JP2005059528A - Rotor for kneading - Google Patents

Rotor for kneading Download PDF

Info

Publication number
JP2005059528A
JP2005059528A JP2003295821A JP2003295821A JP2005059528A JP 2005059528 A JP2005059528 A JP 2005059528A JP 2003295821 A JP2003295821 A JP 2003295821A JP 2003295821 A JP2003295821 A JP 2003295821A JP 2005059528 A JP2005059528 A JP 2005059528A
Authority
JP
Japan
Prior art keywords
kneading
rotor
disk
wing
kneaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003295821A
Other languages
Japanese (ja)
Inventor
Kazutoshi Yokoo
和俊 横尾
Koji Shintani
幸司 新谷
Minoru Kimura
稔 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003295821A priority Critical patent/JP2005059528A/en
Publication of JP2005059528A publication Critical patent/JP2005059528A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/84Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders by heating or cooling the feeding screws
    • B29C48/85Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • B29B7/186Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/51Screws with internal flow passages, e.g. for molten material
    • B29C48/515Screws with internal flow passages, e.g. for molten material for auxiliary fluids, e.g. foaming agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/82Cooling

Abstract

<P>PROBLEM TO BE SOLVED: To curtail a time necessary for kneading by improving cooling efficiency in relation to a material to be kneaded such as a rubber. <P>SOLUTION: In a rotor for kneading, rotary shafts 51 and 71 and rotor bodies 52 and 72 which are engaged/fixed with/to the peripheries of the rotary shafts 51 and 71, have blade parts for kneading on the outside surfaces, and arrange/form disk-like channel parts 57a and 77a expanding toward the outside surfaces in the axial directions of the shafts 51 and 71 on the inside surfaces contacting the rotary shafts 51 and 71 are provided, and a cooling medium is passed through each disk-like channel part 57a or 77a. Cores 58 and 78 facing the corresponding disk-like channel parts 57a and 77a from the peripheries of the rotary shafts 51 and 71 are arranged in each disk-like channel parts 57a or 77a. The depth of the disk-like channel parts 57a and 77a is reduced practically by the cores 58 and 78. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、混練機、混練押出機等の混練機械に適用される混練用ロータに関するものである。   The present invention relates to a kneading rotor applied to a kneading machine such as a kneading machine or a kneading extruder.

図12は、従来の密閉式混練機を示す縦断面図である。同図に示すように、ケーシング100内には混練室101が形成され、この混練室101内に一対のロータ102,103が平行に配置されている。ロータ102(103)は、回転シャフト102a(103a)の外周にロータ本体102b(103b)を嵌合固定した構成を有する。   FIG. 12 is a longitudinal sectional view showing a conventional closed kneader. As shown in the figure, a kneading chamber 101 is formed in the casing 100, and a pair of rotors 102 and 103 are arranged in parallel in the kneading chamber 101. The rotor 102 (103) has a configuration in which the rotor body 102b (103b) is fitted and fixed to the outer periphery of the rotating shaft 102a (103a).

ホッパ104を介して投入された混練材料は、フローティングウエイト105によって混練室2内に圧入された後、互いに逆方向に回転するロータ本体102b,103bの噛み合い作用および該ロータ本体102b,103bと混練室101の内表面との間に発生するせん断作用によって混練される。そして、混練された材料は、混練室101の底部に設けられたドロップドア106を開くことによって混練室101外に取り出される。   The kneaded material charged through the hopper 104 is press-fitted into the kneading chamber 2 by the floating weight 105, and then meshes with the rotor main bodies 102b and 103b rotating in opposite directions, and the rotor main bodies 102b and 103b and the kneading chamber. They are kneaded by the shearing action that occurs between the inner surface of 101. The kneaded material is taken out of the kneading chamber 101 by opening a drop door 106 provided at the bottom of the kneading chamber 101.

ところで、一般に、ゴム等の混練材料を混練する際には多量の熱が発生する。そこで、上記ロータ本体102b,103bは、内部に水等の冷却媒体を流通させて冷却するようにしている。回転シャフト102a,103aに設けられたジャケット102c,103cは、上記冷却媒体を給排するためのものである。(例えば、特許文献1)
特開2001−150428号公報
By the way, generally, when kneading a kneading material such as rubber, a large amount of heat is generated. Therefore, the rotor main bodies 102b and 103b are cooled by circulating a cooling medium such as water therein. Jackets 102c and 103c provided on the rotary shafts 102a and 103a are for supplying and discharging the cooling medium. (For example, Patent Document 1)
JP 2001-150428 A

しかし、従来の混練用ロータ102,103は、上記冷却媒体を通過させる通路の構造に起因して、混練材料に接触する外表面部の冷却効率が良好でなく、そのため、混練材料に対する冷却能力が低いという問題点を有する。
そこで、現状の混練作業では、混練中の混練材料の温度を監視して、その温度が混練材料を劣化させる前の所定の温度(例えば、ゴムにおいては約150℃)まで上昇した時点で混練機から混練材料から排出し、その材料を冷却した後、再び混練機に投入するという作業を適数回繰り返すようにしている。
上記のような再練(リミル)作業は、多大の時間を要するので、タイヤ等の製品の生産性を低下させる要因になる。このため、混練材料に対する冷却能力の高い混練用ロータが要望されている。
However, the conventional kneading rotors 102 and 103 are not good in cooling efficiency of the outer surface portion in contact with the kneaded material due to the structure of the passage through which the cooling medium passes, and therefore have a cooling capacity for the kneaded material. It has the problem of being low.
Therefore, in the current kneading operation, the temperature of the kneaded material being kneaded is monitored, and when the temperature rises to a predetermined temperature (for example, about 150 ° C. for rubber) before the kneaded material is deteriorated, the kneading machine Then, the operation of discharging from the kneaded material, cooling the material, and charging it again into the kneader is repeated an appropriate number of times.
Such re-milling (re-milling) work takes a lot of time, and thus becomes a factor of reducing the productivity of products such as tires. For this reason, a kneading rotor having a high cooling capacity for the kneaded material is desired.

本発明は、このような状況に鑑みてなされたものであり、ゴム等の混練材料に対する冷却効率を向上して混練に要する時間の短縮を図ることができる混練用ロータを提供することを目的としている。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a kneading rotor capable of improving the cooling efficiency for kneading materials such as rubber and shortening the time required for kneading. Yes.

