JPH09110722A - Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation - Google Patents

Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation

Info

Publication number
JPH09110722A
JPH09110722A JP7295918A JP29591895A JPH09110722A JP H09110722 A JPH09110722 A JP H09110722A JP 7295918 A JP7295918 A JP 7295918A JP 29591895 A JP29591895 A JP 29591895A JP H09110722 A JPH09110722 A JP H09110722A
Authority
JP
Japan
Prior art keywords
cell
antibody
immunoliposome
gene
active substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7295918A
Other languages
Japanese (ja)
Inventor
Jun Yoshida
純 吉田
Takeshi Kobayashi
猛 小林
Masatoshi Hagiwara
正敏 萩原
Masaaki Mizuno
正明 水野
Hideho Okada
秀穂 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7295918A priority Critical patent/JPH09110722A/en
Publication of JPH09110722A publication Critical patent/JPH09110722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Electrotherapy Devices (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an immunoliposome, capable of effectively and selectively transducing an antitumor active substance into a tumorous cell by bonding a cationic liposome membrane containing the antitumor active substance to a specific antibody selectively reactive with the tumorous cell. SOLUTION: This immunoliposome for transducing an antitumor active substance into a tumorous cell is obtained by bonding a cationic liposome membrane containing the antitumor active substance to a monoclonal antibody G-22 (antiCD 44 antibody) selectively reactive with the tumorous cell. A ceramide or an antiFas antibody capable of efficiently inducing apoptosis, a magnetite capable of manifesting hyperthermic effects and a gene effective in antitumor effects are preferred as the antitumor active substance. Dimethyldioctadecylammonium bromide and dioleylphosphatidylethanolamine are preferred as a lipid constituting the cationic liposome membrane. A cell of a glioma, a cell of melanoma, etc., which are cells excessively expressing CD44 are preferred as the tumorous cell to be an object of treatment. Furthermore, the daily dose of the immunoliposome for an adult is preferably 10-1000nmol expressed in terms of the amount of the lipid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、腫瘍細胞にセラミ
ド又は抗Fas抗体を選択的に導入してアポトーシスを効
率良く誘導できるイムノリポソーム、及び腫瘍細胞にマ
グネタイト又は遺伝子を選択的に導入して温熱又は遺伝
子治療のベクターとしての特徴を有するイムノリポソー
ム、ならびにそれらの調製方法に関する。
TECHNICAL FIELD The present invention relates to an immunoliposome capable of efficiently inducing apoptosis by selectively introducing ceramide or anti-Fas antibody into tumor cells, and hyperthermia by selectively introducing magnetite or gene into tumor cells. Alternatively, it relates to an immunoliposome having characteristics as a vector for gene therapy, and a method for preparing them.

【0002】[0002]

【従来技術】[Prior art]

1.セラミド又は抗Fas抗体 アポトーシスは、プログラム細胞死(正常な発生、分化
に不可欠な条件としての特定の時期に特定の部位に生じ
る生理的細胞死)の代表的な死の様式であり、形態学的
にはクロマチン凝縮、細胞質濃縮、核濃縮とそれらの断
片化、膜被包性球状小体化、隣接するマクロファージや
上皮細胞などによる球状小体の貪食、消化を特徴として
いる。従来のがん治療(化学療法、放射線療法等)にお
いては腫瘍細胞の多くはネクローシスにて細胞死がもた
らされていた。ネクローシスはアポトーシスと異なり周
囲組織に炎症反応を惹起するため、発熱、悪心、嘔吐等
強い有害作用が伴っていた。一方アポトーシスは周囲組
織に炎症反応を伴わないため有害作用はきわめて少ない
と予想される。したがって腫瘍細胞をアポトーシスにて
細胞死に至らしめることは臨床応用を展望した際、有害
作用を少なくし、効率のよい治療法を導くのに有効であ
ると考えられる。
1. Ceramide or anti-Fas antibody Apoptosis is a typical mode of death of programmed cell death (normal development, physiological cell death occurring at a specific site at a specific time as an essential condition for differentiation). It is characterized by chromatin condensation, cytoplasmic enrichment, nuclear enrichment and their fragmentation, membrane-encapsulated spheroids, phagocytosis and digestion of spheroids by adjacent macrophages and epithelial cells. In conventional cancer treatments (chemotherapy, radiation therapy, etc.), most of the tumor cells were caused to die by necrosis. Necrosis, unlike apoptosis, induces an inflammatory reaction in the surrounding tissues, which is accompanied by strong adverse effects such as fever, nausea, and vomiting. On the other hand, apoptosis is expected to have very few adverse effects because it does not involve an inflammatory reaction in the surrounding tissues. Therefore, it is considered that the induction of cell death by apoptosis of tumor cells is effective in reducing the harmful effects and leading to an efficient therapeutic method in view of clinical application.

【0003】アポトーシスの機構は多様で、まだ解明さ
れていない点が多いが、セラミドの関与するスフィンゴ
ミエリン代謝経路は、サイトカインのひとつであるTNF-
α(腫瘍壊死因子)が誘導するプログラム細胞死のアポ
トイックカスケード中の初期イベントを構成すると見ら
れている[Jarvis WD, Kolesnick RN, Fornari FA, Tra
ylor RS, Gewirtz DA, Grant S, Induction of apopto
tic DNA damage and cell death by activation of the
sphingomyelin pathway, Proc. Natl. Acad.Sci. USA,
91, 73-77 (1994)]。またスフィンゴミエリンの加水
分解によってできるセラミドはアポトーシスだけでな
く、細胞増殖及び分化におけるTNF-αの影響を仲介する
第二のメッセンジャーであると考えられている[Kolesn
ick R, Golde DW, The sphingomyelin pathway in tumo
r necrosis factor and interleukin-1 signaling, Cel
l, 77, 325-328 (1994)]。ある種類の細胞において、
TNF-αで刺激すればアポトーシスが誘導される。グリオ
ーマ細胞においても一部でアポトーシスの誘導が高用量
の場合に限り認められるが、むしろそれは例外的で多く
のグリオーマ細胞ではアポトーシスは誘導されない。一
方で合成セラミド類縁体であるC2-セラミドをエタノー
ルに溶解して効率よく細胞膜を透過させ、アポトーシス
を誘導する方法を示す論文がみられる[Obleid LM, Lin
ardic CM, Karolak LA, Hannun YA, Programmed cell d
eath induced by ceramide, Science, 259, 1769-1771
(1993)]が、グリオーマ細胞では顕著なアポトーシスの
誘導はこの方法でも認められない。この事実は種々の細
胞にアポトーシスを誘導する抗Fas抗体をグリオーマ細
胞に添加したときにも言える。抗Fas抗体は各種細胞に
アポトーシスを誘導できる代表的な抗体として特徴づけ
られているがグリオーマ細胞では高用量の場合のみにそ
の感受性がわずかに認められる。したがって従来の方法
ではセラミド又は抗Fas抗体を用いてグリオーマ細胞に
効率よくアポトーシスを誘導するためには別のアプロー
チが望まれるところである。
The mechanism of apoptosis is diverse and there are many points that have not yet been elucidated, but the sphingomyelin metabolic pathway in which ceramide is involved is one of the cytokines, TNF-.
It is thought to constitute an early event in the apoptotic cascade of programmed cell death induced by α (tumor necrosis factor) [Jarvis WD, Kolesnick RN, Fornari FA, Tra
ylor RS, Gewirtz DA, Grant S, Induction of apopto
tic DNA damage and cell death by activation of the
sphingomyelin pathway, Proc. Natl. Acad. Sci. USA,
91, 73-77 (1994)]. Ceramide, which is formed by hydrolysis of sphingomyelin, is considered to be the second messenger that mediates the effects of TNF-α on cell proliferation and differentiation as well as apoptosis [Kolesn
ick R, Golde DW, The sphingomyelin pathway in tumo
r necrosis factor and interleukin-1 signaling, Cel
l, 77, 325-328 (1994)]. In some types of cells,
Apoptosis is induced by stimulation with TNF-α. In some glioma cells, induction of apoptosis was observed only at high doses, but rather it was exceptional and apoptosis was not induced in many glioma cells. On the other hand, there is a paper showing a method of inducing apoptosis by dissolving C2-ceramide, a synthetic ceramide analog, in ethanol to efficiently permeate cell membranes [Obleid LM, Lin
ardic CM, Karolak LA, Hannun YA, Programmed cell d
eath induced by ceramide, Science, 259, 1769-1771
(1993)], but no significant induction of apoptosis was observed in this method by glioma cells. This fact can be said when anti-Fas antibody that induces apoptosis in various cells is added to glioma cells. Anti-Fas antibody has been characterized as a typical antibody capable of inducing apoptosis in various cells, but in glioma cells, its sensitivity is slightly observed only at a high dose. Therefore, in the conventional method, another approach is desired in order to efficiently induce apoptosis in glioma cells using ceramide or anti-Fas antibody.

【0004】2.マグネタイト又は遺伝子 磁性微粒子であるマグネタイトは局所温熱療法の新しい
担い手として注目を集めている。磁性微粒子としてのマ
グネタイトの発熱機構やその特徴はすでに詳細な検討が
なされており、温熱誘導体としての地位は確立されつつ
ある[ShinkaiM, Suzuki M, Iijima S, Kobayashi T, A
ntibody-conjugated magnetoliposomesfor targeting c
ancer cells and their application in hyperthermia,
Biotechnol. Appl. Biochem, 21, 125-137 (1994)]。
したがって局所温熱療法の成功は腫瘍細胞にいかに効率
よくマグネタイトを導入できるかにかかっている。
[0004] 2. Magnetite or Gene Magnetite, which is a magnetic fine particle, is attracting attention as a new player in local hyperthermia. The heat generation mechanism and its characteristics of magnetite as magnetic particles have already been studied in detail, and its status as a thermal derivative is being established [Shinkai M, Suzuki M, Iijima S, Kobayashi T, A
ntibody-conjugated magnetoliposomesfor targeting c
ancer cells and their application in hyperthermia,
Biotechnol. Appl. Biochem, 21, 125-137 (1994)].
Therefore, the success of local hyperthermia depends on how efficiently magnetite can be introduced into tumor cells.

