showing the degree of dispersion in a chamber by a rotor of the apparatus of the present invention.

【図6】第1比較例の密閉型混練装置の要部断面図であ
る。
FIG. 6 is a sectional view of a main part of a closed kneading apparatus of a first comparative example.

【図7】第2比較例の密閉型混練装置の要部断面図であ
る。
FIG. 7 is a sectional view of a main part of a closed kneading apparatus of a second comparative example.

【図8】本発明装置及び第1、第2比較例によるムーニ
ー粘度低下効率を示すグラフ図である。
FIG. 8 is a graph showing Mooney viscosity reduction efficiencies according to the device of the present invention and first and second comparative examples.

【図9】本発明装置の他のロータ形状を示す図である。FIG. 9 is a view showing another rotor shape of the device of the present invention.

【図10】本発明装置のロータによるチャンバ内分散の
程度を示すグラフ図である。
FIG. 10 is a graph showing a degree of dispersion in a chamber by a rotor of the apparatus of the present invention.

【図11】4翼のロータによるチャンバ内分散の程度を
示すグラフ図である。
FIG. 11 is a graph showing the degree of dispersion in a chamber by a four-bladed rotor.

【図12】本発明装置の特に6翼長短不連続ロータによ
るチャンバ内分散の程度を示すグラフ図である。
FIG. 12 is a graph showing the degree of dispersion in a chamber of a device according to the present invention, particularly by a 6-blade short / short rotor.

【図13】本発明装置の6翼長短連続ロータの展開図で
ある。
FIG. 13 is a development view of a 6-blade long-short continuous rotor of the device of the present invention.

【図14】本発明装置の6翼長短連続ロータと比較例の
4翼長短不連続によるチャンバ内分散の程度を示すグラ
フ図である。
FIG. 14 is a graph showing the degree of dispersion in a chamber due to a 6-blade long / short continuous rotor of the apparatus of the present invention and a 4-blade short / short discontinuity of a comparative example.

【符号の説明】[Explanation of symbols]

1 ケース部材 2 チャンバ 3,4 一対のロータ 16 ブリッジ 17a,17b 中心軸 18,19,20 長翼 21 チップ 22 反作用面 23 作用面 26 回転方向背面 DESCRIPTION OF SYMBOLS 1 Case member 2 Chamber 3, 4 A pair of rotor 16 Bridge 17a, 17b Central axis 18, 19, 20 Long blade 21 Chip 22 Reaction surface 23 Working surface 26 Rotation back surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒川 好徳 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshinori Kurokawa 2-3-1, Shinhama, Arai-cho, Takasago-shi, Hyogo Inside Kobe Steel, Ltd. Takasago Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 断面まゆ型の密閉されたチャンバを形成
するケース部材と、前記チャンバ内に平行配置され逆方
向に回転する一対のロータとを備えてなる密閉型混練装
置において、各ロータは中心軸回りに螺旋状に延びる長
翼を円周方向等角度で3個有し、各ロータの中心軸は前
記長翼が互いにかみ合わない程度に離され、長翼部分の
ロータ断面形状が下記(a)〜(d)の少なくも一つに
該当するようにしたことを特徴とする密閉型混練装置。 (a)前記ロータ断面形状が略三角形状になる。 (b)前記ロータ断面形状のうち回転方向背面における
反作用面が翼のチップの端を始点とする直線を含む。 (c)前記ロータ断面形状のうち回転方向背面が、一つ
の滑らかな凹近似又は凸近似又は直線近似の曲面で形成
され、前記ロータ断面形状の最大径をDrとし最小径を
Ddとしたとき、0.5<Dd/Dr<0.75の範囲
内に収まる。 (d)前記ロータ断面形状のうち回転方向背面が、一つ
の滑らかな凹近似又は凸近似又は直線近似の曲面で形成
され、前記ロータ断面形状の最大径をDrとし最小径を
Ddとしたとき、0.6<Dd/Dr<0.70の範囲
内に収まる。
1. A hermetic-type kneading apparatus comprising: a case member forming a hermetically closed chamber having a cocoon-shaped cross section; and a pair of rotors arranged in parallel in the chamber and rotating in opposite directions. There are three long blades that extend spirally around the axis at equal angles in the circumferential direction, the central axes of the rotors are separated from each other to the extent that the long blades do not mesh with each other, and the rotor cross-sectional shape of the long blade portion is (a) ) To (d), at least one of the closed type kneading apparatus is characterized. (A) The cross-sectional shape of the rotor is substantially triangular. (B) In the rotor cross-section, the reaction surface on the back side in the rotation direction includes a straight line starting from the end of the blade tip. (C) When the back surface in the rotation direction of the rotor cross-sectional shape is formed by one smooth concave approximation, convex approximation, or linear approximation curved surface, and the maximum diameter of the rotor cross-section shape is Dr and the minimum diameter is Dd, It is within the range of 0.5 <Dd / Dr <0.75. (D) When the back surface in the rotational direction of the rotor cross-sectional shape is formed by one smooth concave approximation, convex approximation, or linear approximation curved surface, and the maximum diameter of the rotor cross-sectional shape is Dr and the minimum diameter is Dd, It falls within the range of 0.6 <Dd / Dr <0.70.
【請求項2】 前記ロータは前記長翼部分のロータ断面
形状と同様の断面を持つ3個の短翼を有し、該長翼と前
記短翼とが不連続である請求項1記載の密閉型混練装
置。
2. The hermetic seal according to claim 1, wherein the rotor has three short blades having a cross section similar to the rotor cross section of the long blade portion, and the long blade and the short blade are discontinuous. Mold kneading device.
【請求項3】 前記ロータの長短の翼長比が0.1〜
0.67の範囲である請求項2記載の密閉型混練装置。
3. The long / short blade length ratio of the rotor is 0.1 to 10.
The closed type kneading device according to claim 2, wherein the range is 0.67.
JP12264596A 1995-04-24 1996-04-18 Closed kneading device Expired - Lifetime JP2804923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12264596A JP2804923B2 (en) 1995-04-24 1996-04-18 Closed kneading device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12426595 1995-04-24
JP7-124265 1995-04-24
JP12264596A JP2804923B2 (en) 1995-04-24 1996-04-18 Closed kneading device