本発明は、かかる課題を解決するためになされたものであり、回転シャフトと、該回転シャフトの外周に嵌合固定されたロータ本体とを有する混練用ロータであって、前記ロータ本体は、外表面に混練用の翼部を形成するとともに、前記回転シャフトに接する内周面から前記外表面に向かって拡がるディスク状の溝部を前記シャフトの軸線方向に複数配列形成して、前記各ディスク状溝部に冷却媒体を流通させるように構成され、前記各ディスク状溝部内に、前ロータ本体の内周面から外表面に向かって伸びる中子を配設し、この中子によって前記ディスク状溝部の深さを実質的に減少させたことを特徴としている。   The present invention has been made to solve such a problem, and is a kneading rotor having a rotating shaft and a rotor body fitted and fixed to the outer periphery of the rotating shaft. A plurality of disk-shaped grooves extending from the inner peripheral surface in contact with the rotating shaft toward the outer surface are formed in the axial direction of the shaft, and kneading blades are formed on the surface. A cooling medium is arranged in each disk-shaped groove, and a core extending from the inner peripheral surface of the front rotor body toward the outer surface is disposed in each disk-shaped groove, and the depth of the disk-shaped groove is increased by the core. It is characterized by substantially reducing the thickness.

本発明に係る混練用ロータは、バッチ式の混練機や二軸もしくは一軸の混練押出機の混練用ロータに使用して好適である。
上記混練押出機に適用する混練用ロータには、前記混練用の翼部として、少なくとも1つの長翼部を備えることができ、その場合、前記シャフトの軸線に対する前記長翼部の捩じれ角を35°〜55°に設定することが望ましい。
また、上記混練押出機に適用する混練用ロータには、前記混練用の翼部として、長翼部である第1翼部と、短翼部である第2翼部および第3翼部を備えることができ、その場合、前記シャフトの軸線に対する前記第1翼部の捩じれ角および前記軸線に対する前記第2翼部、第3翼部の少なくとも一方の捩じれ角を35°〜55°に設定することが望ましい。
The kneading rotor according to the present invention is suitable for use in a kneading rotor of a batch type kneader or a biaxial or uniaxial kneading extruder.
The kneading rotor applied to the kneading extruder can include at least one long blade portion as the kneading blade portion. In this case, the twist angle of the long blade portion with respect to the axis of the shaft is 35. It is desirable to set the angle to 55 °.
A kneading rotor applied to the kneading extruder includes a first wing portion that is a long wing portion, a second wing portion that is a short wing portion, and a third wing portion as the wing portions for kneading. In this case, the twist angle of the first wing portion with respect to the axis of the shaft and the twist angle of at least one of the second wing portion and the third wing portion with respect to the axis are set to 35 ° to 55 °. Is desirable.

本発明に係る混練用ロータによれば、ロータ本体に設けられた各ディスク状溝部内に中子を配設し、この中子によってディスク状溝部の深さを実質的に減少させるようにしているので、各ディスク状溝部の内側周面(底部)近傍、つまり、ロータ本体の外表面に近い部位における冷却媒体の流通速度を高めて、その部位での冷却効率を向上することができる。したがって、バッチ式の混練機や二軸もしくは一軸混練押出機に用いる混練用ロータとして最適である。   According to the kneading rotor according to the present invention, the core is disposed in each disk-shaped groove provided in the rotor body, and the depth of the disk-shaped groove is substantially reduced by the core. Therefore, it is possible to increase the cooling medium flow rate in the vicinity of the inner peripheral surface (bottom) of each disk-shaped groove, that is, in the portion close to the outer surface of the rotor body, and to improve the cooling efficiency at that portion. Therefore, it is most suitable as a kneading rotor for use in a batch-type kneader or a biaxial or uniaxial kneading extruder.

図1は、本発明に係る混練用ロータが適用されたバッチ式の混練機Mを示す縦断面図である。この混練機Mは、ケーシング1内に形成された混練室3内に一対の混練用ロータ5,7を配設してある。図2に示すように、ロータ5,7は平行に配列され、図示していない駆動手段によって互いに逆方向に等速回転される。
混練用ロータ5,7は、同一もしくは類似した構成を有する。そこで、以下においては、主としてロータ5の構成および作用について説明する。なお、図3においては、ロータ7の構成要素の符号をカッコ内に記してある。
FIG. 1 is a longitudinal sectional view showing a batch type kneader M to which a kneading rotor according to the present invention is applied. In the kneading machine M, a pair of kneading rotors 5 and 7 are disposed in a kneading chamber 3 formed in the casing 1. As shown in FIG. 2, the rotors 5 and 7 are arranged in parallel, and are rotated at a constant speed in opposite directions by driving means (not shown).
The kneading rotors 5 and 7 have the same or similar configuration. Therefore, in the following, the configuration and operation of the rotor 5 will be mainly described. In FIG. 3, the reference numerals of the components of the rotor 7 are shown in parentheses.

混練用ロータ5は、図3にその軸線に沿った断面を示すように、回転シャフト51と、焼きばめ等の手段によりシャフト51の外周に嵌合固定されたロータ本体52とから構成されている。
回転シャフト51は、水等の冷却媒体を循環させるための通路53〜56を内部に備えている。通路53は、回転シャフト51の軸線に沿って形成され、その先端が閉止されている。また、通路54は、通路53内に同軸状に形成され、その先端は通路53の先端近傍において開放されている。一方、通路55および通路56は、通路53から上記ロータ本体52の一端部および他端部に向かって延設されている。
The kneading rotor 5 is composed of a rotating shaft 51 and a rotor body 52 fitted and fixed to the outer periphery of the shaft 51 by means such as shrink fitting as shown in FIG. Yes.
The rotating shaft 51 includes passages 53 to 56 for circulating a cooling medium such as water. The passage 53 is formed along the axis of the rotary shaft 51, and its tip is closed. The passage 54 is formed coaxially in the passage 53, and its tip is open near the tip of the passage 53. On the other hand, the passage 55 and the passage 56 are extended from the passage 53 toward one end and the other end of the rotor body 52.