【0005】一方、現在多くのヒト遺伝子治療が米国を
中心として開始されており、安全性が高く、導入効率も
高い脂質カプセルであるリポソームを遺伝子の担体とし
て用いる研究がなされている。例えば、Felgnerらはカ
チオン性リポソームが核酸やタンパク質を種々の細胞へ
運搬する効率的で簡便な手段であることを提供し、また
in vivo遺伝子導入において多くの利点を有するもので
あることを証明した[Felgner PL, et al., Proc. Nat
l. Acad. Sci. USA, 84, 7413-7414 (1987), Felgner P
L, et al., Nature, 337, 387-388 (1989)]。八木ら
は、リポソームによる遺伝子導入についてプラスミドの
リポソームへの包埋率(リポソーム中に物質を入れるこ
とを包埋するという)、細胞への遺伝子導入及び発現効
率の面から研究を行ない、リポソームに正の電荷を与え
る材料として、N−(α−トリメチルアンモニオアセチ
ル)−ジドデシル−D−グルタメイトクロリド(TMAG)
を選択し、これとジラウロイルホスファチジルコリン
(DLPC)、及びジオレオイルホスファチジルエタノール
アミン(DOPE)を一定の比率で組み合わせて調製したカ
チオン性リポソームが高いDNAの取り込みを示し[Koshi
zaka T, Hayashi Y, YagiK, Novel liposomes for effi
cient transfection of β-galactosidase gene into C
OS-1 cells. J. Clin. Biochem. Nutr. 7, 185-192 (19
89) ]、また振盪のみにより調製する多重層リポソーム
では調製法が簡便である上、安全性が高いことを報告し
ている[Yagi K, Noda H, Kurono M, Ohishi N, Effect
ive gene transfer with less cytotoxicity by means
of cationic multilamellar liposomes. Biochem. Biop
hys. Res. Commun 3, 1042-1048 (1993)]。さらに、カ
チオン性リポソームのもうひとつの利点は、モノクロー
ナル抗体やリガンドを結合させることによって、特異的
な細胞にリポソームを攻撃させることである。本発明者
らは八木らと共同にて前記のカチオン性リポソームを用
いたヒトグリオーマに対するターゲティング(targetin
g)療法について研究し、遺伝子導入された細胞の10
〜20%がin vitroでリポソーム−媒介遺伝子導入後に
該遺伝子を発現すること、及びリポソームに抗ヒトグリ
オーマ細胞モノクローナル抗体G−22を結合させるこ
とにより、導入効率と腫瘍細胞特異性が向上することを
証明した[Mizuno M, Yoshida J, Sugita K, Inoue I,
Seo H, Hayashi Y, Koshizaka T,Yagi K, Growth inhib
ition of glioma cells transfected with the human
β−interferon gene by liposomes coupled with a mo
noclonal antibody. Cancer Res, 50, 7826-7829 (199
0)]。又、これらのモノクローナル抗体のリポソームへ
の結合は、化学反応、例えばLesermanら[Leserman et
al., Nature, 288,602-604 (1980)]に従い、架橋剤、N
-ヒドロキシスクシニミジル−3−(2−ピリジルジチ
オ)プロピオネート(SPDP)を用いることによって行な
われていたものを、本発明者は本研究において化学反応
を行なうことなく、振盪するだけという独自の方法によ
り、リポソームへの包埋率、腫瘍細胞への遺伝子導入及
び発現効率に優れたイムノリポソームを調製した。
On the other hand, many human gene therapies have been started mainly in the United States, and studies have been conducted using liposomes, which are lipid capsules having high safety and high introduction efficiency, as gene carriers. For example, Felgner et al. Provide that cationic liposomes are an efficient and convenient means of delivering nucleic acids and proteins to various cells.
It proved to have many advantages in in vivo gene transfer [Felgner PL, et al., Proc. Nat
l. Acad. Sci. USA, 84, 7413-7414 (1987), Felgner P
L, et al., Nature, 337, 387-388 (1989)]. Yagi et al. Conducted research on liposome gene transfer in terms of the rate of plasmid embedding in liposomes (referred to as embedding a substance in liposomes), gene transfer into cells, and expression efficiency. N- (α-trimethylammonioacetyl) -didodecyl-D-glutamate chloride (TMAG)
, Which was combined with dilauroylphosphatidylcholine (DLPC) and dioleoylphosphatidylethanolamine (DOPE) in fixed ratios, showed high DNA uptake.
zaka T, Hayashi Y, YagiK, Novel liposomes for effi
cient transfection of β-galactosidase gene into C
OS-1 cells. J. Clin. Biochem. Nutr. 7, 185-192 (19
89)], and that the multilamellar liposome prepared only by shaking is simple and easy to prepare [Yagi K, Noda H, Kurono M, Ohishi N, Effect.
ive gene transfer with less cytotoxicity by means
of combined multilamellar liposomes. Biochem. Biop
hys. Res. Commun 3, 1042-1048 (1993)]. Furthermore, another advantage of the cationic liposome is that it binds a monoclonal antibody or a ligand to attack a specific cell on the liposome. The present inventors, in collaboration with Yagi et al., Targeting human glioma using the above-mentioned cationic liposome (targetin
g) 10 studies of cells studied for therapy and transgenic
˜20% expression of the gene in vitro after liposome-mediated gene transfer, and binding of the anti-human glioma cell monoclonal antibody G-22 to the liposome improves the transfer efficiency and tumor cell specificity. Proved [Mizuno M, Yoshida J, Sugita K, Inoue I,
Seo H, Hayashi Y, Koshizaka T, Yagi K, Growth inhib
ition of glioma cells transfected with the human
β-interferon gene by liposomes coupled with a mo
noclonal antibody. Cancer Res, 50, 7826-7829 (199
0)]. In addition, the binding of these monoclonal antibodies to liposomes is performed by chemical reactions such as Leserman et al. [Leserman et al.
al., Nature, 288,602-604 (1980)], cross-linking agent, N
What was done by using -hydroxysuccinimidyl-3- (2-pyridyldithio) propionate (SPDP), the present inventor uniquely only shakes without performing a chemical reaction. By the method, immunoliposomes having excellent embedding rate in liposomes, gene transfer into tumor cells and expression efficiency were prepared.

【0006】以上の知見に基づき、セラミド又は抗Fas
抗体又はマグネタイト又は遺伝子の腫瘍細胞への導入
に、上記のようなイムノリポソームの利用の可能性が大
いに期待されるところである
Based on the above findings, ceramide or anti-Fas
The use of immunoliposomes as described above is highly expected for the introduction of antibodies or magnetite or genes into tumor cells.

【0007】[0007]

【本発明が解決しようとする課題】本発明の目的は、腫
瘍細胞にセラミド又は抗Fas抗体を選択的に導入してア
ポトーシスを効率良く誘導できるイムノリポソーム、及
び腫瘍細胞にマグネタイト又は遺伝子を選択的に導入し
て温熱又は遺伝子治療のベクターとしての特徴を有する
イムノリポソーム、ならびにそれらの調製方法を提供す
ることである。
An object of the present invention is to provide an immunoliposome capable of efficiently inducing apoptosis by selectively introducing ceramide or anti-Fas antibody into tumor cells, and selectively selecting magnetite or gene into tumor cells. It is intended to provide an immunoliposome having a characteristic as a vector for hyperthermia or gene therapy, and a method for preparing them.

【0008】[0008]

【課題を達成するための手段】本発明者らは、上記課題
を解決すべく研究を重ねた結果、セラミド、抗Fas抗
体、マグネタイト又は遺伝子を腫瘍細胞に選択的に反応
するモノクローナル抗体G−22(抗CD44抗体)を結合
させたカチオン性リポソームに封入又は包埋させること
により、これらを効率よくかつ選択的に腫瘍細胞に導入
できることを証明した。さらに前二者では導入によりグ
リオーマ細胞にアポトーシスを効率よく誘導できること
を見い出し、本発明を完成した。
As a result of repeated studies to solve the above problems, the inventors of the present invention have found that a monoclonal antibody G-22 which selectively reacts ceramide, anti-Fas antibody, magnetite or gene with tumor cells. By encapsulating or embedding in a cationic liposome bound with (anti-CD44 antibody), it was proved that these can be efficiently and selectively introduced into tumor cells. Furthermore, in the former two cases, they found that the introduction can efficiently induce apoptosis in glioma cells, and completed the present invention.

【0009】すなわち本発明は、セラミド、抗Fas抗
体、マグネタイト及び遺伝子から成る群から選ばれる抗
腫瘍活性物質を腫瘍細胞に選択的に反応するモノクロー
ナル抗体(抗CD44抗体)を結合させたカチオン性リポソ
ームに封入又は包埋したことを特徴とするイムノリポソ
ームならびにその調製方法に関する以下に本発明を具体
的に説明する。
That is, the present invention is a cationic liposome in which a monoclonal antibody (anti-CD44 antibody) which selectively reacts with an antitumor active substance selected from the group consisting of ceramide, anti-Fas antibody, magnetite and gene is reacted with tumor cells. BEST MODE FOR CARRYING OUT THE INVENTION The present invention relating to an immunoliposome characterized by being encapsulated in or embedded in and a method for preparing the same will be specifically described below.

【0010】[0010]

【発明の実施の形態】リポソーム膜 本発明の基礎となるリポソーム膜はジメチルジオクタデ
シルアンモニウムブロミド(DDAB)、ジオレオイルホス
ファチジルエタノールアミン(DOPE)の2種類の脂質と
CD44を過剰発現している腫瘍細胞(グリオーマ細胞、メ
ラノーマ細胞、肺癌細胞等)に選択的に反応するモノク
ローナル抗体(抗CD44抗体)で構成される。リポソーム
の形状の安定化をはかるためジラウロイルホスファチジ
ルコリン(DLPC)等のコリン脂質を添加する場合もあ
る。構成脂質のひとつであるDDABは正の電荷をリポソー
ムに与える脂質である。かかる脂質を利用することによ
りリポソームの内外両面が正に荷電され、その結果、負
の電荷を有する腫瘍細胞への添加物、すなわち本発明に
いう各種抗腫瘍活性物質(セラミド又は抗Fas抗体又は
マグネタイト又は遺伝子)の導入効率が向上する。さら
に遺伝子ではそのものが負の電荷を有していることより
リポソーム調製の際の封入又は包埋効率の向上にもつな
がっている。脂質の構成モル比は DDAB、DOPEで2:1
又は1:2とすることが例示され、適当量の添加物を加
えてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Liposome Membrane The liposome membrane on which the present invention is based comprises two types of lipids, dimethyldioctadecyl ammonium bromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE).
It is composed of a monoclonal antibody (anti-CD44 antibody) that selectively reacts with tumor cells (glioma cells, melanoma cells, lung cancer cells, etc.) that overexpress CD44. A choline lipid such as dilauroylphosphatidylcholine (DLPC) may be added to stabilize the shape of the liposome. DDAB, one of the constituent lipids, is a lipid that imparts a positive charge to the liposome. By using such a lipid, both the inside and outside of the liposome are positively charged, and as a result, additives to tumor cells having a negative charge, that is, various antitumor active substances (ceramide or anti-Fas antibody or magnetite) according to the present invention are used. Or the efficiency of gene introduction is improved. Furthermore, since the gene itself has a negative charge, it also leads to an improvement in the encapsulation or embedding efficiency during liposome preparation. The constituent molar ratio of lipid is 2: 1 for DDAB and DOPE.
Alternatively, 1: 2 is exemplified, and an appropriate amount of additives may be added.

