JPH09110504A - Production of extrusion-molded construction material of high flexural strength - Google Patents

Production of extrusion-molded construction material of high flexural strength

Info

Publication number
JPH09110504A
JPH09110504A JP26702495A JP26702495A JPH09110504A JP H09110504 A JPH09110504 A JP H09110504A JP 26702495 A JP26702495 A JP 26702495A JP 26702495 A JP26702495 A JP 26702495A JP H09110504 A JPH09110504 A JP H09110504A
Authority
JP
Japan
Prior art keywords
silica fume
cement
extrusion
strength
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26702495A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kamiya
清志 神谷
Seiichi Egami
誠一 江上
Yutaka Yamada
裕 山田
Yoshiyuki Tobiuchi
圭之 飛内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP26702495A priority Critical patent/JPH09110504A/en
Publication of JPH09110504A publication Critical patent/JPH09110504A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a molded construction material of high flexural strength by mixing and dispersing cement particles and silica fumed particles in marked uniformity to manifest sufficient improvement in strength due to silica fume formulation. SOLUTION: When base materials for the feedstock of extrusion molding are prepared, at first cement is mixed with silica fume to form a uniform mixture, and aggregate, reinforcing fibers and additives are admixed to this mixture, then, they are kneaded together with water. Thus, cement and silica fume are previously mixed, and they are used in the sufficiently uniformly mixed state to realize high strength as well as lower the aging temperature. The excellent filling effect of silica fume gives densely cured products. Since the cured products have high flexural strength, the molded products can be made thin in wall thickness and light in weight. Moreover, the extrusion-molded construction materials are excellent in frostproof properties because of its denseness and low water absorption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高曲げ強度押出成
形建材の製造方法に係り、特に、曲げ強度が高いことか
ら、薄肉、軽量化が可能な押出成形建材を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high bending strength extruded building material, and more particularly to a method for producing an extruded building material which is thin and light in weight because of its high bending strength.

【0002】[0002]

【従来の技術】従来、セメント系押出成形建材は、結合
材としてのセメント、無機補強繊維、有機補強繊維、骨
材、及び増粘剤を所定割合に計量し、これに混練水を加
え混練して原料素地を得、これを真空式押出機により押
出成形し、その後、40〜80℃の飽和蒸気圧下で1次
養生した後、150〜180℃の条件でオートクレーブ
養生することにより製造されている。
2. Description of the Related Art Conventionally, a cement-based extrusion molding building material is obtained by measuring a cement as a binder, an inorganic reinforcing fiber, an organic reinforcing fiber, an aggregate and a thickening agent in a predetermined ratio, and adding kneading water and kneading them. A raw material base is obtained by extrusion molding with a vacuum extruder, and then primary curing is performed under a saturated vapor pressure of 40 to 80 ° C., followed by autoclave curing at 150 to 180 ° C. .

【0003】このような押出成形建材の製造に当り、原
料中にシリカヒュームを混合することで、強度発現性を
改善する方法が、特開平1−18954号公報、特開平
1−96050号公報及び特開平1−320244号公
報に提案されている。シリカヒュームを用いて十分な高
強度化を図るためには、セメント粒子とシリカヒューム
粒子との分散状態が十分に均一で良好な分散状態である
ことが必要とされる。
In the production of such extruded building materials, a method of improving strength development by mixing silica fume into a raw material is disclosed in JP-A-1-18954 and JP-A-1-96050. It is proposed in JP-A-1-320244. In order to achieve a sufficiently high strength using silica fume, it is necessary that the dispersion state of the cement particles and the silica fume particles is sufficiently uniform and in a good dispersion state.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記い
ずれの従来技術においても、原料の混練時におけるシリ
カヒュームの凝集等により、セメント粒子とシリカヒュ
ーム粒子とを十分均一に分散させることができず、この
ため、所期の強度改善効果が得られていないのが実情で
ある。
However, in any of the above-mentioned conventional techniques, the cement particles and the silica fume particles cannot be dispersed sufficiently uniformly due to the aggregation of silica fume during the kneading of the raw materials. Therefore, the actual situation is that the expected strength improvement effect has not been obtained.

【0005】本発明は上記従来の問題点を解決し、セメ
ント粒子とシリカヒューム粒子とを著しく均一に分散混
合することにより、シリカヒューム配合による強度改善
効果を十分に発揮させて、曲げ強度の高い押出成形建材
を製造する方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art and remarkably uniformly disperses and mixes cement particles and silica fume particles, thereby sufficiently exerting the effect of improving the strength by blending silica fume and high bending strength. It is an object to provide a method for producing an extruded building material.