Publications (2)

Publication Number Publication Date
JPH0911229A true JPH0911229A (en) 1997-01-14
JP2804923B2 JP2804923B2 (en) 1998-09-30

Family

ID=26459740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12264596A Expired - Lifetime JP2804923B2 (en) 1995-04-24 1996-04-18 Closed kneading device

Country Status (1)

Country Link
JP (1) JP2804923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341489A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Continuous kneader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341489A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Continuous kneader

Also Published As

Publication number Publication date
JP2804923B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP4205127B2 (en) Kneading screw, twin screw extruder, and assembling method of kneading screw
JP5832172B2 (en) Continuous kneader
KR100265689B1 (en) Enclosed kneading apparatus
US20010019729A1 (en) Screw set for extruder
JP2000153520A5 (en)
KR100199639B1 (en) Hermetically closed kneader
US4871259A (en) Rubber-like material kneading apparatus
JP3905397B2 (en) Kneading device for rubber or rubber-based composition
EP1710072B1 (en) Screw extruder
JP2804923B2 (en) Closed kneading device
JP2004268547A (en) Closed kneading machine
JP2002120221A (en) Enclosed kneader
JPH08229938A (en) Closed type rubber kneader
JP2002536204A (en) Multi-screw extruder screw bush and extruder
JP2005059528A (en) Rotor for kneading
JP6080300B2 (en) Manufacturing method of gear pump and inner rotor
JPH0130610B2 (en)
KR100512596B1 (en) kneader rotor
JP6080635B2 (en) Manufacturing method of gear pump and inner rotor
JP2003164746A (en) Kneading device for rubber or rubbery composition
JP2803961B2 (en) Closed kneader
JP4627785B2 (en) Closed kneader
JP2023183816A (en) Method of estimating appropriate clearance for powder kneading machine and powder kneading machine with appropriate clearance
JP2759038B2 (en) Closed kneader rotor
JPH1016033A (en) Twin-screw kneading extruder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070717

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 15

EXPY Cancellation because of completion of term