【0011】腫瘍細胞に導入する抗腫瘍活性物質 本発明において腫瘍細胞へ導入する抗腫瘍活性物質は、
腫瘍細胞に導入されて抗腫瘍効果を発揮しうるものであ
ればその機構は問わない。具体的には腫瘍細胞に選択的
に導入されてアポトーシスを効率良く誘導できるもの、
例えばセラミド(C2 若しくはC6 セラミド又はその他
のアポトーシスを誘導できるセラミド類縁体)、抗Fas
抗体、又は腫瘍細胞に選択的に導入されて温熱治療効果
を発揮しうるマグネタイト、さらには抗腫瘍に有効な遺
伝子をいう。抗腫瘍に有効な遺伝子としては、好適には
自殺遺伝子、具体的にはヘルペスシンプレックスチミジ
ンキナーゼをコードする遺伝子、又はサイトカイン遺伝
子、具体的にはインターフェロン(IFN)-α、β、γ、顆
粒球マクロファージコロニー刺激因子(GM-CSF)、インタ
ーロイキン(IL)-1α、IL-1β、IL-1α、IL-1β、IL-2、
IL-3、IL-4、IL-6、IL-7、IL-10 、IL-12 、IL-13 、IL
-15 、腫瘍壊死因子(TNF)−α、リンホトキシン(LT)-
β、顆粒球コロニー刺激因子(G-CSF) 、マクロファージ
コロニー刺激因子(M-CSF) 、マクロファージ遊走阻止因
子(MIF) 、白血病抑制因子(LIF) 、T細胞活性化共刺激
因子B7(CD80)及びB7-2(CD86)、キット・リガンド、オン
コスタチンM等の各種サイトカインをコードする遺伝子
が挙げられる。本発明において使用される上記の遺伝子
は、公知の技術を用いて細胞から単離して得られたcD
NAであっても、また公知の文献等に開示される情報よ
りポリメレース連鎖反応(PCR)等の方法に従って化
学的に合成されたものであってもよいが、免疫的拒絶反
応を最小に抑えるために、また、治療効果を上げるため
に、ヒト由来のものが望ましい。
Antitumor active substance introduced into tumor cells The antitumor active substance introduced into tumor cells in the present invention is
The mechanism is not limited as long as it can be introduced into tumor cells and exert an antitumor effect. Specifically, those that can be selectively introduced into tumor cells and efficiently induce apoptosis,
For example, ceramide (C 2 or C 6 ceramide or other ceramide analog capable of inducing apoptosis), anti-Fas
It means an antibody, or magnetite that can be selectively introduced into a tumor cell to exert a thermotherapeutic effect, and a gene effective for antitumor. The gene effective for antitumor is preferably a suicide gene, specifically a gene encoding herpes simplex thymidine kinase, or a cytokine gene, specifically interferon (IFN) -α, β, γ, granulocyte macrophage. Colony stimulating factor (GM-CSF), interleukin (IL) -1α, IL-1β, IL-1α, IL-1β, IL-2,
IL-3, IL-4, IL-6, IL-7, IL-10, IL-12, IL-13, IL
-15, Tumor necrosis factor (TNF) -α, lymphotoxin (LT)-
β, granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), leukemia inhibitory factor (LIF), T cell activating costimulator B7 (CD80) and Examples include genes encoding various cytokines such as B7-2 (CD86), kit ligand, and oncostatin M. The above gene used in the present invention is cD obtained by isolation from cells using known techniques.
Although it may be NA, it may be chemically synthesized according to a method such as a polymerase chain reaction (PCR) based on information disclosed in publicly known documents, etc., in order to minimize immunological rejection. In addition, in order to improve the therapeutic effect, those of human origin are desirable.

【0012】G−22モノクローナル抗体(抗CD44
抗体) 本発明者らの研究によりヒトグリオーマ細胞、メラノー
マ細胞、又は肺癌細胞の一部はリンパ球のhoming recep
torとして同定されたCD44が過剰に発現しているという
事実が見い出されている。この事実に基づき、ヒトグリ
オーマ細胞に対する特異的抗体(抗CD44抗体)の作製が
行われた[Wakabayashi T, Yoshida J,Seo H, et al.,
Characterization of neuroectodermal antigen by a m
onoclonal antibody and its application in CSF diag
nosis of human glioma. J Neurosurg, 68, 449-455 (1
988), Okada H, Yoshida J, Seo H, et al., Anti-(g
lioma surface antigen) monoclonal antibody G-22 re
cognized overexpressedCD44 in glioma cells. Cancer
Immunol. Immunother. 39, 313-317 (1994)]。作製
は、常套的な手段、すなわち該細胞上に発現される抗原
で免疫化したマウスの脾細胞と骨髄腫細胞を融合し、得
られたハイブリドーマを培養することによって行うこと
ができる。またモノクローナル抗体は、全IgGであって
も、その一部、例えばF(ab')2のいずれであってもよ
い。
G-22 monoclonal antibody (anti-CD44
Antibody ) According to the research conducted by the present inventors, some of human glioma cells, melanoma cells, or lung cancer cells are homing recep of lymphocytes.
The fact that CD44, identified as tor, is overexpressed has been found. Based on this fact, a specific antibody against human glioma cells (anti-CD44 antibody) was prepared [Wakabayashi T, Yoshida J, Seo H, et al.,
Characterization of neuroectodermal antigen by am
onoclonal antibody and its application in CSF diag
nosis of human glioma. J Neurosurg, 68, 449-455 (1
988), Okada H, Yoshida J, Seo H, et al., Anti- (g
lioma surface antigen) monoclonal antibody G-22 re
cognized overexpressedCD44 in glioma cells. Cancer
Immunol. Immunother. 39, 313-317 (1994)]. The production can be carried out by a conventional means, that is, by fusing mouse splenocytes immunized with an antigen expressed on the cells and myeloma cells, and culturing the obtained hybridoma. The monoclonal antibody may be whole IgG or a part thereof, for example, F (ab ') 2.

【0013】腫瘍細胞 本発明においてイムノリポソームによる治療の対象とな
る腫瘍細胞はCD44過剰発現細胞であるグリオーマ細胞、
メラノーマ細胞又は肺癌細胞等である。
Tumor cells The tumor cells to be treated with the immunoliposome in the present invention are glioma cells which are CD44 overexpressing cells,
Examples include melanoma cells and lung cancer cells.

【0014】イムノリポソームの調製 本発明のイムノリポソームの調製方法としては、多重層
リポソームの調製の際の常套的な手段である振盪法に若
干の改良を加えた方法にて行いうる。具体的にはクロロ
ホルムに溶解した前記の脂質ないし混合脂質(セラミド
の場合はクロロホルムに溶解後この時点でリポソーム脂
質といっしょに混合する)をスピッツに加え、ロータリ
ーエバポレータにて溶媒を蒸発させリポソーム膜を調製
する。これに抗Fas抗体又はマグネタイト又は遺伝子を
含むリン酸緩衝液を加え、さらにG−22モノクローナ
ル抗体(抗CD44抗体)を1μmolに対して2ngから2μg
の割合で添加し、1から5分間振盪する。脂質と他の添
加物(モノクローナル抗体を含む)の混合比は脂質1μ
molあたりモノクローナル抗体は2ngから2μg、マグネ
タイトは5から30μg、遺伝子は5から30μgが例示
される。
Preparation of Immunoliposomes The immunoliposomes of the present invention can be prepared by a slight modification of the shaking method which is a conventional means for preparing multilamellar liposomes. Specifically, the above lipids or mixed lipids dissolved in chloroform (in the case of ceramide, it is dissolved in chloroform and then mixed with liposome lipids at this point) are added to Spitz, and the solvent is evaporated by a rotary evaporator to form a liposome membrane. Prepare. A phosphate buffer containing anti-Fas antibody, magnetite, or gene was added to this, and 2 ng to 2 μg of G-22 monoclonal antibody (anti-CD44 antibody) was added to 1 μmol.
And shake for 1 to 5 minutes. Mixing ratio of lipid and other additives (including monoclonal antibody) is 1μm lipid.
For example, the amount of monoclonal antibody is 2 ng to 2 μg, the amount of magnetite is 5 to 30 μg, and the amount of gene is 5 to 30 μg per mol.

【0015】製剤化 クロロホルムに溶解した前記の脂質ないし混合脂質(セ
ラミドの場合はクロロホルムに溶解後この時点でリポソ
ーム脂質といっしょに混合する)をスピッツに加え、ロ
ータリーエバポレータにて溶媒を蒸発させリポソーム膜
を調製する。この方法に準じリポソーム膜のバイアル化
を計り滅菌保存する。脂質の酸化を防ぐため冷所保存が
望ましい。一方、その他の添加物である抗体又はマグネ
タイト又は遺伝子はそれぞれ別のバイアルとし、保存す
る。この場合も冷所保存が望ましい。この添加物のバイ
アル(場合によっては2種類)とリポソーム膜のバイア
ルを使用直前に混合し、振盪後使用する。
Formulation The above-mentioned lipids or mixed lipids dissolved in chloroform (in the case of ceramide, it is dissolved in chloroform and then mixed with liposome lipids at this point) are added to Spitz, and the solvent is evaporated by a rotary evaporator to form a liposome membrane. To prepare. According to this method, the liposome membrane is made into a vial and sterilized and stored. Cold storage is desirable to prevent lipid oxidation. On the other hand, other additives such as antibody, magnetite, or gene are stored in separate vials. In this case as well, storage in a cool place is desirable. A vial (two kinds in some cases) of this additive and a vial of liposome membrane are mixed immediately before use and shaken before use.

【0016】本発明のイムノリポソームの投与形態とし
ては、腫瘍病巣又は腫瘍に対応した予想播種又は転移部
位に対して局所注射する他、場合によっては通常の静脈
内、動脈内等の全身投与が挙げられる。本発明のイムノ
リポソームの投与量は、年齢、性別、症状、投与経路、
投与回数によって異なるが、成人一日当り、脂質量に換
算して10から1000nmolの範囲とすることが適当で
ある。
The dosage form of the immunoliposome of the present invention includes local injection at the expected dissemination or metastatic site corresponding to the tumor lesion or tumor, and in some cases, usual systemic administration such as intravenous and intraarterial administration. To be The dose of the immunoliposome of the present invention includes age, sex, symptoms, administration route,
Although it depends on the number of administrations, it is appropriate to adjust the amount of lipid per day for an adult to the range of 10 to 1000 nmol.

【0017】[0017]

【実施例】本発明を以下の実施例によりさらに詳細に説
明する。これらの実施例は説明のためのものであり、本
発明の範囲を限定するものではない。 [実施例1] セラミド含有イムノリポソームの調製 (1)セラミド及びリポソーム用脂質 C2- セラミドをMATREYA INC., Pleasant Gap, PA, USA
より; ジメチルジオクタデシルアンモニウムブロミド(D
DAB)、ジラウロイルホスファチジルコリン(DLPC)をSigm
a Chemical Co., St., Louis, MOより; そしてジオレオ
イルホスファチジル−エタノールアミン(DOPE)をAvanti
Polar Lipids, Birmingham, AL より購入し、これを用
いた。
The present invention will be described in more detail with reference to the following examples. These examples are illustrative and do not limit the scope of the invention. Example 1 Preparation of Ceramide-Containing Immunoliposomes (1) Ceramide and Lipid for Liposomes C2-ceramide was used as MATREYA INC., Pleasant Gap, PA, USA.
More; dimethyldioctadecyl ammonium bromide (D
DAB), dilauroylphosphatidylcholine (DLPC) Sigm
a Chemical Co., St., Louis, MO; and dioleoylphosphatidyl-ethanolamine (DOPE) from Avanti
It was purchased from Polar Lipids, Birmingham, AL and used.