【0006】[0006]

【課題を解決するための手段】本発明の高曲げ強度押出
成形建材の製造方法は、セメント、シリカヒューム、骨
材、補強繊維、添加剤及び水を混合して得られる原料素
地を押出成形して押出成形建材を製造する方法におい
て、原料素地の調製に当り、まず、セメントとシリカヒ
ュームとを混合して均一混合物とし、この混合物に骨
材、補強繊維及び添加剤を混合し、その後、水を加えて
混練することを特徴とする。
The method for producing a high flexural strength extrusion molding building material of the present invention is to extrude a raw material substrate obtained by mixing cement, silica fume, aggregate, reinforcing fiber, an additive and water. In the method of producing an extrusion-molded building material, in the preparation of the raw material base, first, cement and silica fume are mixed to form a uniform mixture, and the aggregate, reinforcing fibers and additives are mixed in this mixture, and then water is added. It is characterized by adding and kneading.

【0007】セメントとシリカヒュームとを予め混合
し、セメント粒子とシリカヒューム粒子とが十分均一な
分散状態とされたセメント−シリカヒューム混合物と
し、この混合物に他の原料を混合し、最後に水を加えて
混練することにより、シリカヒュームの凝集等を起こす
ことなく、シリカヒューム配合による効果を十分に発揮
させて高曲げ強度の押出成形建材を得ることができる。
Cement and silica fume are premixed to obtain a cement-silica fume mixture in which the cement particles and silica fume particles are in a sufficiently uniform dispersion state, and other raw materials are mixed with this mixture, and finally water is added. In addition, by kneading, the extruded building material with high bending strength can be obtained by fully exhibiting the effect of silica fume blending without causing aggregation of silica fume.

【0008】本発明によれば、このように結合材として
予めセメントとシリカヒュームとを混合し、良好な分散
状態にあるものを用いることで、30〜35N/mm2
の曲げ強度を有する高強度押出成形建材を得ることがで
きる。また、従来法では、曲げ強度の発現のために、1
50〜180℃の比較的高温のオートクレーブ養生を行
う必要があったが、本発明によれば、110〜150℃
の低温のオートクレーブ養生によっても、同程度の曲げ
強度を有する押出成形建材を得ることができる。
According to the present invention, by using cement and silica fume as a binder, which are mixed in advance and are in a good dispersion state, the binder is 30 to 35 N / mm 2
It is possible to obtain a high-strength extruded building material having a bending strength of. Further, in the conventional method, in order to develop bending strength, 1
It was necessary to perform autoclave curing at a relatively high temperature of 50 to 180 ° C., but according to the present invention, 110 to 150 ° C.
Even with the low temperature autoclave curing, the extruded building material having the same bending strength can be obtained.

【0009】更に、超微粉末であるシリカヒュームの充
填効果により、硬化体の組織が緻密なものとなり、吸水
率を低下させることができ、その結果、押出成形建材の
耐凍害性が著しく向上するという効果も奏される。
Further, due to the filling effect of silica fume which is an ultrafine powder, the structure of the hardened body becomes dense and the water absorption rate can be lowered, and as a result, the frost damage resistance of the extrusion molded building material is remarkably improved. The effect is also produced.

【0010】本発明においては、特に、セメント100
重量部に対してシリカヒュームを10〜80重量部混合
することにより、良好な効果が得られる。
In the present invention, in particular, cement 100
A good effect is obtained by mixing 10 to 80 parts by weight of silica fume with respect to parts by weight.

【0011】[0011]

【発明の実施の形態】以下に本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0012】本発明においては、原料素地の調製に当
り、まず、セメントとシリカヒュームとを十分に均一に
混合する。
In the present invention, when preparing a raw material base, first, cement and silica fume are mixed sufficiently uniformly.

【0013】セメントとしては、普通ポルトランドセメ
ント等、各種のセメントを用いることができる。また、
シリカヒュームとしては、平均粒径0.20μm以下,
比表面積15m2 /g以上の微粒子を用いるのが好まし
い。
As the cement, various kinds of cement such as ordinary Portland cement can be used. Also,
Silica fume has an average particle size of 0.20 μm or less,
It is preferable to use fine particles having a specific surface area of 15 m 2 / g or more.