ロータ本体52およびロータ本体72は、それぞれ外表面に複数の翼部59a,59b・・・および翼部79a,79b・・・を有し、混練時には翼部59a,59b・・・と翼部79a,79b・・・とが噛み合う。このロータ本体52の外表面は、耐摩耗性および耐食性を向上するために、Crメッキ等の処理が施される。なお、ステライトを肉盛した後にCrメッキ等の処理を施しても良い。
一方、ロータ本体52は、シャフト51の周面に接するその内周面に上記冷却媒体を通すための一連の溝57を形成し、この溝57の一端および他端をそれぞれ上記通路55および56に連通させてある。
The rotor main body 52 and the rotor main body 72 have a plurality of blade portions 59a, 59b,... And blade portions 79a, 79b,. 79b... Mesh with each other. The outer surface of the rotor body 52 is subjected to treatment such as Cr plating in order to improve wear resistance and corrosion resistance. In addition, you may perform processes, such as Cr plating, after building up stellite.
On the other hand, the rotor body 52 is formed with a series of grooves 57 for passing the cooling medium on the inner peripheral surface thereof in contact with the peripheral surface of the shaft 51, and one end and the other end of the groove 57 are formed in the passages 55 and 56, respectively. Communicated.

上記溝57は、ロータ本体52の長手方向に並列する多数のディスク状溝部57aを連接することによってスパイラル状に構成されている。個々のディスク状溝部57aは、ロータ本体52の外表面に近接した部位まで延びるようにその深さが設定されている。したがって、ディスク状溝部57aは、ロータ本体52の翼部形成側に位置した部位の深さが翼部非形成側に位置した部位の深さよりも大きくなっている。なお、各ディスク状溝部57aの内周面は、溝57の底部を構成することになる。   The groove 57 is formed in a spiral shape by connecting a large number of disk-shaped groove portions 57 a arranged in parallel in the longitudinal direction of the rotor body 52. The depth of each disk-shaped groove 57 a is set so as to extend to a portion close to the outer surface of the rotor body 52. Therefore, in the disk-shaped groove 57a, the depth of the portion located on the blade forming side of the rotor body 52 is larger than the depth of the portion located on the blade non-forming side. Note that the inner peripheral surface of each disk-shaped groove 57 a constitutes the bottom of the groove 57.

図1には、ディスク状溝部57aの内側周面とロータ本体52の外表面との間の距離dが示されている。この距離dは、ロータ本体52の熱抵抗を低減する上で、換言すれば、該ロータ本体52の熱伝達率を向上する上で、できるだけ小さい方が望ましい。しかし、この距離dは、ロータ本体52の強度や上記溝57の加工上の観点から、むやみに小さくすることはできない。   FIG. 1 shows a distance d between the inner peripheral surface of the disk-shaped groove 57a and the outer surface of the rotor body 52. This distance d is preferably as small as possible in order to reduce the thermal resistance of the rotor body 52, in other words, in improving the heat transfer coefficient of the rotor body 52. However, this distance d cannot be reduced unnecessarily from the viewpoint of the strength of the rotor body 52 and the processing of the groove 57.

上記ディスク状溝部57a内には中子58が挿入されている。この中子58は、ディスク状溝部57a内に嵌合や金属接合(溶接他)等の手段で固定され、その其端がシャフトの周面に当接するように、また、その外側周面がディスク状溝部57aの深さの大きな部位の内側周面に対向するように形成されている。
上記中子58は、その外側周面と上記ディスク状溝部57aの深さの大きな部位の内側周面とによって、該内側周面近傍に狭い断面積の空間、つまり、シャフト51の周面と上記ディスク状溝部57aの深さの小さな部位の内側周面とによって形成された空間の断面積と大差のない断面積の空間を形成する。このように、中子58は、実質的にディスク状溝部57aの深さを減少させる手段として機能する。
A core 58 is inserted into the disk-shaped groove 57a. The core 58 is fixed in the disk-shaped groove 57a by means such as fitting or metal joining (welding, etc.), and its outer end surface is in contact with the peripheral surface of the shaft. The groove 57a is formed so as to face the inner peripheral surface of a portion having a large depth.
The core 58 has a space with a narrow cross-sectional area in the vicinity of the inner peripheral surface, that is, the peripheral surface of the shaft 51 and the inner peripheral surface of the portion having a large depth of the disk-shaped groove portion 57a. A space having a cross-sectional area that is not significantly different from the cross-sectional area of the space formed by the inner peripheral surface of the portion having a small depth of the disk-shaped groove 57a is formed. Thus, the core 58 functions as means for substantially reducing the depth of the disk-shaped groove 57a.

次に、上記混練用ロータ5,7の作用を説明する。
図1に示す混練機Mの混練室3に投入された被混練材料、例えば原料ゴムおよび配合剤(カーボンブラック、シリカ、オイル、薬品等)は、各混練用ロータ5,7のロータ本体52,72相互の噛合い作用および該ロータ本体52,72と混練室3の内表面との間に発生するせん断作用によって混練される。
Next, the operation of the kneading rotors 5 and 7 will be described.
The materials to be kneaded, such as raw rubber and compounding agents (carbon black, silica, oil, chemicals, etc.) charged into the kneading chamber 3 of the kneading machine M shown in FIG. The kneading is performed by the mutual meshing action 72 and the shearing action generated between the rotor bodies 52 and 72 and the inner surface of the kneading chamber 3.

混練中においては、ケーシング1に設けられた冷却通路9(図1参照)に水等の加圧冷却媒体が流通されるとともに、図3に示した通路54に同様の冷却媒体が送り込まれる。
通路54に送り込まれた冷却媒体は、それぞれ通路53に流入した後、通路55を通って前記ロータ本体52の溝57の一端部に流入する。この溝57に流入した冷却媒体は、各ディスク状溝部57aを順次通過することになる。このとき、ディスク状溝部57aにおける深さの大きな部位では、該ディスク状溝部57aの内側周面と前記中子58の外側周面とによって挟まれた狭い断面積の通路を冷却媒体が流通するので、この深さの大きな部位においてもロータ本体5の表層部が効率よく冷却される。
During kneading, a pressurized cooling medium such as water is circulated through the cooling passage 9 (see FIG. 1) provided in the casing 1, and the same cooling medium is fed into the passage 54 shown in FIG.
The cooling medium fed into the passages 54 flows into the passages 53, and then flows through the passages 55 into one end of the groove 57 of the rotor body 52. The cooling medium flowing into the grooves 57 sequentially passes through the respective disk-shaped groove portions 57a. At this time, in a portion having a large depth in the disk-shaped groove 57a, the cooling medium flows through a narrow cross-sectional area passage sandwiched between the inner peripheral surface of the disk-shaped groove 57a and the outer peripheral surface of the core 58. The surface layer portion of the rotor main body 5 is efficiently cooled even at the portion where the depth is large.