【0018】(2) G-22 モノクローナル抗体の調製 ヒトグリオーマ細胞の表面抗原(CD44)に特異的なG-22モ
ノクローナル抗体(マウスIgG モノクローナル抗体)
は、Wakabayashi, T. et al., J. Neurosurg., 68, 449
-455, (1988)の記載に従って行った。まずヒトグリオー
マ細胞株SK-MG-4で免疫化したマウスの脾臓細胞をマウ
スミエローマ細胞株NS-1とDippold WG, Lloyd KO, Li L
YC et al., Proc. Natl. Acad. Sci. USA 77, 6114-611
8 (1980)に従って融合した。グリオーマ細胞、神経芽
腫、及び他の腫瘍細胞由来の培養細胞株のパネル上にお
ける培養上清中の抗体活性をモニターしながら、ハイブ
リドーマを選択し、限界希釈法にてクローニングを行っ
た。選択したハイブリドーマをBALB/cマウスに接種し、
腹水より目的とするモノクローナル抗体を得た。
(2) Preparation of G-22 monoclonal antibody G-22 monoclonal antibody specific to human glioma cell surface antigen (CD44) (mouse IgG monoclonal antibody)
, Wakabayashi, T. et al., J. Neurosurg., 68, 449.
-455, (1988). First, the spleen cells of a mouse immunized with the human glioma cell line SK-MG-4 were mixed with mouse myeloma cell line NS-1 and Dippold WG, Lloyd KO, Li L.
YC et al., Proc. Natl. Acad. Sci. USA 77, 6114-611
8 (1980). While monitoring the antibody activity in the culture supernatant on a panel of cultured cell lines derived from glioma cells, neuroblastoma, and other tumor cells, hybridomas were selected and cloned by the limiting dilution method. BALB / c mice were inoculated with the selected hybridoma,
The desired monoclonal antibody was obtained from ascites.

【0019】(3)リポソームの調製 リポソームの調製は、多重層リポソームの調製の際の常
套的手段である振盪法に若干の改良を加えた簡便法によ
り行った。まず、DDAB、DOPE及びC2- セラミドを1:2:2
又は1:2:4(全量2 μmol)の割合でクロロホルムに溶解混
合し、シリコン化した試験管の底でロータリーエバポレ
ーターを用いて溶媒除去した。この脂質フィルムに、
(2) で調製した2μg のG-22モノクローナル抗体を含む
ダルベッコのリン酸緩衝液500 μl を加えた。脂質フィ
ルムとリン酸緩衝液を含む試験管を混合物が清浄になる
まで1〜5分間振盪することによって、目的とするセラ
ミド−イムノリポソームを得た。
(3) Preparation of Liposomes The preparation of liposomes was carried out by a simple method with some improvements made to the shaking method which is a conventional means for preparing multilamellar liposomes. First, add DDAB, DOPE and C2-ceramide 1: 2: 2.
Alternatively, it was dissolved and mixed in chloroform at a ratio of 1: 2: 4 (total amount 2 μmol), and the solvent was removed using a rotary evaporator at the bottom of the siliconized test tube. In this lipid film,
500 μl of Dulbecco's phosphate buffer containing 2 μg of G-22 monoclonal antibody prepared in (2) was added. The target ceramide-immunoliposome was obtained by shaking the test tube containing the lipid film and the phosphate buffer solution for 1 to 5 minutes until the mixture became clean.

【0020】(4)セラミドの腫瘍細胞への導入 ヒトグリオーマ細胞 U-251SP, SK-MG-1,及びT98Gを10%
ウシ胎児血清(FCS) 、ストレプトマイシン(100μg/ml)
、ペニシリン(100U/ml) 、4mM L-グルタミン酸及び非
必須アミノ酸を添加したDulbecco's minimum essential
medium (DMEM)で維持した。
(4) Introduction of ceramide into tumor cells Human glioma cells U-251SP, SK-MG-1, and T98G were 10%
Fetal calf serum (FCS), streptomycin (100 μg / ml)
, Penicillin (100 U / ml), 4 mM L-glutamic acid and Dulbecco's minimum essential supplemented with non-essential amino acids
Maintained in medium (DMEM).

【0021】上記グリオーマ細胞の培養培地懸濁液 (7.
5 ×104cells/ml)2ml をファルコン(Falcon)プレート(#
3046) の各ウェルに播き、5%CO2 、95% 空気の湿雰囲気
下、37℃で24時間インキュベートした。リポソーム溶液
30μl (60nmol 脂質) を、モル比率が1:2:2(=DDAB:DOP
E:C2-セラミド) のときセラミドの最終濃度が12μM と
なるように、又はモル比率が1:2:4(=DDAB:DOPE:C2-セラ
ミド) のときセラミドの最終濃度が24μM となるように
培養培地に加えた。37℃で16時間培養後、培地を交換
し、細胞をさらに37℃で一定時間インキュベートした。
コントロールとなる空リポソームをDDAB, DLPC, 及びDO
PEを用い、モル比率をそれぞれ1:2:2 で調製した。
Culture medium suspension of the above glioma cells (7.
5 x 10 4 cells / ml) 2 ml to Falcon plate (#
3046) was seeded in each well and incubated at 37 ° C. for 24 hours in a humid atmosphere of 5% CO 2 and 95% air. Liposome solution
30 μl (60 nmol lipid) with a molar ratio of 1: 2: 2 (= DDAB: DOP
E: C2-ceramide) so that the final concentration of ceramide is 12 μM, or when the molar ratio is 1: 2: 4 (= DDAB: DOPE: C2-ceramide), the final concentration of ceramide is 24 μM. Added to the culture medium. After culturing at 37 ° C for 16 hours, the medium was exchanged and the cells were further incubated at 37 ° C for a certain period of time.
Control empty liposomes with DDAB, DLPC, and DO
Using PE, the molar ratio was adjusted to 1: 2: 2, respectively.

【0022】〔試験例1〕 (1)DNA断片化の分析 (方法)DNA断片化の分析を、[Jarvis WD, Kolesnic
k RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S,
Induction of apoptotic DNA damage and cell deathb
y activation of the sphingomyelin pathway, Proc. N
atl. Acad. Sci., USA,91, 73-77 (1994)] に記載の方
法に若干の改良を加えた2%アガロースゲル電気泳動によ
って行った。セラミド−イムノリポソーム(24 μM)処理
2日後、浮遊細胞又は固着細胞を回収し、0.5% SDS/0.1
M NaCl/1mM EDTA, pH7.5に溶解し、その溶解液をプロテ
ナーゼK(100μg/ml) で50℃、12時間処理した。プロテ
ナーゼKを94℃、5 分間熱変性することによって不活化
し、1/10容量の 3M 酢酸ナトリウム及び2.5 倍容量の冷
エタノールをDNAを沈殿させるために加えた。溶解液
を-70 ℃で15分保持し、30,000×g で10分間遠心分離し
た。最後にペレットをTE20μl に溶解し、0.4 μg/mlの
エチジウムブロミドを含む2%アガロースゲルで電気泳動
した。解像パターンはUV光下で可視化した。
[Test Example 1] (1) Analysis of DNA fragmentation (Method) The analysis of DNA fragmentation was performed using [Jarvis WD, Kolesnic
k RN, Fornari FA, Traylor RS, Gewirtz DA, Grant S,
Induction of apoptotic DNA damage and cell deathb
y activation of the sphingomyelin pathway, Proc. N
Atl. Acad. Sci., USA, 91, 73-77 (1994)] with a slight modification to 2% agarose gel electrophoresis. Two days after treatment with ceramide-immunoliposomes (24 μM), floating cells or adherent cells were collected and 0.5% SDS / 0.1
It was dissolved in M NaCl / 1 mM EDTA, pH 7.5, and the solution was treated with proteinase K (100 μg / ml) at 50 ° C. for 12 hours. Proteinase K was inactivated by heat denaturation at 94 ° C for 5 minutes and 1/10 volume of 3M sodium acetate and 2.5 volumes of cold ethanol were added to precipitate the DNA. The lysate was kept at -70 ° C for 15 minutes and centrifuged at 30,000 xg for 10 minutes. Finally, the pellet was dissolved in 20 μl of TE and electrophoresed on a 2% agarose gel containing 0.4 μg / ml ethidium bromide. The resolution pattern was visualized under UV light.

【0023】(結果)セラミド−イムノリポソームにて
処理した培養細胞から抽出したDNAは、アポトーシス
の特徴であるオリゴヌクレオソームDNA断片のハシゴ
型の電気泳動プロフィールを示した(図1)。
(Results) DNA extracted from cultured cells treated with ceramide-immunoliposome showed a ladder-type electrophoresis profile of oligonucleosome DNA fragment which is a characteristic of apoptosis (FIG. 1).

【0024】(2)セラミド−リポソームの培養細胞に
対する抗腫瘍効果 (方法)セラミド−イムノリポソーム、又は抗体を結合
させずに同様にして調製したセラミドリポソーム [モル
比率1:2:2(=DDAB:DOPE:C2-セラミド) ;培地中のセラミ
ド最終濃度12μM 、又はモル比率1:2:4(=DDAB:DOPE:C2-
セラミド) ; 培地中のセラミド最終濃度24μM]を用い、
培養グリオーマ細胞に導入したセラミドの成長阻害効果
を調べた。培養グリオーマ細胞にリポソーム処理して48
時間後、ヘモサイトメーター下でトリパン−ブルー染色
を排除した生細胞数の計測によって評価した。コントロ
ールとして、空リポソーム又はエタノール−溶解セラミ
ド(エタノール中4mM)による処理を行った。
(2) Antitumor effect of ceramide-liposomes on cultured cells (Method) Ceramide-immunoliposomes or ceramide liposomes prepared in the same manner without binding antibody (molar ratio 1: 2: 2 (= DDAB: DOPE: C2-ceramide); final concentration of ceramide in the medium 12 μM, or molar ratio 1: 2: 4 (= DDAB: DOPE: C2-
Ceramide); final concentration of ceramide in the medium is 24 μM],
The growth inhibitory effect of ceramide introduced into cultured glioma cells was examined. 48 cultured liposomes on glioma cells
After hours, it was assessed by counting the number of viable cells under a hemocytometer without trypan-blue staining. As a control, treatment with empty liposomes or ethanol-dissolved ceramide (4 mM in ethanol) was performed.

【0025】(結果)表1において、細胞毒性(%)、
即ち未処理細胞に対する生存細胞数の減少率を各リポソ
ーム型及び細胞株について示した。コントロールの空リ
ポソームによっては何ら顕著な細胞毒性は観察されなか
ったのに対し、セラミドリポソーム12μM では3種全て
の細胞において細胞毒性が表れ、セラミド−イムノリポ
ソーム12μM では、さらに高い細胞毒性を示し、抗体の
結合によりさらに効果が上昇することがわかった。エタ
ノール−溶解リポソームの場合と比較した student-t t
est (p<0.01)による統計的差異は、セラミド−リポソー
ムにより処理したU-251SP 及びSK-MG-1 、ならびにセラ
ミド−イムノリポソーム処理の全ての細胞において見ら
れた。
(Results) In Table 1, cytotoxicity (%),
That is, the reduction rate of the number of viable cells relative to untreated cells was shown for each liposome type and cell line. No significant cytotoxicity was observed with the control empty liposomes, whereas ceramide liposomes 12 μM showed cytotoxicity in all three types of cells, and ceramide-immunoliposomes 12 μM showed higher cytotoxicity. It was found that the effect is further increased by the binding of. Student-t t compared to ethanol-dissolved liposomes
Statistical differences due to est (p <0.01) were found in U-251SP and SK-MG-1 treated with ceramide-liposomes and all cells treated with ceramide-immunoliposomes.