【0014】セメントに対するシリカヒュームの混合割
合はセメント100重量部に対してシリカヒューム10
〜80重量部の範囲とするのが好ましい。セメントのカ
ルシウム分(Ca(OH)2 )とシリカヒュームのシリ
カ分(SiO2 )が反応してカルシウム−シリケート水
和物を生成する水和機構において、セメント100重量
部に対するシリカヒュームの割合が10重量部未満では
この反応に必要なシリカが不足となり、また、80重量
部を超えるとシリカ分が過剰となり、いずれの場合も十
分に水和反応が進行せず、シリカヒュームを配合するこ
とによる十分な強度改善効果が得られない。
The mixing ratio of silica fume to cement is 10 parts silica fume to 100 parts by weight of cement.
It is preferably in the range of ˜80 parts by weight. In the hydration mechanism in which the calcium content (Ca (OH) 2 ) of cement reacts with the silica content (SiO 2 ) of silica fume to produce calcium-silicate hydrate, the ratio of silica fume to 100 parts by weight of cement is 10%. If it is less than 1 part by weight, the amount of silica required for this reaction will be insufficient, and if it exceeds 80 parts by weight, the silica content will be excessive, and in any case the hydration reaction will not proceed sufficiently, and it will be sufficient if silica fume is added. The effect of improving strength is not obtained.

【0015】次に、セメント−シリカヒューム混合物
に、水以外の他の原料、即ち、骨材、無機及び/又は有
機補強繊維、増粘剤等の添加剤を混合する。
Next, the cement-silica fume mixture is mixed with raw materials other than water, that is, additives such as aggregates, inorganic and / or organic reinforcing fibers and thickeners.

【0016】本発明において、骨材としては、粗粒率
0.8〜1.5程度の砂等を用いることができ、無機補
強繊維としては、見掛け嵩比重0.4〜0.5程度のワ
ラストナイト、繊維径50〜100μm,繊維長1〜6
mm程度の耐アルカリガラス繊維のロービング等を用い
ることができる。有機補強繊維としては、繊維径30〜
50μm,繊維長1〜6mm程度のパルプ繊維、繊維径
1〜10デニール,繊維長2〜10mmの再生セルロー
ス繊維、繊維径1〜10デニール,繊維長2〜10mm
のポリプロピレン繊維等を用いることができる。また、
増粘剤としては、メチルセルロース、ヒドロキシプロピ
ルメチルセルロース等を用いることができる。なお、添
加剤としては、増粘剤の他、必要に応じて高性能減水剤
等を使用することができる。
In the present invention, sand or the like having a coarse grain ratio of about 0.8 to 1.5 can be used as the aggregate, and the inorganic bulk fiber has an apparent bulk specific gravity of about 0.4 to 0.5. Wollastonite, fiber diameter 50-100 μm, fiber length 1-6
For example, roving of alkali-resistant glass fiber of about mm can be used. As the organic reinforcing fiber, a fiber diameter of 30 to
50 μm, pulp fiber having a fiber length of about 1 to 6 mm, fiber diameter 1 to 10 denier, regenerated cellulose fiber having a fiber length 2 to 10 mm, fiber diameter 1 to 10 denier, fiber length 2 to 10 mm
Polypropylene fiber or the like can be used. Also,
As the thickener, methyl cellulose, hydroxypropyl methyl cellulose or the like can be used. In addition to the thickener, a high-performance water reducing agent can be used as an additive, if necessary.

【0017】セメントとシリカヒュームとの混合、及
び、セメント−シリカヒューム混合物と骨材、補強繊維
及び添加剤との混合は、横型ミキサー等を用いる乾式混
合で行われる。
The mixing of cement with silica fume and the mixing of cement-silica fume with aggregate, reinforcing fibers and additives are carried out by dry mixing using a horizontal mixer or the like.

【0018】このようにして、セメント−シリカヒュー
ム混合物と骨材、補強繊維及び添加剤とを混合した後
は、この混合物に水を添加して縦型ミキサー等で十分に
湿式混練し、押出原料素地を得る。
In this way, after the cement-silica fume mixture is mixed with the aggregate, the reinforcing fiber and the additive, water is added to this mixture and the mixture is sufficiently wet kneaded with a vertical mixer or the like to prepare an extrusion raw material. Get the foundation.