すなわち、もし、上記中子58が存在しない場合には、ディスク状溝部57aにおける深さの大きな部位の媒体通路断面積が大きくなるので、該部位での冷却媒体の流速が他の部位よりも低くなる。しかし、上記中子58を備える混練用ロータ5によれば、ディスク状溝部57aの深さの大きな部位においても、その内側周面近傍で冷却媒体を高速で流通させることができるので、上記深さの大きな部位におけるロータ本体5の表層部、つまり、最も冷却を必要とする翼部の冷却効率が向上する。   That is, if the core 58 is not present, the medium passage cross-sectional area of the portion having a large depth in the disk-shaped groove portion 57a becomes large, so that the flow velocity of the cooling medium at that portion is lower than that of the other portions. Become. However, according to the kneading rotor 5 provided with the core 58, the cooling medium can be circulated at high speed in the vicinity of the inner peripheral surface of the disk-shaped groove portion 57a even at a large depth portion. The cooling efficiency of the surface layer portion of the rotor main body 5 at the large portion, that is, the blade portion that needs the most cooling is improved.

中子78を設けた他方の混練用ロータ7においても、ディスク状溝部77aにおける深さの大きな部位での冷却媒体の流通速度が高められるので、該部位におけるロータ本体7の表層部の冷却効率が向上することになる。
かくして、上記混練用ロータ5,7を適用した上記混練機Mによれば、ゴムに対する冷却能力を向上して、低温混練することが可能になる。
Also in the other kneading rotor 7 provided with the core 78, the flow rate of the cooling medium in the portion having a large depth in the disk-shaped groove 77a can be increased, so that the cooling efficiency of the surface layer portion of the rotor body 7 in this portion is increased. Will improve.
Thus, according to the kneading machine M to which the kneading rotors 5 and 7 are applied, it is possible to improve the cooling capacity for rubber and knead at a low temperature.

図4は、本発明に係る混練用ロータが適用された二軸混練押出機の一例を概略的に示す内部平面図である。
この二軸混練押出機MPは、平行する一対の回転シャフト11,11を有する。各回転シャフト11は、一端部がスクリューフィン13と共に押出ロータ15を、中間部がロータ本体17と共に混練用ロータ19を、他端部がその周囲に設けられたスクリューフィン21と共に押出ロータ23をそれぞれ構成している。
FIG. 4 is an internal plan view schematically showing an example of a twin-screw kneading extruder to which the kneading rotor according to the present invention is applied.
This biaxial kneading extruder MP has a pair of rotating shafts 11 and 11 in parallel. Each rotary shaft 11 has an extrusion rotor 15 at one end together with the screw fins 13, a rotor 19 for kneading together with the rotor main body 17, and an extrusion rotor 23 along with the screw fins 21 provided around the other end. It is composed.

混練ロータ19は、ロータ本体17の外表面の構成が図1に示した混練ロータ5,7のそれと異なることを除き、該混練ロータ5,7と同様の構成を有する。すなわち、図示を省略するが、ロータ19のロータ本体17は、図2に示す複数のディスク状溝部57a(77a)からなる溝57(77)に対応した冷却用溝、ならびに図1に示す中子58(78)に対応した中子を備えている。また、シャフト11には、図3に示す通路53〜56(73〜76)に対応した通路(図示していない)を設けてある。   The kneading rotor 19 has the same configuration as that of the kneading rotors 5 and 7 except that the configuration of the outer surface of the rotor body 17 is different from that of the kneading rotors 5 and 7 shown in FIG. That is, although not shown, the rotor main body 17 of the rotor 19 includes a cooling groove corresponding to the groove 57 (77) including the plurality of disk-shaped groove portions 57a (77a) shown in FIG. 2 and the core shown in FIG. 58 (78) is provided. Further, the shaft 11 is provided with passages (not shown) corresponding to the passages 53 to 56 (73 to 76) shown in FIG.

図5に示すように、上記ロータ本体17は、中央部に配設された長翼部たる第1翼部171と、第1翼部171の両側に配設された短翼部たる第2翼部172および第3翼部173とを有する。
ロータ本体17の展開図である図6に示すように、第1翼部171は、前記シャフト11(図5,6には示されていない)の軸線に対する捩じれ角θ1が35°〜55°に設定され、かつ図における左方の端からロータ本体17の左端に至る軸方向距離と、右方の端からロータ本体17の右端に至る軸方向距離とが等しくなるように形成されている。一方、第2翼部172および第3翼部173は、前者の始点がロータ本体17の左端に位置し、後者の始点がロータ本体17の右端に位置するように、かつ、それぞれが前記シャフト11の軸線に対して所定の角度を持つように設けられている。
As shown in FIG. 5, the rotor body 17 includes a first wing portion 171 that is a long wing portion disposed in the center portion, and a second wing portion that is a short wing portion disposed on both sides of the first wing portion 171. Part 172 and third wing part 173.
As shown in FIG. 6, which is a developed view of the rotor body 17, the first blade 171 has a twist angle θ1 with respect to the axis of the shaft 11 (not shown in FIGS. 5 and 6) of 35 ° to 55 °. The axial distance from the left end in the figure to the left end of the rotor body 17 is set to be equal to the axial distance from the right end to the right end of the rotor body 17. On the other hand, the second wing portion 172 and the third wing portion 173 are such that the former starting point is located at the left end of the rotor body 17 and the latter starting point is located at the right end of the rotor body 17, respectively. Are provided so as to have a predetermined angle with respect to the axis.

対向する一対のロータ本体17は、互いに180°の位相差をもって配置され、それらの回転時には、一方のロータ本体17の第1翼部171が他方のロータ本体17の第2翼部172および第3翼部173の間をそれらと噛み合いながら通過していく。なお、図中の矢印174は、ロータ本体17の回転方向を示す。   The pair of opposed rotor bodies 17 are arranged with a phase difference of 180 ° from each other, and when rotating, the first wing part 171 of one rotor body 17 is connected to the second wing part 172 and the third wing part 172 of the other rotor body 17. It passes between the wings 173 while engaging with them. Note that an arrow 174 in the figure indicates the rotation direction of the rotor body 17.