【0026】また、セラミドリポソーム24μM はセラミ
ドリポソーム12μM に比べて高い細胞毒性を示し、その
効果は用量依存的であることがわかるが、その用量依存
性は、セラミド−イムノリポソームにおいても同様に見
られた。また、SK-MG-1 及びT98Gに統計的差異が見られ
た。
Further, 24 μM of ceramide liposome showed higher cytotoxicity than 12 μM of ceramide liposome, and it was found that the effect was dose-dependent, but the dose-dependence was also found in ceramide-immunoliposome. It was In addition, a statistical difference was found between SK-MG-1 and T98G.

【0027】[0027]

【表1】 ──────────────────────────────────── 細胞株 処理リポソーム U-251SP SK-MG1 T98G ──────────────────────────────────── 空リポソーム 2.0±0 5.8±2 8.1±1.2 エタノール−溶解セラミド (12μM) 7.5±1 35.4±2 50.0±2.4 セラミドリポソーム (12μM) 34.7±2 * 54.6±1.5 * 60.6±1.4 セラミド−イムノリポソーム(12μM) 56.3±2.5 * 63.8±1.5 * 80.3±0.7 * エタノール−溶解セラミド (24μM) 33.1±1.5 39.2±3 56.1±2.4 セラミドリポソーム (24μM) 44.2±2.5 69.1±0.35* 81.8±0.3 * セラミド−イムノリポソーム(24μM) 61.8±2 72.4±1.7 * 86.3±0.6 * ──────────────────────────────────── 細胞毒性(%) * 統計的差異あり student-t test (p<0.01)[Table 1] ──────────────────────────────────── Cell line treated liposome U-251SP SK-MG1 T98G ──────────────────────────────────── Empty liposome 2.0 ± 0 5.8 ± 2 8.1 ± 1.2 Ethanol − Dissolved ceramide (12 μM) 7.5 ± 1 35.4 ± 2 50.0 ± 2.4 Ceramide liposomes (12 μM) 34.7 ± 2 * 54.6 ± 1.5 * 60.6 ± 1.4 Ceramide-immunoliposomes (12 μM) 56.3 ± 2.5 * 63.8 ± 1.5 * 80.3 ± 0.7 * Ethanol -Dissolved ceramide (24 μM) 33.1 ± 1.5 39.2 ± 3 56.1 ± 2.4 Ceramide liposomes (24 μM) 44.2 ± 2.5 69.1 ± 0.35 * 81.8 ± 0.3 * Ceramide-immunoliposomes (24 μM) 61.8 ± 2 72.4 ± 1.7 * 86.3 ± 0.6 * ─ ─────────────────────────────────── Cytotoxicity (%) * There is a statistical difference student-t test ( p <0.01)

【0028】[実施例2] 抗Fas抗体含有イムノリポ
ソームの調製 (1)抗Fas抗体及びリポソーム用脂質 抗Fas抗体はMedical and biological laboratories (MB
L), Co., Ltd., Nagoya, Japanより購入した。リポソー
ム用脂質は前記のごとくである。
Example 2 Preparation of Anti-Fas Antibody-Containing Immunoliposomes (1) Anti-Fas Antibodies and Lipids for Liposomes Anti-Fas antibodies are available in Medical and biological laboratories (MB
Purchased from L), Co., Ltd., Nagoya, Japan. The liposome lipid is as described above.

【0029】(2)G−22モノクローナル抗体(抗CD
44抗体) 前記のごとくである。
(2) G-22 monoclonal antibody (anti-CD
44 antibody) As described above.

【0030】(3)抗Fas抗体含有イムノリポソームの
調製 抗Fas抗体含有イムノリポソームの調製は多重層リポソ
ームの調製の際の常套的な手段である振盪法に若干の改
良を加えた方法にて行なった。まずリポソームの形状の
安定化をはかる目的にてジラウロイルホスファチジルコ
リン(DLPC)等のコリン脂質を添加した。すなわちDDA
B、DOPE、コリン脂質をそれぞれモル比で1:2:2又
は1:3:2の割合でクロロホルムに溶解混合し、シリ
コン化したスピッツの底でロータリーエバポレータを用
いて溶媒の除去を行なった。この脂質フィルム(リポソ
ーム膜)にリン酸緩衝液に溶解した抗Fas抗体を脂質総
量1μmol に対して2ngから2μg の割合で添加し、さ
らにG−22モノクローナル抗体(抗CD44抗体)を脂質
総量1μmol に対して2ngから2μg の割合で添加し、
1から5分間振盪した。さらにその後リン酸緩衝液を加
え、全量を500μlに調製した。この方法にて目的と
する抗Fas抗体含有イムノリポソームを得た。
(3) Preparation of anti-Fas antibody-containing immunoliposome The anti-Fas antibody-containing immunoliposome is prepared by a method which is a modification of the shaking method which is a conventional means for preparing multilamellar liposomes. It was First, a choline lipid such as dilauroylphosphatidylcholine (DLPC) was added for the purpose of stabilizing the shape of the liposome. Ie DDA
B, DOPE and choline lipid were dissolved and mixed in chloroform at a molar ratio of 1: 2: 2 or 1: 3: 2, respectively, and the solvent was removed using a rotary evaporator at the bottom of the siliconized spitz. To this lipid film (liposome membrane), anti-Fas antibody dissolved in phosphate buffer was added at a ratio of 2 ng to 2 μg per 1 μmol of total lipid, and G-22 monoclonal antibody (anti-CD44 antibody) was added to 1 μmol of total lipid. 2 ng to 2 μg,
Shake for 1 to 5 minutes. After that, phosphate buffer was added to adjust the total volume to 500 μl. By this method, the desired immunoliposomes containing anti-Fas antibody were obtained.

【0031】[試験例2] 抗Fas抗体含有イムノリポ
ソームの培養細胞に対する抗腫瘍効果 (1)抗Fas抗体含有イムノリポソームの培養細胞に対
する抗腫瘍効果 (方法)抗Fas抗体含有イムノリポソームを15ないし
30nmol脂質/ml の割合で培養グリオーマ細胞に添加
し、グリオーマ細胞の成長阻害効果を調べた。対象とし
てフリーの抗Fas抗体を同量添加した。
[Test Example 2] Antitumor effect of anti-Fas antibody-containing immunoliposome on cultured cells (1) Antitumor effect of anti-Fas antibody-containing immunoliposome on cultured cells (Method) 15 to 30 nmol of anti-Fas antibody-containing immunoliposome Lipids / ml were added to cultured glioma cells to examine the growth inhibitory effect of glioma cells. The same amount of free anti-Fas antibody was added as a control.

【0032】(結果)表2において、細胞毒性(%)、
即ち未処理細胞に対する生存細胞数の減少率を各リポソ
ーム型及び細胞株について示した。抗Fas抗体及び抗Fas
抗体含有イムノリポソームのいずれにおいてもすべての
培養細胞株にて細胞毒性が観察された。その細胞毒性は
フリーの抗Fas抗体を添加した場合よりも抗Fas抗体含有
イムノリポソームのほうが統計学的に有意な差をもって
強いものであった。またその細胞毒性の形態はTUNEL法
によりアポトーシスであることが証明された。
(Results) In Table 2, cytotoxicity (%),
That is, the reduction rate of the number of viable cells relative to untreated cells was shown for each liposome type and cell line. Anti-Fas antibody and anti-Fas
Cytotoxicity was observed in all of the cultured cell lines with any of the antibody-containing immunoliposomes. The cytotoxicity of the anti-Fas antibody-containing immunoliposomes was stronger with a statistically significant difference than when the free anti-Fas antibody was added. Moreover, the cytotoxic form was proved to be apoptosis by the TUNEL method.

【0033】[0033]

【表2】 ──────────────────────────────────── 細胞株 U-251 SP SK-MG-1 T98G ──────────────────────────────────── 空のリポソーム 1.2 ± 0.3 4.2±1.8 5.0±1.1 坑Fas抗体 0.1 μg 4.3 ±0.7 2.5±0.4 3.2±1.5 1.0 μg 8.4 ±2.5 10.1±2.1 12.7±3.0 100 μg 56.7 ±4.4 60.3±3.8 58.9±5.5 リポソーム 抗体量 0.1 μg 52.2 ±3.8 48.3±5.4 50.1±6.3 1.0 μg 78.4 ±4.5 67.5±4.7 67.4±3.8 イムノリポソーム 抗体量 0.1 μg 69.3 ±4.1 64.5 ±3.4 66.6±4.2 1.0 μg 88.7 ±6.3 80.5 ±7.1 85.3±3.9 ────────────────────────────────────[Table 2] ──────────────────────────────────── Cell line U-251 SP SK-MG- 1 T98G ──────────────────────────────────── Empty liposome 1.2 ± 0.3 4.2 ± 1.8 5.0 ± 1.1 Anti-Fas antibody 0.1 μg 4.3 ± 0.7 2.5 ± 0.4 3.2 ± 1.5 1.0 μg 8.4 ± 2.5 10.1 ± 2.1 12.7 ± 3.0 100 μg 56.7 ± 4.4 60.3 ± 3.8 58.9 ± 5.5 Liposome antibody amount 0.1 μg 52.2 ± 3.8 48.3 ± 5.4 50.1 ± 6.3 1.0 μg 78.4 ± 4.5 67.5 ± 4.7 67.4 ± 3.8 Immunoliposome antibody amount 0.1 μg 69.3 ± 4.1 64.5 ± 3.4 66.6 ± 4.2 1.0 μg 88.7 ± 6.3 80.5 ± 7.1 85.3 ± 3.9 ───────────── ───────────────────────

【0034】[実施例3]マグネタイト含有イムノリポ
ソームの調製 (1)マグネタイト及びリポソーム用脂質 マグネタイトは、Sinkai M, Honda H, Kabayashi T, Pr
eparation of fine magnetic particles and applicati
on for enzyme immobilization Biocatalysis,5, 61-69
(1991)の方法に従い調製した。
Example 3 Preparation of Immunoliposomes Containing Magnetite (1) Lipids for Magnetite and Liposomes Magnetite is Sinkai M, Honda H, Kabayashi T, Pr.
eparation of fine magnetic particles and applicati
on for enzyme immobilization Biocatalysis, 5, 61-69
It was prepared according to the method of (1991).

【0035】リポソーム用脂質は前記のごとくである。The lipid for liposome is as described above.

【0036】(2)G−22モノクローナル抗体(抗CD
44抗体) 前記のごとくである。
(2) G-22 monoclonal antibody (anti-CD
44 antibody) As described above.

