JPH09107329A - Data communication method and data communication equipment - Google Patents

Data communication method and data communication equipment

Info

Publication number
JPH09107329A
JPH09107329A JP7263808A JP26380895A JPH09107329A JP H09107329 A JPH09107329 A JP H09107329A JP 7263808 A JP7263808 A JP 7263808A JP 26380895 A JP26380895 A JP 26380895A JP H09107329 A JPH09107329 A JP H09107329A
Authority
JP
Japan
Prior art keywords
data communication
spread
transmitter
electromagnetic wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7263808A
Other languages
Japanese (ja)
Inventor
Shiro Suyama
史朗 陶山
Kinya Kato
謹矢 加藤
Shigenobu Sakai
重信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7263808A priority Critical patent/JPH09107329A/en
Publication of JPH09107329A publication Critical patent/JPH09107329A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To attain a high data transmission speed and attain the n to n simultaneous multiplex communication by decreasing an emission spread angle of a transmitter and selecting a spread area to be set in the vicinity of a receiver. SOLUTION: A transmitter 11A emits an infrared ray 12A at a narrow emission spread angle 15A to a spread area 13A, and the infrared ray 12A spread at the area 13A is received by a receiver 14A. A transmitter 11B emits an infrared ray 12B at a narrow emission spread angle 15B to a spread area 13B, and the infrared ray 12B spread at the area 13B is received by a receiver 14B. In this case, the positions of the areas 13A, 13B are set differently in the vicinity of the receivers 14A, 14B so that the probability of incidence of the spread infrared rays 12A, 12B into the receivers 14A, 14B is changed. Interference between two sets of communication systems is decreased by decreasing the emission spread angle of the transmitter and placing the spread area in the vicinity of the receiver in this way so as to attain a high transmission speed and to attain the n to n simultaneous multiplex communication.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばコンピュー
タ端末間のデータ通信に用いられるデータ通信方法およ
び装置に関する。特に、搬送波としてミリ波より高い周
波数を有する電磁波(例えば赤外線)を用いた無線によ
るデータ通信方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a data communication method and device used for data communication between computer terminals, for example. In particular, the present invention relates to a wireless data communication method and apparatus using an electromagnetic wave (for example, infrared ray) having a frequency higher than a millimeter wave as a carrier wave.

【0002】[0002]

【従来の技術】図4は、赤外線の拡散を用いた従来のデ
ータ通信方法を示す。本データ通信方法では、送信装置
41より出射広がり角46で出射した赤外線43を壁・
天井45に照射し、そこで反射または拡散させた赤外線
44を入射広がり角47の広い受信装置42で受信する
形態をとり、赤外線に種々の方法で変調をかけることに
よりデータ通信を行う。
2. Description of the Related Art FIG. 4 shows a conventional data communication method using infrared diffusion. In this data communication method, the infrared rays 43 emitted from the transmission device 41 at the emission divergence angle 46 are transmitted to the wall and
The infrared ray 44 irradiated on the ceiling 45 and reflected or diffused there is received by the receiving device 42 having a wide incident divergence angle 47, and data is communicated by modulating the infrared ray by various methods.

【0003】この構成では、送信装置41と受信装置4
2との間に完全な見通しは必要とせず、その見通し線上
に障害物があってもデータ通信には支障がない。したが
って、装置間の位置合わせも不要となるので、携帯型端
末のように頻繁に移動するものにも適用可能となる。
In this configuration, the transmitter 41 and the receiver 4
No complete line of sight is required between the two and even if there is an obstacle on the line of sight, data communication will not be hindered. Therefore, it is not necessary to align the devices, and the device can be applied to a mobile terminal such as a mobile terminal that is frequently moved.

【0004】[0004]

【発明が解決しようとする課題】しかし、図4に示す従
来のデータ通信方法では、送信装置41と受信装置42
との間に形成される赤外線の光路が、出射広がり角4
6、入射広がり角47および壁・天井45における反射
または拡散の状態に応じて多数存在する。また、それに
伴って受信装置42には、例えば光路48と光路49の
ように、その光路長の差に比例した遅延時間を有する複
数の赤外線が受信されることになる。このようなマルチ
パスによる影響は、最長の光路を通った赤外線が最も遅
れて受信装置42に受信されるまで、次のデータをのせ
た赤外線を受信できないことである。このためにデータ
伝送速度が低くなる問題があった。
However, in the conventional data communication method shown in FIG. 4, a transmitter 41 and a receiver 42 are provided.
The optical path of infrared rays formed between
6. There are many depending on the incident divergence angle 47 and the state of reflection or diffusion on the wall / ceiling 45. Along with this, the receiving device 42 receives a plurality of infrared rays having a delay time proportional to the difference between the optical path lengths, such as the optical path 48 and the optical path 49. The effect of such multi-path is that the infrared ray having the next data cannot be received until the infrared ray that has passed the longest optical path is received by the receiving device 42 with the latest delay. Therefore, there is a problem that the data transmission speed becomes low.

【0005】また、送信装置41の出射広がり角46が
広く、送信した赤外線が広い領域に広がるので、結果的
に受信装置42で受光できる赤外線の光量が減少し、S
/N比の低下を招く。S/N比の低下は、データ伝送速
度を一定とすると、受信データの誤り率の増加を招き、
信頼性が低下する。一方、データ誤り率を一定の水準に
保とうとすると、データ伝送速度を低く抑えなければな
らなかった。
Further, since the outgoing divergence angle 46 of the transmitting device 41 is wide and the transmitted infrared light is spread over a wide area, the amount of infrared light that can be received by the receiving device 42 is reduced, and S
This leads to a decrease in the / N ratio. The decrease in the S / N ratio causes an increase in the error rate of received data if the data transmission rate is constant,
Reliability decreases. On the other hand, in order to keep the data error rate at a constant level, the data transmission rate had to be kept low.