図4に示す二軸混練押出機MPにおいて、相対向する押出ロータ15は、図示していないホッパから投入された被混練材料を下流方向に搬送して、相対向する混練ロータ19に供給する。各混練ロータ19は、図5,6に示した上記翼部171〜173の噛み合いによって、また、この翼部171〜173とケーシング25との間に発生するせん断力によって被混練材料を混練する。そして、各混練ロータ19の下流側に位置する各押出しロータ23によって混練済みの材料が次工程に搬出される。   In the twin-screw kneading extruder MP shown in FIG. 4, the opposing extrusion rotor 15 conveys the material to be kneaded introduced from a hopper (not shown) in the downstream direction and supplies it to the opposing kneading rotor 19. Each kneading rotor 19 kneads the material to be kneaded by the meshing of the wing portions 171 to 173 shown in FIGS. 5 and 6 and by the shearing force generated between the wing portions 171 to 173 and the casing 25. Then, the kneaded material is carried out to the next step by the respective extrusion rotors 23 located on the downstream side of the respective kneading rotors 19.

前述したように、各混練ロータ19は、図1に示した各混練ロータ2に準じた構成を有するので、被混練材料に対し極めて高い冷却能力を示す。また、各混練ロータ19は、図6に示す第1翼部171の捩じれ角θ1を35°〜55°に設定してあるので、被混練材料の温度上昇を一層抑制することができる。以下、その理由について説明する。   As described above, each kneading rotor 19 has a configuration similar to that of each kneading rotor 2 shown in FIG. 1, and therefore exhibits extremely high cooling capacity for the material to be kneaded. Further, each kneading rotor 19 has the twist angle θ1 of the first blade portion 171 shown in FIG. 6 set to 35 ° to 55 °, so that the temperature rise of the material to be kneaded can be further suppressed. The reason will be described below.

図7は、上記軸方向流動性を確認するための実験結果を示すグラフである。このグラフにおいて、横軸は前記第1翼部171の捩じれ角θ1、縦軸は軸方向圧力勾配である。
このグラフから明らかなように、捩じれ角θ1 が45°のとき最大の圧力勾配が得られ、このときに被混練材料の軸方向流れが最も良好となり、配合剤の混合および分散性も最も良好になる。そして、捩じれ角θ1 =35°〜55°では、必要なせん断力を維持した状態で良好な軸方向流動性が確保されることになる。このような良好な軸方向流動性が確保されれば、被混練材料の温度上昇が抑制されることになる。
FIG. 7 is a graph showing experimental results for confirming the axial fluidity. In this graph, the horizontal axis represents the twist angle θ1 of the first wing portion 171 and the vertical axis represents the axial pressure gradient.
As is apparent from this graph, the maximum pressure gradient is obtained when the twist angle θ1 is 45 °, and the axial flow of the material to be kneaded is the best, and the mixing and dispersibility of the compounding agent is the best. Become. When the twist angle θ1 is 35 ° to 55 °, good axial fluidity is ensured while maintaining the necessary shearing force. If such good axial fluidity is ensured, the temperature rise of the material to be kneaded will be suppressed.

上記第2翼部172と第3翼部173の少なくとも一方の捩じれ角を第1翼部171の捩じれ角θ1と同様に35°〜55°に設定しても良い。図8は、第2翼部172の捩じれ角θ2を第1翼部171の捩じれ角θ1と同じ35°〜55°に設定した場合の作用を確認するための実験結果を示すグラフである。この実験では、実機を模擬した押出混練機にCMC(カルボキシル・メチル・セルロース)水溶液を充填する一方、着色ガラスビーズを被混練物として投入し、その混合度を計測するようにした。   The twist angle of at least one of the second wing portion 172 and the third wing portion 173 may be set to 35 ° to 55 ° similarly to the twist angle θ1 of the first wing portion 171. FIG. 8 is a graph showing experimental results for confirming the action when the twist angle θ2 of the second wing portion 172 is set to 35 ° to 55 °, which is the same as the twist angle θ1 of the first wing portion 171. In this experiment, an extrusion kneader simulating an actual machine was filled with a CMC (carboxyl-methyl-cellulose) aqueous solution, while colored glass beads were added as a material to be kneaded, and the degree of mixing was measured.

このグラフにおいて、横軸は捩じれ角θ1 、θ1 を、縦軸は均一混合に要した積算回転数をそれぞれ示している。積算回転数は、小さい程、混練が短時間で終了することを意味する。図8を参照すれば、捩じれ角θ1、θ2が45.0°近傍の値で小さくなっていることが分かる。この場合、ロータ容積が若干減少し、混練容積が増加する。したがって、第1翼部171、第2翼部172の捩じれ角θ1、θ2を共に35°〜55°に設定することにより、容積効率、空隙容積が増加し、これは二軸混練押出機の生産性および混練性の向上ならびに軽量化をもたらす。もちろん、第3翼部173の捩じれ角を第1翼部171の捩じれ角θ1と一致させてもよく、また、第2翼部172と第3翼部173の双方の捩じれ角を第1翼部171の捩じれ角θ1と一致させてもよい。   In this graph, the horizontal axis represents the twist angles θ1 and θ1, and the vertical axis represents the accumulated rotational speed required for uniform mixing. A smaller integrated rotation number means that kneading is completed in a shorter time. Referring to FIG. 8, it can be seen that the twist angles θ1 and θ2 are small at a value in the vicinity of 45.0 °. In this case, the rotor volume is slightly reduced and the kneading volume is increased. Therefore, by setting the twist angles θ1 and θ2 of the first blade portion 171 and the second blade portion 172 to 35 ° to 55 °, the volume efficiency and the void volume are increased. This is the production of the twin-screw kneading extruder. Improvement in weight and kneadability and reduction in weight. Of course, the twist angle of the third wing part 173 may be made to coincide with the twist angle θ1 of the first wing part 171, and the twist angles of both the second wing part 172 and the third wing part 173 may be set. The twist angle θ1 of 171 may be the same.