【0019】なお、本発明において、セメント−シリカ
ヒューム混合物と、骨材、補強繊維及び添加剤との混合
割合、並びに水の混合割合は、次のような配合とするの
が好ましい。
In the present invention, the mixing ratio of the cement-silica fume mixture with the aggregate, the reinforcing fiber and the additive, and the mixing ratio of water are preferably as follows.

【0020】原料配合(重量部) セメント−シリカヒューム混合物:100 骨材:30〜100、特に30〜70 無機補強繊維:20〜50 有機補強繊維:3〜10 増粘剤:1〜3 水:30〜40 得られた押出原料素地は、常法に従って押出成形し、養
生硬化させる。養生条件には特に制限はないが、40〜
80℃の飽和蒸気圧下で8〜24時間程度1次養生した
後、オートクレーブで2次養生を行うのが好ましい。こ
のオートクレーブ養生条件は、150〜180℃で5〜
8時間程度であるが、本発明においては、前述の如く、
シリカヒューム配合による十分な強度発現性効果が得ら
れることから、110〜150℃で1〜5時間の低温、
短時間のオートクレーブ養生であっても、十分な強度を
得ることができる。
Mixing of raw materials (parts by weight) Cement-silica fume mixture: 100 Aggregate: 30-100, especially 30-70 Inorganic reinforcing fiber: 20-50 Organic reinforcing fiber: 3-10 Thickener: 1-3 Water: 30-40 The obtained extrusion raw material base material is extrusion-molded and cured by a conventional method. There are no particular restrictions on the curing conditions, but 40-
It is preferable to carry out secondary curing in an autoclave after primary curing for about 8 to 24 hours under a saturated vapor pressure of 80 ° C. The autoclave curing conditions are 150 to 180 ° C.
Although it is about 8 hours, in the present invention, as described above,
Since sufficient strength manifesting effect can be obtained by blending silica fume, low temperature of 110 to 150 ° C. for 1 to 5 hours,
Even if the autoclave is cured for a short time, sufficient strength can be obtained.

【0021】[0021]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に限定されるものではない。
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist.

【0022】なお、実施例及び比較例で用いた材料並び
に、使用したミキサーは次の通りである。
The materials used in the examples and comparative examples and the mixers used are as follows.

【0023】セメント:普通ポルトランドセメント(三
菱マテリアル(株)製) シリカヒューム:平均粒度0.15μm(エルケム社
製) 砂:茨城県鹿島産、粗粒率1.2 ワラストナイト:見掛け嵩比重0.4〜0.5(中国
産) パルプ繊維:乾式により繊維長1mmにカットした木綿
パルプ MC(メチルセルロース):商品名メトローズ90SH
−15000(信越越化学社製) 乾式混合に使用したミキサー;横型ミキサー(レディゲ
ミキサー) 湿式混合に使用したミキサー;縦型ミキサー(アイリッ
ヒミキサー) また、各種物性の試験方法は次の通りである。
Cement: Ordinary Portland cement (manufactured by Mitsubishi Materials Corporation) Silica fume: Average particle size 0.15 μm (manufactured by Elchem Co.) Sand: Kashima, Ibaraki prefecture, coarse grain ratio 1.2 Wollastonite: Apparent bulk specific gravity 0 4 to 0.5 (made in China) Pulp fiber: cotton pulp cut to a fiber length of 1 mm by a dry method MC (methylcellulose): trade name Metroose 90SH
-15000 (manufactured by Shin-Etsu Chemical Co., Ltd.) Mixer used for dry mixing; Horizontal mixer (Ledige mixer) Mixer used for wet mixing; Vertical mixer (Eyrich mixer) Also, the test methods for various physical properties are as follows. is there.

【0024】曲げ強度(N/mm2 ):所定の養生を終
えた試験体を通風乾燥機で60℃で24時間乾燥後、万
能試験機(島津製作所製オートグラフAGD−10T)
を用い、スパン15cmで中央集中荷重による単純曲げ
試験を行い、曲げ破壊荷重を測定し、これより曲げ強度
を算出した。
Bending strength (N / mm 2 ): A test body that has been subjected to predetermined curing is dried by a ventilation dryer at 60 ° C. for 24 hours, and then a universal testing machine (Autograph AGD-10T manufactured by Shimadzu Corporation).
Was used to perform a simple bending test with a central concentrated load at a span of 15 cm, the bending breaking load was measured, and the bending strength was calculated from this.