【0037】(3)マグネタイト含有イムノリポソーム
の調製 マグネタイト含有イムノリポソームの調製は多重層リポ
ソームの調製の際の常套的な手段である振盪法に若干の
改良を加えた方法にて行なった。まず形状の安定化をは
かる目的にてジラウロイルホスファチジルコリン(DLP
C)等のコリン脂質を添加した。DDAB、DOPE、コリン脂
質をそれぞれモル比で1:2:2の割合でクロロホルム
に溶解混合し、シリコン化したスピッツの底でロータリ
ーエバポレータを用いて溶媒の除去を行なった。この脂
質フィルム(リポソーム膜)にリン酸緩衝液に溶解した
マグネタイトを脂質総量1μmolに対して20μg の割
合で添加し、さらにG−22モノクローナル抗体(抗CD
44抗体)を脂質総量1μmolに対して2ngから2μg の
割合で添加し、1から5分間振盪した。さらにその後リ
ン酸緩衝液を加え、全量を500μl に調製した。この
方法にて目的とするマグネタイト含有イムノリポソーム
を得た。
(3) Preparation of Magnetite-Containing Immunoliposomes The magnetite-containing immunoliposomes were prepared by a slight modification of the shaking method, which is a conventional means for preparing multilamellar liposomes. First, for the purpose of stabilizing the shape, dilauroylphosphatidylcholine (DLP
C) and other choline lipids were added. DDAB, DOPE, and choline lipid were dissolved and mixed in chloroform at a molar ratio of 1: 2: 2, and the solvent was removed using a rotary evaporator at the bottom of the siliconized spitz. Magnetite dissolved in a phosphate buffer was added to this lipid film (liposome membrane) at a ratio of 20 μg to 1 μmol of total lipid, and further G-22 monoclonal antibody (anti-CD) was added.
44 antibody) was added at a ratio of 2 ng to 2 μg to 1 μmol of total lipid and shaken for 1 to 5 minutes. After that, phosphate buffer was added to adjust the total volume to 500 μl. By this method, a target magnetite-containing immunoliposome was obtained.

【0038】[試験例3]マグネタイト含有イムノリポ
ソームによる培養細胞の鉄の取り込み (1)マグネタイトの取り込み (方法)マグネタイト含有イムノリポソームを15ない
し30nmol脂質/ml の割合で培養グリオーマ細胞に添加
し、グリオーマ細胞のマグネタイトの取り込み量を調べ
た。対象としてフリーのマグネタイトを同量添加した。
細胞内のマグネタイトの取り込み量は細胞を濃塩酸で溶
解後、TCAにて細胞溶解物を除去し、StClを添加し、原
子吸光分析にてマグネタイトの濃度を測定し、マグネタ
イト量を算出した。
[Test Example 3] Incorporation of iron into cultured cells by magnetite-containing immunoliposomes (1) Incorporation of magnetite (method) Magnetite-containing immunoliposomes were added to cultured glioma cells at a ratio of 15 to 30 nmol lipid / ml, and glioma cells were added. The amount of magnetite uptake in cells was examined. As an object, the same amount of free magnetite was added.
The amount of incorporated magnetite was calculated by dissolving the cells with concentrated hydrochloric acid, removing the cell lysate with TCA, adding StCl, and measuring the concentration of magnetite by atomic absorption spectrometry to calculate the amount of magnetite.

【0039】(結果)表3において、培養グリオーマ細
胞に取り込まれたマグネタイトの量を各リポソーム型に
ついて示した。同量のフリーのマグネタイトを培養グリ
オーマ細胞に添加したときには細胞内へのマグネタイト
の取り込みはほとんど観察されなかった。一方、マグネ
タイト含有イムノリポソームでは大量のマグネタイトの
取り込みが観察された。その取り込み量は従来のホスフ
ァチジルコリンやホスファチジルセリン又はコレステロ
ールといった脂質で調製されたリポソームの10倍以上
であった。また鉄の取り込み量は抗CD44抗体を結合させ
たイムノリポソームで抗CD44抗体を結合していない通常
リポソームより有意に高まった。
(Results) In Table 3, the amount of magnetite incorporated into cultured glioma cells is shown for each liposome type. When the same amount of free magnetite was added to cultured glioma cells, intracellular uptake of magnetite was hardly observed. On the other hand, a large amount of magnetite uptake was observed in the magnetite-containing immunoliposomes. The uptake amount was 10 times or more that of a liposome prepared with a conventional lipid such as phosphatidylcholine, phosphatidylserine or cholesterol. The amount of iron uptake was significantly higher in the immunoliposomes conjugated with anti-CD44 antibody than in normal liposomes not conjugated with anti-CD44 antibody.

【0040】[0040]

【表3】 ──────────────────────────── 細胞株 U-251 SP SK-MG-1 T98G ──────────────────────────── リポソーム 17.0 18.0 19.0 イムノリポソーム 42.0 36.0 37.0 ──────────────────────────── 数値はマグネタイト含有リポソーム又はイムノリポソー
ム投与後16時間での細胞ひとつあたりのマグネタイト
の取り込み量(pg-Fe3O4/cell)を示す。
[Table 3] ──────────────────────────── Cell line U-251 SP SK-MG-1 T98G ────── ────────────────────── Liposomes 17.0 18.0 19.0 Immunoliposomes 42.0 36.0 37.0 ──────────────────── ───────── The numerical value shows the uptake of magnetite per cell (pg-Fe3O4 / cell) 16 hours after administration of magnetite-containing liposome or immunoliposome.

【0041】[実施例4] 遺伝子含有イムノリポソー
ムの調製 (1)遺伝子及びリポソーム用脂質 遺伝子はpCH110(ファルマシアより購入)、pSV2IFN-β
(東レ株式会社より供与)等の真核細胞発現ベクターを
用いた。リポソーム用脂質は前記のごとくである。
[Example 4] Preparation of gene-containing immunoliposome (1) Gene and lipid for liposome Gene pCH110 (purchased from Pharmacia), pSV2IFN-β
Eukaryotic cell expression vectors such as those provided by Toray Industries, Inc. were used. The liposome lipid is as described above.

【0042】(2)G−22モノクローナル抗体(抗CD
44抗体) 前記のごとくである。
(2) G-22 monoclonal antibody (anti-CD
44 antibody) As described above.

【0043】(3)遺伝子含有イムノリポソーム調製 遺伝子含有イムノリポソームの調製は多重層リポソーム
の調製の際の常套的な手段である振盪法に若干の改良を
加えた方法にて行なった。まず形状の安定化をはかる目
的にてジラウロイルホスファチジルコリン(DLPC)等の
コリン脂質を添加した。DDAB、DOPE、コリン脂質をそれ
ぞれモル比で1:2:2の割合でクロロホルムに溶解混
合し、シリコン化したスピッツの底でロータリーエバポ
レータを用いて溶媒の除去を行なった。この脂質フィル
ム(リポソーム膜)にリン酸緩衝液に溶解した遺伝子を
脂質総量1μmol に対して20μg の割合で添加し、さ
らにG−22モノクローナル抗体(抗CD44抗体)を脂質
総量1μmol に対して2ngから2μg の割合で添加し、
1から5分間振盪した。さらにその後リン酸緩衝液を加
え、全量を500μl に調製した。この方法にて目的と
する遺伝子含有イムノリポソームを得た。
(3) Preparation of Gene-Containing Immunoliposomes The preparation of gene-containing immunoliposomes was carried out by a slight modification of the shaking method which is a conventional means for preparing multilamellar liposomes. First, a choline lipid such as dilauroylphosphatidylcholine (DLPC) was added for the purpose of stabilizing the shape. DDAB, DOPE, and choline lipid were dissolved and mixed in chloroform at a molar ratio of 1: 2: 2, and the solvent was removed using a rotary evaporator at the bottom of the siliconized spitz. Genes dissolved in phosphate buffer were added to this lipid film (liposome membrane) at a ratio of 20 μg to 1 μmol of total lipid, and G-22 monoclonal antibody (anti-CD44 antibody) was added from 2 ng to 1 μmol of total lipid. Add at a rate of 2 μg,
Shake for 1 to 5 minutes. After that, phosphate buffer was added to adjust the total volume to 500 μl. By this method, a target gene-containing immunoliposome was obtained.

【0044】[試験例4] 遺伝子含有イムノリポソー
ムによる培養細胞での遺伝子の発現 (1)遺伝子の発現 (方法)遺伝子含有イムノリポソームを15ないし30
nmol脂質/mlの割合で培養グリオーマ細胞に添加し、グ
リオーマ細胞での導入遺伝子の発現を調べた。対象とし
てフリーの遺伝子を同量添加した。
[Test Example 4] Gene expression in cultured cells by gene-containing immunoliposome (1) Gene expression (method) 15 to 30 gene-containing immunoliposomes
The nmol lipid / ml was added to the cultured glioma cells, and the expression of the transgene in the glioma cells was examined. The same amount of free gene was added as a control.

【0045】(結果)表4において、培養グリオーマ細
胞に導入された遺伝子の発現を各リポソーム型について
示した。同量のフリーの遺伝子を培養グリオーマ細胞に
添加したときにはその発現は全く観察されなかった。一
方遺伝子含有イムノリポソームではその発現が観察され
た。また導入遺伝子の発現は抗CD44抗体を結合させたイ
ムノリポソームで抗CD44抗体を結合していない通常リポ
ソームより有意に高まった。
(Results) In Table 4, the expression of the gene introduced into the cultured glioma cells is shown for each liposome type. No expression was observed when the same amount of free gene was added to cultured glioma cells. On the other hand, its expression was observed in gene-containing immunoliposomes. In addition, the expression of the transgene was significantly enhanced in the immunoliposomes bound with anti-CD44 antibody as compared with the normal liposomes not bound with anti-CD44 antibody.

【0046】[0046]

【表4】 ──────────────────────────────────── 細胞株 U-251 SP SK-MG-1 T98G ──────────────────────────────────── 空のリポソーム 2.5 > 2.5 > 2.5 > フリーの遺伝子 2.5 > 2.5 > 2.5 > リポソーム 7.5 nmol 23.8 ± 4.0 30.7 ± 4.8 39.8 ± 8.8 15.0 nmol 52.0 ± 7.8 60.8 ± 5.6 77.8 ±12.7 30.0 nmol 126.3 ±12.1 112.1 ±10.7 168.3 ±17.5 イムノリポソーム 7.5 nmol 85.0 ± 7.6 88.9 ± 8.5 63.3 ± 9.7 15.0 nmol 175.8 ±10.8 170.5 ±11.6 140.8 ±15.3 30.0 nmol 256.3 ±15.7 240.4 ±14.7 263.3 ±19.5 ──────────────────────────────────── 数値は遺伝子導入後4日目の培養液中のβ−インターフェロン濃度(IU/ml) を示す。[Table 4] ──────────────────────────────────── Cell line U-251 SP SK-MG- 1 T98G ──────────────────────────────────── Empty liposome 2.5> 2.5> 2.5> Free gene 2.5> 2.5> 2.5> Liposome 7.5 nmol 23.8 ± 4.0 30.7 ± 4.8 39.8 ± 8.8 15.0 nmol 52.0 ± 7.8 60.8 ± 5.6 77.8 ± 12.7 30.0 nmol 126.3 ± 12.1 112.1 ± 10.7 168.3 ± 17.5 Immunoliposomes 7.5 nmol 85.0 ± 7.6 88.9 ± 8.5 63.3 ± 9.7 15.0 nmol 175.8 ± 10.8 170.5 ± 11.6 140.8 ± 15.3 30.0 nmol 256.3 ± 15.7 240.4 ± 14.7 263.3 ± 19.5 ────────────────────────── ─────────── The numerical value indicates the β-interferon concentration (IU / ml) in the culture medium on the 4th day after gene transfer.