なお、以上では、長翼部が1枚で短翼部が2枚の場合について説明したが、翼部の枚数はこれに限定されるものではない。例えば、長翼部のみを1枚以上設けるようにしてもよく、また、2以上の長翼部と3以上の短翼部を設けるようにしてもよい。   In the above description, the case where there is one long wing portion and two short wing portions has been described, but the number of wing portions is not limited to this. For example, only one or more long wings may be provided, or two or more long wings and three or more short wings may be provided.

図9は、本発明に係る混練用ロータが適用された一軸混練押出機の一例を概略的に示す内部平面図である。この一軸混練押出機MP'と図4に示す二軸混練押出機MPは、軸数と、前者のケーシング25'の幅が後者のケーシング25の幅よりも狭く設定されている点を除き同等の構成を有する。そこで、両者の対応する要素には、共通の符合を付してある。
この一軸混練押出機MP'の混練ロータ19は、ロータ本体の翼部とケーシング25'の内面との間に発生するせん断力によって被混練材料を混練する。
FIG. 9 is an internal plan view schematically showing an example of a single-screw kneading extruder to which the kneading rotor according to the present invention is applied. The uniaxial kneading extruder MP ′ and the biaxial kneading extruder MP shown in FIG. 4 are the same except that the number of shafts and the width of the former casing 25 ′ are set narrower than the width of the latter casing 25. It has a configuration. Therefore, a common code is given to the elements corresponding to both.
The kneading rotor 19 of the uniaxial kneading extruder MP ′ kneads the material to be kneaded by a shearing force generated between the blade portion of the rotor body and the inner surface of the casing 25 ′.

図10は、図1に示したバッチ式混練機Mをマスター練とファイナル練の双方に適用した混練システムを示している。この混練システムでは、まず混練機M1を用いて原料ゴムと配合剤が混練(マスター練)される。混練機M1は、図1に示した中子58,78の作用によって混練材料に対する冷却能力に優れるので、従来の混練機のような再練(リミル)操作が不要になるか、もしくは、再練の回数を減少することができる。   FIG. 10 shows a kneading system in which the batch kneader M shown in FIG. 1 is applied to both master kneading and final kneading. In this kneading system, first, the raw rubber and the compounding agent are kneaded (master kneading) using the kneader M1. The kneading machine M1 has excellent cooling capacity for the kneaded material due to the action of the cores 58 and 78 shown in FIG. 1, so that re-kneading (remill) operation as in the conventional kneading machine becomes unnecessary, or re-kneading. The number of times can be reduced.

混練機M1においては、ゴムと配合剤の分散がほぼ終了するBIT(Black carbon incorporate time)に達した時点で被混練材料が排出される。排出された被混練材料は、アンダーミキサ29によって冷却かつシート化された後、加硫剤とともに混練機M2に投入されて混練(ファイナル練)される。そして、ファイナル練が終了して混練機M2から取り出されたゴム材料は、アンダーミキサ31によって冷却かつシート化され、タイヤ等のゴム製品の材料として使用される。
上記するように、この製造システムによれば、再練操作が不要になるか、もしくは、再練の回数が減少するので、混練作業に要する時間を短縮して生産性を向上することができる。
In the kneader M1, the material to be kneaded is discharged when the BIT (Black carbon incorporate time) at which the dispersion of the rubber and the compounding agent is almost finished is reached. The discharged material to be kneaded is cooled and formed into a sheet by the undermixer 29, and is then added to the kneading machine M2 together with the vulcanizing agent and kneaded (final kneading). After the final kneading, the rubber material taken out from the kneader M2 is cooled and formed into a sheet by the undermixer 31, and used as a material for rubber products such as tires.
As described above, according to this manufacturing system, the re-kneading operation becomes unnecessary or the number of times of re-kneading decreases, so that the time required for the kneading work can be shortened and the productivity can be improved.

図11は、図1に示すバッチ式混練機Mをマスター練に適用し、図4に示した二軸混練押出機MPもしくは図9に示した一軸混練押出機MP'をファイナル練に適用した混練システムの他の例を示している。
この混練システムは、混練機Mによってマスター練を行い、マスター練を終了した材料をアンダーミキサ29によって冷却かつシート化する工程において前記システムと共通している。アンダーミキサ29によってシート化されたゴム材料は、加硫剤とともに二軸混練押出機MPに投入されて押出、混練(ファイナル練)、冷却および押出の各処理を施された後、シート化されることになる。
上記二軸混練押出機MPもしくは一軸混練押出機MP'は、図4、図9に示す混練ロータ19が前記混練機Mの混練ロータ5,7(図1参照)と同様の冷却機能を有する。したがって、このシステムでは、上記のようにファイナル練を二軸混練押出機MPもしくは一軸混練押出機MP'で連続的に実行して生産性を一層向上することができる。
FIG. 11 shows a kneading in which the batch kneader M shown in FIG. 1 is applied to the master kneading, and the biaxial kneading extruder MP ′ shown in FIG. 4 or the uniaxial kneading extruder MP ′ shown in FIG. 9 is applied to the final kneading. 2 shows another example of the system.
This kneading system is common to the above system in the process of performing master kneading with the kneader M and cooling and sheeting the material after the master kneading with the undermixer 29. The rubber material formed into a sheet by the undermixer 29 is put into a twin-screw kneading extruder MP together with a vulcanizing agent and subjected to extrusion, kneading (final kneading), cooling, and extrusion treatment, and then formed into a sheet. It will be.
In the biaxial kneading extruder MP or the uniaxial kneading extruder MP ′, the kneading rotor 19 shown in FIGS. 4 and 9 has a cooling function similar to that of the kneading rotors 5 and 7 of the kneader M (see FIG. 1). Therefore, in this system, the final kneading can be continuously executed by the biaxial kneading extruder MP or the uniaxial kneading extruder MP ′ as described above to further improve the productivity.

図12は、上記二軸混練押出機MPもしくは一軸混練押出機MP'をマスター練およびファイナル練の双方に使用したゴムシート製造システムの更に別の例を示している。
このシステムでは、まず、二軸混練押出機MP1もしくは一軸混練押出機MP1'によって原料ゴムと配合剤が連続的に混練(マスター練)されかつ押し出され、このマスター練されたゴム材料が加硫剤と共に二軸混練押出機MP2もしくは一軸混練押出機MP2'によって連続的に混練(ファイナル練)されかつ押し出される。このようにこのシステムによれば、マスター練からファイナル練までが連続化されるので、図11に示したシステムよりも生産性が向上する。
FIG. 12 shows still another example of a rubber sheet manufacturing system in which the above-described biaxial kneading extruder MP or uniaxial kneading extruder MP ′ is used for both master kneading and final kneading.
In this system, first, a raw rubber and a compounding agent are continuously kneaded (master kneaded) and extruded by a biaxial kneading extruder MP1 or a uniaxial kneading extruder MP1 ′, and the master kneaded rubber material is vulcanized. At the same time, it is continuously kneaded (final kneaded) and extruded by the biaxial kneading extruder MP2 or the uniaxial kneading extruder MP2 ′. Thus, according to this system, since master training to final training is continuous, productivity is improved as compared with the system shown in FIG.