【0025】吸水率(%):水中法により測定した。Water absorption rate (%): Measured by an underwater method.

【0026】耐凍害性:−20〜+5℃の昇温、降温を
繰り返し、300サイクル後の外観を観察した。
Freezing damage resistance: The temperature was raised and lowered at −20 to + 5 ° C. and the temperature was lowered repeatedly, and the appearance after 300 cycles was observed.

【0027】実施例1〜4 表1の配合割合に計量し、セメントとシリカヒュームを
横型ミキサーで10分間乾式混合し、得られた混合物に
砂、ワラストナイト、パルプ繊維及びMCを加え、更に
5分間乾式混合した。この混合物に表1に示す量の混練
水を加えて縦型ミキサーで5分間湿式混合した後、真空
式押出成形機にて、幅7cm,厚み1.5cm,長さ2
0cmの成形体を押出成形した。この成形体に60℃で
24時間の1次養生を施した後、表1に示す条件にてオ
ートクレーブ養生を施した。得られた製品について、物
性試験を実施し、結果を表1に示した。
Examples 1 to 4 Cement and silica fume were dry-mixed in a horizontal mixer for 10 minutes in proportions as shown in Table 1, and sand, wollastonite, pulp fiber and MC were added to the resulting mixture. Mix dry for 5 minutes. The amount of kneading water shown in Table 1 was added to this mixture, and the mixture was wet-mixed for 5 minutes with a vertical mixer, and then with a vacuum extruder, width 7 cm, thickness 1.5 cm, length 2
A 0 cm compact was extruded. After subjecting this molded body to primary curing at 60 ° C. for 24 hours, it was subjected to autoclave curing under the conditions shown in Table 1. A physical property test was conducted on the obtained product, and the results are shown in Table 1.

【0028】比較例1,2 表1の配合割合に計量し、セメント、シリカヒューム、
砂、ワラストナイト、パルプ繊維及びMCを横型ミキサ
ーで10分間乾式混合し、得られた混合物に表1に示す
量の混練水を加えて縦型ミキサーで5分間湿式混合した
後、実施例1と同様にして、押出成形及び養生を行っ
た。得られた製品について、物性試験を実施し、結果を
表1に示した。
Comparative Examples 1 and 2 Cement, silica fume,
Sand, wollastonite, pulp fibers and MC were dry-mixed in a horizontal mixer for 10 minutes, the amount of kneading water shown in Table 1 was added to the obtained mixture, and the mixture was wet-mixed in a vertical mixer for 5 minutes. Extrusion and curing were performed in the same manner as in. A physical property test was conducted on the obtained product, and the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1より、本発明によれば、高曲げ強度で
あることから薄肉軽量化が可能であり、しかも、緻密で
吸水率が低いことから耐凍害性に優れた押出成形建材を
製造できることが明らかである。特に、実施例3,4よ
り、本発明によれば、低温養生で高強度押出成形建材を
製造できることが明らかである。
From Table 1, according to the present invention, it is possible to manufacture an extruded building material excellent in frost damage resistance because it has a high bending strength, can be made thin and lightweight, and is dense and has a low water absorption. Is clear. In particular, from Examples 3 and 4, it is clear that according to the present invention, a high-strength extrusion molded building material can be produced by low temperature curing.

【0031】[0031]