【0047】[0047]

【発明の効果】本発明のセラミド含有イムノリポソーム
又は抗Fas抗体含有イムノリポソームによれば、腫瘍細
胞にセラミド又は抗Fas抗体を効率よくかつ選択的に導
入してアポトーシスを誘導できるので、悪性腫瘍に対す
る治療に効果的である。またこれらはアポトーシスの機
構の解明に役立つと考えられる。
EFFECT OF THE INVENTION The ceramide-containing immunoliposome or anti-Fas antibody-containing immunoliposome of the present invention can efficiently and selectively introduce ceramide or anti-Fas antibody into tumor cells to induce apoptosis. Effective in treatment. It is also considered that they are useful for elucidating the mechanism of apoptosis.

【0048】本発明のマグネタイト含有イムノリポソー
ムによれば、フリーに添加されたマグネタイトよりはる
かに効率よく腫瘍細胞にマグネタイトを導入できるの
で、悪性腫瘍に対する局所温熱治療に効果的である。本
発明の遺伝子含有イムノリポソームによれば、効率よく
遺伝子を腫瘍細胞に導入でき、発現できるので、悪性腫
瘍に対する遺伝子治療に効果的である。
According to the magnetite-containing immunoliposome of the present invention, it is possible to introduce magnetite into tumor cells much more efficiently than that of freely added magnetite, and it is effective for local hyperthermia treatment for malignant tumors. According to the gene-containing immunoliposome of the present invention, a gene can be efficiently introduced into a tumor cell and expressed, and therefore, it is effective in gene therapy for malignant tumor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 セラミド−イムノリポソーム処理によりグリ
オーマ細胞から抽出したDNAのアガロールゲル電気泳
動写真を示す。 レーン1:分子量マーカー レーン2:抽出DNA
FIG. 1 shows an agarol gel electrophoresis photograph of DNA extracted from glioma cells by treatment with ceramide-immunoliposomes. Lane 1: Molecular weight marker Lane 2: Extracted DNA

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 A61K 33/26 A61K 33/26 31/715 39/395 T 39/395 48/00 48/00 A61N 1/40 // A61N 1/40 A61K 37/20 (72)発明者 岡田 秀穂 愛知県名古屋市昭和区川名町4−26ミラ川 名301号─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area A61K 33/26 A61K 33/26 31/715 39/395 T 39/395 48/00 48/00 A61N 1/40 // A61N 1/40 A61K 37/20 (72) Inventor Hideho Okada 4-26 Kawanamachi, Showa-ku, Aichi Prefecture Nagoya No. 301 Mirakawana

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 抗腫瘍活性物質を含むカチオン性リポソ
ーム膜に、腫瘍細胞に選択的に反応するモノクローナル
抗体G−22(抗CD44抗体)を結合させたことを特徴と
するイムノリポソーム。
1. An immunoliposome in which a monoclonal antibody G-22 (anti-CD44 antibody) that selectively reacts with tumor cells is bound to a cationic liposome membrane containing an antitumor active substance.
【請求項2】 抗腫瘍活性物質が、セラミド、抗Fas抗
体、マグネタイト、及び遺伝子から成る群から選ばれた
ものである、請求項1記載のイムノリポソーム。
2. The immunoliposome according to claim 1, wherein the antitumor active substance is selected from the group consisting of ceramide, anti-Fas antibody, magnetite, and gene.
【請求項3】 遺伝子が、自殺遺伝子又はサイトカイン
遺伝子である請求項2記載のイムノリポソーム。
3. The immunoliposome according to claim 2, wherein the gene is a suicide gene or a cytokine gene.
【請求項4】 サイトカインが、インターフェロン(IF
N)-α、β、γ、顆粒球マクロファージコロニー刺激因
子(GM-CSF)、インターロイキン(IL)-1α、IL-1β、IL-1
α、IL-1β、IL-2、IL-3、IL-4、IL-6、IL-7、IL-10 、
IL-12 、IL-13、IL-15 、腫瘍壊死因子(TNF)−α、リ
ンホトキシン(LT)- β、顆粒球コロニー刺激因子(G-CS
F) 、マクロファージコロニー刺激因子(M-CSF) 、マク
ロファージ遊走阻止因子(MIF) 、白血病抑制因子(LIF)
、T細胞活性化共刺激因子B7(CD80)及びB7-2(CD86)、
キット・リガンド、オンコスタチンMから成る群から選
ばれたものである、請求項3記載のイムノリポソーム。
4. The cytokine is interferon (IF
N) -α, β, γ, granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin (IL) -1α, IL-1β, IL-1
α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-7, IL-10,
IL-12, IL-13, IL-15, tumor necrosis factor (TNF) -α, lymphotoxin (LT) -β, granulocyte colony stimulating factor (G-CS
F), macrophage colony stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), leukemia inhibitory factor (LIF)
, T cell activating co-stimulators B7 (CD80) and B7-2 (CD86),
The immunoliposome according to claim 3, which is selected from the group consisting of kit ligand and oncostatin M.
【請求項5】 カチオン性リポソーム膜を構成する脂質
が、ジメチルジオクタデシルアンモニウムブロミド(DD
AB)、ジオレオイルホスファチジルエタノールアミン
(DOPE)を含む請求項1記載のイムノリポソーム。
5. The lipid constituting the cationic liposome membrane is dimethyldioctadecyl ammonium bromide (DD
AB) and dioleoylphosphatidylethanolamine (DOPE).
【請求項6】 腫瘍細胞が、CD44過剰発現細胞である請
求項1記載のイムノリポソーム。
6. The immunoliposome according to claim 1, wherein the tumor cell is a CD44 overexpressing cell.
【請求項7】 CD44過剰発現細胞が、グリオーマ細胞、
メラノーマ細胞、肺癌細胞である請求項6記載のイムノ
リポソーム。
7. The CD44 overexpressing cell is a glioma cell,
The immunoliposome according to claim 6, which is a melanoma cell or a lung cancer cell.
【請求項8】 抗腫瘍活性物質を含むカチオン性リポソ
ーム膜に、腫瘍細胞に選択的に反応するモノクローナル
抗体G−22(抗CD44抗体)を添加し、混合し、振盪す
ることを特徴とするイムノリポソームの調製方法。
8. An immunological method characterized in that a monoclonal antibody G-22 (anti-CD44 antibody) which selectively reacts with tumor cells is added to a cationic liposome membrane containing an anti-tumor active substance, mixed and shaken. Method for preparing liposome.
【請求項9】 抗腫瘍活性物質が、セラミド、抗Fas抗
体、マグネタイト、及び遺伝子から成る群から選ばれた
ものである、請求項8記載のイムノリポソームの調製方
法。
9. The method for preparing an immunoliposome according to claim 8, wherein the antitumor active substance is selected from the group consisting of ceramide, anti-Fas antibody, magnetite, and gene.
JP7295918A 1995-10-20 1995-10-20 Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation Pending JPH09110722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295918A JPH09110722A (en) 1995-10-20 1995-10-20 Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295918A JPH09110722A (en) 1995-10-20 1995-10-20 Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation

Publications (1)

Publication Number Publication Date
JPH09110722A true JPH09110722A (en) 1997-04-28

Family

ID=17826828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295918A Pending JPH09110722A (en) 1995-10-20 1995-10-20 Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation

Country Status (1)

Country Link
JP (1) JPH09110722A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018487A1 (en) * 1996-10-31 1998-05-07 Mochida Pharmaceutical Co., Ltd. Prophylactic/remedial agent
WO2000054807A1 (en) * 1999-03-17 2000-09-21 Mitsubishi Chemical Corporation Ligand-bonded complex
WO2000061114A1 (en) * 1999-04-08 2000-10-19 Mitsubishi Chemical Corporation Fine particles targeting cells and process for producing the same
JP2002537318A (en) * 1999-02-22 2002-11-05 ジョージタウン・ユニバーシティ Antibody-targeted fragment immunoliposomes for systemic gene delivery
WO2003009870A1 (en) * 2001-07-25 2003-02-06 Mitsubishi Pharma Corporation Remedies for mammary cancer
WO2004003183A1 (en) * 2002-06-27 2004-01-08 Yoon-Hoh Kook Immunoliposome conjugated with anti-upa antibody
JP2004315512A (en) * 2003-03-28 2004-11-11 Unitika Ltd Functional composition
WO2005079843A1 (en) * 2004-02-25 2005-09-01 Ttc Co., Ltd. Novel liposome
WO2006051732A1 (en) * 2004-11-10 2006-05-18 Konica Minolta Medical & Graphic, Inc. Pharmaceutical preparation containing coated magnetic particles and method for production thereof, and diagnosis therapy system
WO2006080243A1 (en) * 2005-01-28 2006-08-03 Konica Minolta Medical & Graphic, Inc. Coated magnetic particle containing preparation, process for producing the same and diagnostic therapeutic system
JP2006524707A (en) * 2003-04-25 2006-11-02 ザ ペン ステイト リサーチ ファウンデーション Systemic delivery methods and systems for growth-inhibiting lipid-derived bioactive compounds
JP2006328026A (en) * 2005-05-30 2006-12-07 Kuraray Co Ltd Liposome and skin care preparation containing the same
JP2006335651A (en) * 2005-05-31 2006-12-14 Pola Chem Ind Inc Liposome, and composition for treatment comprising the same
US7169390B2 (en) * 2000-12-22 2007-01-30 Lpath Therapeutics, Inc. Compositions and methods for the treatment and prevention of cancer, angiogenesis, and inflammation
JP2008505131A (en) * 2004-07-07 2008-02-21 スタテンス セールム インスティトゥート Compositions and methods for stabilizing lipid-based adjuvant formulations using glycolipids
WO2009020093A1 (en) * 2007-08-09 2009-02-12 Daiichi Sankyo Company, Limited Immunoliposome inducing apoptosis into cell expressing death domain-containing receptor
EP2023897A1 (en) * 2006-05-15 2009-02-18 Georgetown University Preparation of antibody or an antibody fragment-targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
WO2009082014A1 (en) 2007-12-25 2009-07-02 Yamaguchi University Drug delivery system
US7829674B2 (en) 2006-10-27 2010-11-09 Lpath, Inc. Compositions and methods for binding sphingosine-1-phosphate
JP2010263920A (en) * 1997-11-19 2010-11-25 Georgetown Univ Targeted liposome gene delivery
US8444970B2 (en) 2006-10-27 2013-05-21 Lpath, Inc. Compositions and methods for treating ocular diseases and conditions
US8617514B2 (en) 1999-02-22 2013-12-31 Georgetown University Tumor-targeted nanodelivery systems to improve early MRI detection of cancer
US8796429B2 (en) 2006-05-31 2014-08-05 Lpath, Inc. Bioactive lipid derivatives, and methods of making and using same
US8865127B2 (en) 1999-02-22 2014-10-21 Georgetown University Simplified and improved method for preparing an antibody or an antibody fragment targeted immunoliposome for systemic administration of a therapeutic or diagnostic agent
US9034329B2 (en) 1999-02-22 2015-05-19 Georgetown University Preparation of antibody or an antibody fragment-targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
US9217749B2 (en) 2006-05-31 2015-12-22 Lpath, Inc. Immune-derived moieties reactive against lysophosphatidic acid
US9274129B2 (en) 2006-05-31 2016-03-01 Lpath, Inc. Methods and reagents for detecting bioactive lipids
US9274130B2 (en) 2006-05-31 2016-03-01 Lpath, Inc. Prevention and treatment of pain using antibodies to lysophosphatidic acid
EP3630126A4 (en) * 2017-06-02 2021-03-17 The Penn State Research Foundation Ceramide nanoliposomes, compositions and methods of using for immunotherapy
JP2021510703A (en) * 2018-01-22 2021-04-30 ペキン インノ メディスン シーオー., エルティーディーBeijing Inno Medicine Co., Ltd Liposomal nanocarrier delivery system for targeting active CD44 molecules, methods of their preparation, and their use