本発明に係る混練用ロータが適用された混練機の要部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part of the kneading machine to which the rotor for kneading | mixing which concerns on this invention was applied. 図1に示す混練用ロータの外観構成を例示した図である。It is the figure which illustrated the external appearance structure of the rotor for kneading | mixing shown in FIG. 図1に示す混練用ロータを回転シャフトの軸線を含む面で断面した図である。It is the figure which cut the rotor for kneading shown in Drawing 1 in the field containing the axis of a rotating shaft. 本発明に係る混練用ロータが適用された二軸混練押出機の内部平面図である。1 is an internal plan view of a twin-screw kneading extruder to which a kneading rotor according to the present invention is applied. 図4に示す混練用ロータの外観構成を例示した図である。It is the figure which illustrated the external appearance structure of the rotor for kneading | mixing shown in FIG. 図4に示す混練用ロータのロータ本体の展開図である。FIG. 5 is a development view of the rotor body of the kneading rotor shown in FIG. 4. 図6に示す混練用ロータの軸方向流動性を確認するための実験結果を示すグラフである。It is a graph which shows the experimental result for confirming the axial fluidity | liquidity of the rotor for kneading | mixing shown in FIG. 図6に示す第2翼部の捩じれ角を第1翼部の捩じれ角と同じ35°〜55°に設定した場合の作用を確認するための実験結果を示すグラフである。It is a graph which shows the experimental result for confirming an effect | action when the twist angle of the 2nd wing | blade part shown in FIG. 6 is set to 35 degrees-55 degrees same as the twist angle of a 1st wing | blade part. 本発明に係る混練用ロータが適用された一軸混練押出機の内部平面図である。It is an internal top view of the single screw kneading extruder to which the rotor for kneading concerning the present invention was applied. バッチ式混練機をマスター練とファイナル練の双方に適用した混練システムの構成を示す概略図である。It is the schematic which shows the structure of the kneading system which applied the batch type kneader to both master kneading and final kneading. バッチ式混練機をマスター練に適用し、二軸混練押出機もしくは一軸混練押出機をファイナル練に適用した混練システムの構成を示す概略図である。It is the schematic which shows the structure of the kneading | mixing system which applied the batch type kneader to the master kneading, and applied the biaxial kneading extruder or the uniaxial kneading extruder to the final kneading. 二軸混練押出機もしくは一軸混練押出機をマスター練およびファイナル練の双方に使用した混練システムの構成を示す概略図である。It is the schematic which shows the structure of the kneading | mixing system which used the biaxial kneading extruder or the uniaxial kneading extruder for both master kneading and final kneading. 従来の密閉式(バッチ式)混練機の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the conventional closed type (batch type) kneader.

符号の説明Explanation of symbols

M,M1,M2 バッチ式混練機
1 ケーシング
3 混練室
5,7 混練用ロータ
51,71 回転シャフト
52,72 ロータ本体
53〜56,73〜76 通路
57,77 溝
57a,77a ディスク状溝部
58,78 中子
MP,MP1,MP2 二軸混練押出機
MP',MP1',MP2' 一軸混練押出機
11 回転シャフト
15,23 押出ロータ
17 ロータ本体
19 混練用ロータ
171〜173 翼部
29,31 アンダーミキサ
M, M1, M2 Batch type kneader 1 Casing 3 Kneading chamber 5, 7 Kneading rotor 51, 71 Rotating shaft 52, 72 Rotor body 53-56, 73-76 Passage 57, 77 Groove 57a, 77a Disc-shaped groove 58, 78 Core MP, MP1, MP2 Twin-screw kneading extruder MP ', MP1', MP2 'Single-screw kneading extruder 11 Rotating shaft 15, 23 Extrusion rotor 17 Rotor body 19 Kneading rotor 171 to 173 Wing 29, 31 Undermixer

Claims (6)

回転シャフトと、該回転シャフトの外周に嵌合固定されたロータ本体とを有する混練用ロータであって、
前記ロータ本体は、外表面に混練用の翼部を形成するとともに、前記回転シャフトに接する内周面から前記外表面に向かって拡がるディスク状の溝部を前記シャフトの軸線方向に複数配列形成して、前記各ディスク状溝部に冷却媒体を流通させるように構成され、
前記各ディスク状溝部内に、前ロータ本体の内周面から外表面に向かって伸びる中子を配設し、この中子によって前記ディスク状溝部の深さを実質的に減少させたことを特徴とする混練用ロータ。
A kneading rotor having a rotating shaft and a rotor body fitted and fixed to the outer periphery of the rotating shaft,
The rotor body is formed with kneading blades on the outer surface and a plurality of disk-shaped grooves extending from the inner peripheral surface in contact with the rotating shaft toward the outer surface in the axial direction of the shaft. , Configured to circulate a cooling medium through each of the disk-shaped grooves,
A core extending from the inner peripheral surface of the front rotor body toward the outer surface is disposed in each disk-shaped groove, and the depth of the disk-shaped groove is substantially reduced by the core. A kneading rotor.
バッチ式の混練機の混練用ロータに適用したことを特徴とする請求項1に記載の混練用ロータ。   The kneading rotor according to claim 1, wherein the kneading rotor is applied to a kneading rotor of a batch kneader. 二軸混練押出機の混練用ロータに適用したことを特徴とする請求項1に記載の混練用ロータ。   The kneading rotor according to claim 1, wherein the kneading rotor is applied to a kneading rotor of a twin-screw kneading extruder. 一軸混練押出機の混練用ロータに適用したことを特徴とする請求項1に記載の混練用ロータ。   The kneading rotor according to claim 1, wherein the kneading rotor is applied to a kneading rotor of a uniaxial kneading extruder. 前記混練用の翼部として、少なくとも1つの長翼部を備え、前記シャフトの軸線に対する前記長翼部の捩じれ角を35°〜55°に設定したことを特徴とする請求項3または4に記載の混練用ロータ。   The kneading wing portion includes at least one long wing portion, and the twist angle of the long wing portion with respect to the axis of the shaft is set to 35 ° to 55 °. Rotor for kneading. 前記混練用の翼部として、長翼部である第1翼部と、短翼部である第2翼部および第3翼部を備え、前記シャフトの軸線に対する前記第1翼部の捩じれ角および前記軸線に対する前記第2翼部、第3翼部の少なくとも一方の捩じれ角を35°〜55°に設定したことを特徴とする請求項3または4に記載の混練用ロータ。   The kneading wing includes a first wing that is a long wing, a second wing and a third wing that are short wings, and a twist angle of the first wing with respect to the axis of the shaft; 5. The kneading rotor according to claim 3, wherein a twist angle of at least one of the second wing portion and the third wing portion with respect to the axis is set to 35 ° to 55 °.
JP2003295821A 2003-08-20 2003-08-20 Rotor for kneading Withdrawn JP2005059528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295821A JP2005059528A (en) 2003-08-20 2003-08-20 Rotor for kneading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295821A JP2005059528A (en) 2003-08-20 2003-08-20 Rotor for kneading