【発明の効果】以上詳述した通り、本発明の高曲げ強度
押出成形建材の製造方法によれば、高曲げ強度であるこ
とから薄肉軽量化が可能であり、しかも、緻密で吸水率
が低いことから耐凍害性に優れた押出成形建材が提供さ
れると共に、養生温度を低くすることも可能であり、工
業的に極めて有利である。
As described in detail above, according to the method for manufacturing a high bending strength extrusion molded building material of the present invention, since it has a high bending strength, it is possible to reduce the thickness and weight, and it is dense and has a low water absorption rate. Therefore, an extruded building material having excellent frost damage resistance can be provided, and the curing temperature can be lowered, which is extremely advantageous industrially.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C04B 28/02 16:02 7:24 24:38) 103:60 111:20 (72)発明者 飛内 圭之 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社セメント研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area // (C04B 28/02 16:02 7:24 24:38) 103: 60 111: 20 (72 ) Inventor Keiyuki Toiuchi 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Mitsubishi Materials Corporation Cement Research Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セメント、シリカヒューム、骨材、補強
繊維、添加剤及び水を混合して得られる原料素地を押出
成形して押出成形建材を製造する方法において、 原料素地の調製に当り、まず、セメントとシリカヒュー
ムとを混合して均一混合物とし、この混合物に骨材、補
強繊維及び添加剤を混合し、その後、水を加えて混練す
ることを特徴とする高曲げ強度押出成形建材の製造方
法。
1. A method for producing an extruded building material by extruding a raw material base obtained by mixing cement, silica fume, aggregate, reinforcing fiber, an additive and water, wherein the raw material base is first prepared. , Cement and silica fume are mixed to form a uniform mixture, and the mixture is mixed with aggregate, reinforcing fibers and additives, and then water is added and kneaded to produce a high bending strength extruded building material. Method.
【請求項2】 請求項1の方法において、セメントに対
するシリカヒュームの混合割合が、セメント100重量
部に対してシリカヒューム10〜80重量部であること
を特徴とする高曲げ強度押出成形建材の製造方法。
2. The method according to claim 1, wherein the mixing ratio of silica fume to cement is 10 to 80 parts by weight of silica fume with respect to 100 parts by weight of cement. Method.
JP26702495A 1995-10-16 1995-10-16 Production of extrusion-molded construction material of high flexural strength Withdrawn JPH09110504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26702495A JPH09110504A (en) 1995-10-16 1995-10-16 Production of extrusion-molded construction material of high flexural strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26702495A JPH09110504A (en) 1995-10-16 1995-10-16 Production of extrusion-molded construction material of high flexural strength

Publications (1)

Publication Number Publication Date
JPH09110504A true JPH09110504A (en) 1997-04-28

Family

ID=17439002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26702495A Withdrawn JPH09110504A (en) 1995-10-16 1995-10-16 Production of extrusion-molded construction material of high flexural strength

Country Status (1)

Country Link
JP (1) JPH09110504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226985A (en) * 2014-05-30 2015-12-17 太平洋セメント株式会社 Cement composition processing method
JP2021514343A (en) * 2018-02-13 2021-06-10 エフピーイノベイションズ Desert sand and fibrillar cellulose in concrete and mortar

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015226985A (en) * 2014-05-30 2015-12-17 太平洋セメント株式会社 Cement composition processing method
JP2021514343A (en) * 2018-02-13 2021-06-10 エフピーイノベイションズ Desert sand and fibrillar cellulose in concrete and mortar
EP3752473A4 (en) * 2018-02-13 2021-11-17 FPInnovations Desert sand and filamentous cellulose in concrete and mortar

Similar Documents

Publication Publication Date Title
RU2036886C1 (en) Method for preparation of mixture for production of composite material products from composite materials
CN103328407A (en) Method for inserting carbon nanofillers into an inorganic curable system
CN113620669B (en) Concrete, preparation method thereof and sleeper
JPH09110504A (en) Production of extrusion-molded construction material of high flexural strength
CN115321924A (en) Durable self-compacting filling concrete material for underground structural engineering
JP2881256B2 (en) Method for producing carbon fiber reinforced concrete or similar composition
JP2688155B2 (en) Extrusion molding method for fiber reinforced inorganic products
CN106830748B (en) Plastering mortar additive and preparation method thereof
JPH0816020B2 (en) Method for producing inorganic extrudate
WO2002016282A1 (en) Static-dissipative composition and panel manufactured therewith
JPS58140355A (en) Manufacture of cementitious formed body
JP2598966B2 (en) Cement extrudate admixture
JP3378610B2 (en) Manufacturing method of lightweight inorganic products
JP2528675B2 (en) Method of manufacturing inorganic extruded product
CN114195434B (en) Geopolymer-based high-ductility concrete for pressing, plastering and reinforcing and preparation method thereof
JP2538928B2 (en) Extruded building material composition
JP2001047427A (en) Manufacture of extrusion-molded hydraulic composition
JP2908494B2 (en) Method for producing asbestos-free extruded product
JPH05213652A (en) Method for extruding cement-containing material
CN117964276A (en) Low-carbon concrete additive and preparation method and application thereof
JPH07206500A (en) Highly functional mortar concrete and its production
JPH085701B2 (en) Method for producing lightweight cement composition and lightweight cement molded product
JP2004131342A (en) Extruded part and method of producing the same
JPH11189479A (en) Lightweight block
CN118005355A (en) Compression-resistant dry-mixed mortar and preparation method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107