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128905B2 (en) 1996-10-31 2006-10-31 Mochida Pharmaceutical Co., Ltd. Method of treating graft versus host disease by administration of a Fas antagonist
WO1998018487A1 (en) * 1996-10-31 1998-05-07 Mochida Pharmaceutical Co., Ltd. Prophylactic/remedial agent
JP2010263920A (en) * 1997-11-19 2010-11-25 Georgetown Univ Targeted liposome gene delivery
US8865127B2 (en) 1999-02-22 2014-10-21 Georgetown University Simplified and improved method for preparing an antibody or an antibody fragment targeted immunoliposome for systemic administration of a therapeutic or diagnostic agent
JP2002537318A (en) * 1999-02-22 2002-11-05 ジョージタウン・ユニバーシティ Antibody-targeted fragment immunoliposomes for systemic gene delivery
JP2011115167A (en) * 1999-02-22 2011-06-16 Georgetown Univ Antibody fragment-targeted immunoliposome for systemic gene delivery
JP4799736B2 (en) * 1999-02-22 2011-10-26 ジョージタウン・ユニバーシティ Antibody fragment targeted immunoliposomes for systemic gene delivery
US9480750B2 (en) 1999-02-22 2016-11-01 Georgetown University Preparation of antibody or an antibody fragment targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
US9034329B2 (en) 1999-02-22 2015-05-19 Georgetown University Preparation of antibody or an antibody fragment-targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
US9034330B2 (en) 1999-02-22 2015-05-19 Georgetown University Preparation of antibody or an antibody fragment-targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
US8617514B2 (en) 1999-02-22 2013-12-31 Georgetown University Tumor-targeted nanodelivery systems to improve early MRI detection of cancer
US8859274B2 (en) 1999-02-22 2014-10-14 Synergene Therapeutics, Inc. Antibody fragment-targeted immunoliposomes for systemic gene delivery
WO2000054807A1 (en) * 1999-03-17 2000-09-21 Mitsubishi Chemical Corporation Ligand-bonded complex
WO2000061114A1 (en) * 1999-04-08 2000-10-19 Mitsubishi Chemical Corporation Fine particles targeting cells and process for producing the same
US7169390B2 (en) * 2000-12-22 2007-01-30 Lpath Therapeutics, Inc. Compositions and methods for the treatment and prevention of cancer, angiogenesis, and inflammation
US7901682B2 (en) 2000-12-22 2011-03-08 Lpath, Inc. Compositions and methods for the treatment and prevention of cancer, angiogenesis, and inflammation
WO2003009870A1 (en) * 2001-07-25 2003-02-06 Mitsubishi Pharma Corporation Remedies for mammary cancer
WO2004003183A1 (en) * 2002-06-27 2004-01-08 Yoon-Hoh Kook Immunoliposome conjugated with anti-upa antibody
JP2004315512A (en) * 2003-03-28 2004-11-11 Unitika Ltd Functional composition
JP2006524707A (en) * 2003-04-25 2006-11-02 ザ ペン ステイト リサーチ ファウンデーション Systemic delivery methods and systems for growth-inhibiting lipid-derived bioactive compounds
JP2011063615A (en) * 2003-04-25 2011-03-31 Penn State Res Found:The Method and system for systemic delivery of growth arresting, lipid-derived bioactive compound
EP1617808A4 (en) * 2003-04-25 2011-11-02 Penn State Res Found Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
WO2005079843A1 (en) * 2004-02-25 2005-09-01 Ttc Co., Ltd. Novel liposome
JP2008505131A (en) * 2004-07-07 2008-02-21 スタテンス セールム インスティトゥート Compositions and methods for stabilizing lipid-based adjuvant formulations using glycolipids
WO2006051732A1 (en) * 2004-11-10 2006-05-18 Konica Minolta Medical & Graphic, Inc. Pharmaceutical preparation containing coated magnetic particles and method for production thereof, and diagnosis therapy system
WO2006080243A1 (en) * 2005-01-28 2006-08-03 Konica Minolta Medical & Graphic, Inc. Coated magnetic particle containing preparation, process for producing the same and diagnostic therapeutic system
JP2006328026A (en) * 2005-05-30 2006-12-07 Kuraray Co Ltd Liposome and skin care preparation containing the same
JP2006335651A (en) * 2005-05-31 2006-12-14 Pola Chem Ind Inc Liposome, and composition for treatment comprising the same
EP2023897A4 (en) * 2006-05-15 2013-04-03 Univ Georgetown Preparation of antibody or an antibody fragment-targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
EP2023897A1 (en) * 2006-05-15 2009-02-18 Georgetown University Preparation of antibody or an antibody fragment-targeted immunoliposomes for systemic administration of therapeutic or diagnostic agents and uses thereof
US9274130B2 (en) 2006-05-31 2016-03-01 Lpath, Inc. Prevention and treatment of pain using antibodies to lysophosphatidic acid
US9217749B2 (en) 2006-05-31 2015-12-22 Lpath, Inc. Immune-derived moieties reactive against lysophosphatidic acid
US9274129B2 (en) 2006-05-31 2016-03-01 Lpath, Inc. Methods and reagents for detecting bioactive lipids
US8796429B2 (en) 2006-05-31 2014-08-05 Lpath, Inc. Bioactive lipid derivatives, and methods of making and using same
US8025877B2 (en) 2006-10-27 2011-09-27 Lpath, Inc. Methods of using humanized antibodies and compositions for binding sphingosine-1-phosphate
US8614103B2 (en) 2006-10-27 2013-12-24 Lpath, Inc. Compositions and methods for treating sphingosine-1-phosphate (S1P) related ocular diseases and conditions
US8444970B2 (en) 2006-10-27 2013-05-21 Lpath, Inc. Compositions and methods for treating ocular diseases and conditions
US8067549B2 (en) 2006-10-27 2011-11-29 Lpath, Inc. Humanized antibodies and compositions for binding sphingosine-1-phosphate
US7829674B2 (en) 2006-10-27 2010-11-09 Lpath, Inc. Compositions and methods for binding sphingosine-1-phosphate
US8026342B2 (en) 2006-10-27 2011-09-27 Lpath, Inc. Compositions and methods for binding sphingosine-1-phosphate
US7956173B2 (en) 2006-10-27 2011-06-07 Lpath, Inc. Nucleic acids coding for humanized antibodies for binding sphingosine-1-phosphate
WO2009020093A1 (en) * 2007-08-09 2009-02-12 Daiichi Sankyo Company, Limited Immunoliposome inducing apoptosis into cell expressing death domain-containing receptor
WO2009082014A1 (en) 2007-12-25 2009-07-02 Yamaguchi University Drug delivery system
EP3630126A4 (en) * 2017-06-02 2021-03-17 The Penn State Research Foundation Ceramide nanoliposomes, compositions and methods of using for immunotherapy
US11559504B2 (en) 2017-06-02 2023-01-24 The Penn State Research Foundation Ceramide nanoliposomes, compositions and methods of using for immunotherapy
JP2021510703A (en) * 2018-01-22 2021-04-30 ペキン インノ メディスン シーオー., エルティーディーBeijing Inno Medicine Co., Ltd Liposomal nanocarrier delivery system for targeting active CD44 molecules, methods of their preparation, and their use

Similar Documents

Publication Publication Date Title
JPH09110722A (en) Immunoliposome for transducing tumorous cell of antitumor active substance and its preparation
US11684584B2 (en) Branched peg molecules and related compositions and methods
Mizuno et al. Growth inhibition of glioma cells transfected with the human β-interferon gene by liposomes coupled with a monoclonal antibody
ES2213149T3 (en) LIPOSOMES ASSOCIATED WITH ADENOVIRUS AND RELATED METHODS.
Mizuguchi et al. Efficient gene transfer into mammalian cells using fusogenic liposome
Garu et al. Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response
US6627615B1 (en) Methods and compositions for in vivo gene therapy
Mizuguchi et al. Application of fusogenic liposomes containing fragment A of diphtheria toxin to cancer therapy
EP0904100B1 (en) Cationic lipid and receptor ligand-facilitated delivery of biologically active molecules
EP0646178A1 (en) expression cassette with regularoty regions functional in the mammmlian host
Liu et al. Powerful anti-colon cancer effect of modified nanoparticle-mediated IL-15 immunogene therapy through activation of the host immune system
JP2000516209A (en) Cationic amphiphile / DNA complex
JP2001523480A (en) Treatment of cancer with cytokine-expressed polynucleotides and their compositions
JPH10510813A (en) Cationic amphiphilic compounds and plasmids for intracellular delivery of therapeutic molecules
US20020143062A1 (en) Method to incorporate N-(4-hydroxyphenyl) retinamide in liposomes
CA2227065A1 (en) Adeno-associated viral liposomes and their use in transfecting dendritic cells to stimulate specific immunity
BR112020026045A2 (en) oncolytic virus or cell-mediated cancer therapy presenting antigen using type i interferon and cd40 ligand
Yanagihara et al. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells
Neves et al. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response
Liu et al. Systemic genetic transfer of p21WAF− 1 and GM-CSF utilizing of a novel oligopeptide-based EGF receptor targeting polyplex
US6841537B1 (en) Combination therapy using nucleic acids and conventional drugs
US20030129222A1 (en) Liposomal imexon
Guery et al. Collagen II-pulsed antigen-presenting cells genetically modified to secrete IL-4 down-regulate collagen-induced arthritis
MIZUNO et al. Growth inhibition of glioma cells of different cell lines by human interferon-β produced in the cells transfected with its gene by means of liposomes
Watabe et al. Target-cell specificity of fusogenic liposomes: membrane fusion-mediated macromolecule delivery into human blood mononuclear cells

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711