Publications (1)

Publication Number Publication Date
JP2005059528A true JP2005059528A (en) 2005-03-10

Family

ID=34371914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295821A Withdrawn JP2005059528A (en) 2003-08-20 2003-08-20 Rotor for kneading

Country Status (1)

Country Link
JP (1) JP2005059528A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341489A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Continuous kneader
JP2006341478A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Continuous kneader and kneading system equipped with kneader
JP2006341488A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Twin-screw feeder, seating apparatus and kneading system using the feeder
JP2011201311A (en) * 2011-06-06 2011-10-13 Mitsubishi Heavy Ind Ltd Continuous kneader
WO2013084962A1 (en) * 2011-12-06 2013-06-13 三菱重工マシナリーテクノロジー株式会社 Kneading rotor and kneader
WO2013111724A1 (en) * 2012-01-25 2013-08-01 三菱重工マシナリーテクノロジー株式会社 Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading
WO2013115371A1 (en) * 2012-02-03 2013-08-08 三菱重工マシナリーテクノロジー株式会社 Kneading rotor and kneader
JP2021524371A (en) * 2018-05-24 2021-09-13 コンパニー ゼネラール デ エタブリッスマン ミシュラン Wear-resistant device and means for attaching the wear-resistant device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341489A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Continuous kneader
JP2006341478A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Continuous kneader and kneading system equipped with kneader
JP2006341488A (en) * 2005-06-09 2006-12-21 Mitsubishi Heavy Ind Ltd Twin-screw feeder, seating apparatus and kneading system using the feeder
JP2011201311A (en) * 2011-06-06 2011-10-13 Mitsubishi Heavy Ind Ltd Continuous kneader
CN103402720A (en) * 2011-12-06 2013-11-20 三菱重工机械科技株式会社 Kneading rotor and kneader
JP2013119170A (en) * 2011-12-06 2013-06-17 Mitsubishi Heavy Industries Machinery Technology Corp Rotor for kneading and kneader
WO2013084962A1 (en) * 2011-12-06 2013-06-13 三菱重工マシナリーテクノロジー株式会社 Kneading rotor and kneader
KR101558720B1 (en) * 2011-12-06 2015-10-07 미츠비시 쥬우고오 마시나리 테크노로지 가부시키가이샤 Kneading rotor and kneader
WO2013111724A1 (en) * 2012-01-25 2013-08-01 三菱重工マシナリーテクノロジー株式会社 Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading
JP2013150955A (en) * 2012-01-25 2013-08-08 Mitsubishi Heavy Industries Machinery Technology Corp Kneading rotor, kneading machine, and method for manufacturing the kneading rotor
US9586340B2 (en) 2012-01-25 2017-03-07 Mitsubishi Heavy Industries Machinery Technology Corporation Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading
KR101841810B1 (en) * 2012-01-25 2018-03-26 미츠비시 쥬고 기카이 시스템 가부시키가이샤 Rotor for kneading, kneading machine, and method for manufacturing rotor for kneading
WO2013115371A1 (en) * 2012-02-03 2013-08-08 三菱重工マシナリーテクノロジー株式会社 Kneading rotor and kneader
JP2021524371A (en) * 2018-05-24 2021-09-13 コンパニー ゼネラール デ エタブリッスマン ミシュラン Wear-resistant device and means for attaching the wear-resistant device
JP7296989B2 (en) 2018-05-24 2023-06-23 コンパニー ゼネラール デ エタブリッスマン ミシュラン Anti-wear device and mounting means for the anti-wear device

Similar Documents

Publication Publication Date Title
JP4317872B2 (en) Continuous kneading apparatus and kneading system using the same
KR100796863B1 (en) Batch mixer and mixing rotor used in the same
JPS6244409A (en) Enclosed type kneading machine
JP5631296B2 (en) Kneading segment
JP2005059528A (en) Rotor for kneading
JP3798595B2 (en) Kneading rotor, screw set and twin screw extruder
US5520455A (en) Batch type kneader having specified parameters and chamfered lands
JP2002210731A (en) Twin continuous kneader and method for kneading thereby
KR20120124409A (en) Screw feed elements for extruding viscoelastic masses, and use and method
EP1352725B1 (en) Closed kneader
JP2006026991A (en) Kneading rotor
JPH08229938A (en) Closed type rubber kneader
US3230581A (en) Rubber mixer
US5791776A (en) Hermetically closed kneading apparatus
JP2000225614A (en) Rotor and mixer having rotor
JP2005144716A (en) Kneading rotor
TWI503166B (en) Kneading rotor, kneader, and method of manufacturing kneading rotor
WO2013115371A1 (en) Kneading rotor and kneader
JP2011201311A (en) Continuous kneader
JP2023550762A (en) rotor
WO2017183531A1 (en) Screw-type extruder
JP4781725B2 (en) Continuous kneader
JPH0130610B2 (en)
JP2019166667A (en) Kneader
JP2019188638A (en) Extruder, and kneading and extrusion method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107