【0006】また、受信装置42の入射広がり角47が
広いので、例えば照明光や太陽光などの周囲光を受信し
やすくショット雑音が増加する。このショット雑音によ
る影響を回避するためには、データ伝送速度を低く抑え
なければならなかった。このように、出射広がり角46
および入射広がり角47を広げることにより、通信する
各装置を対向させて位置合わせを行う必要性はなくなる
が、S/N比の改善、マルチパス対策、ショット雑音対
策が新たな課題となっていた。さらに、出射広がり角4
6を広くしているために1対nの同報通信は可能である
が、入射広がり角47も広くしているためにn対nの同
時多重通信は困難であった。したがって、n対nの多重
通信は時分割方式で行わざるをえず、そのためにデータ
伝送速度が遅くなる欠点があった。
Further, since the incident divergence angle 47 of the receiver 42 is wide, it is easy to receive ambient light such as illumination light and sunlight, and shot noise increases. In order to avoid the effect of this shot noise, the data transmission rate had to be kept low. Thus, the exit divergence angle 46
By increasing the incident divergence angle 47, it is not necessary to position each device for communication to face each other, but improvement of the S / N ratio, measures against multipath, and measures against shot noise have become new issues. . Furthermore, the exit spread angle is 4
Since 6 is wide, 1 to n broadcast communication is possible, but since the incident divergence angle 47 is also wide, it is difficult to perform n to n simultaneous multiplex communication. Therefore, the n-to-n multiplex communication must be performed by the time division method, which has a drawback that the data transmission rate becomes slow.

【0007】本発明は、コンピュータ端末間などで行わ
れる無線によるデータ通信方法および装置において、n
対nの同時多重通信を可能とし、かつ各通信信号間の相
互干渉を低減してデータ伝送速度を高速化することを目
的とする。
The present invention relates to a method and apparatus for wireless data communication performed between computer terminals, wherein n
An object of the present invention is to enable simultaneous multiplex communication for pair n, reduce mutual interference between communication signals, and increase the data transmission speed.

【0008】[0008]

【課題を解決するための手段】本発明は、ミリ波より高
い周波数を有する直進性の高い電磁波を搬送波として用
いるデータ通信方法および装置において、送信装置が電
磁波の出射方向を受信装置の位置に合わせて調整する際
に、電磁波の出射広がり角を絞り、かつ受信装置から距
離的に近い位置の拡散性を有する天井などの曲面(拡散
領域)に電磁波を照射する。受信装置は、そこで拡散し
た電磁波を受信することにより電磁波のエネルギーを効
率的に使用でき、拡散させずに直接に受信する場合に比
べて送受信装置の位置合わせを緩和でき、障害物などの
影響を回避することができる。
SUMMARY OF THE INVENTION The present invention is a data communication method and apparatus that uses as a carrier wave an electromagnetic wave having a frequency higher than a millimeter wave and having a high linearity, and the transmitting apparatus adjusts the emission direction of the electromagnetic wave to the position of the receiving apparatus. At the time of adjustment, the emission spread angle of the electromagnetic wave is narrowed and the electromagnetic wave is applied to a curved surface (diffusion region) such as a ceiling having a diffusive property at a position close to the receiving device. The receiving device can efficiently use the energy of the electromagnetic wave by receiving the electromagnetic wave diffused there, and can relieve the alignment of the transmitting / receiving device as compared with the case of directly receiving the electromagnetic wave without diffusing it, and the influence of obstacles etc. It can be avoided.

【0009】さらに、電磁波の出射広がり角を絞ること
により、データ伝送速度の制限要因の1つであるマルチ
パスの影響を低く抑えることができる。また、電磁波の
拡散領域が受信装置から距離的に近い位置に設定される
ので、受信装置の入射広がり角を絞ることができる。こ
れにより、例えば照明や太陽などによる周囲の電磁波を
受信しにくくできるので、ショット雑音の影響を低く抑
制でき、データ伝送速度を高くすることができる。
Further, by narrowing the outgoing spread angle of the electromagnetic wave, it is possible to suppress the influence of multipath, which is one of the limiting factors of the data transmission rate, to a low level. Further, since the diffusion area of the electromagnetic wave is set at a position close to the receiving device in terms of distance, the incident spread angle of the receiving device can be narrowed. This makes it difficult to receive surrounding electromagnetic waves due to, for example, lighting or the sun, so that the effect of shot noise can be suppressed to a low level and the data transmission rate can be increased.

【0010】[0010]

【発明の実施の形態】以下の説明では、ミリ波より高い
周波数を有する直進性の高い電磁波として赤外線を用い
た例を示すが、必ずしも赤外線に限るものではない。図
1は、本発明のデータ通信方法および装置の実施形態を
示す。図において、10は赤外線が拡散する曲面であ
る。送信装置11は、赤外線12の出射広がり角を絞
り、かつ受信装置14から距離的に近い拡散領域13の
方向を設定して電磁波を照射する。
BEST MODE FOR CARRYING OUT THE INVENTION In the following description, an example in which infrared rays are used as electromagnetic waves having a frequency higher than a millimeter wave and having a high linearity is shown, but it is not necessarily limited to infrared rays. FIG. 1 shows an embodiment of the data communication method and apparatus of the present invention. In the figure, 10 is a curved surface on which infrared rays are diffused. The transmitter 11 narrows the outgoing divergence angle of the infrared rays 12 and sets the direction of the diffusion region 13 which is close in distance from the receiver 14 to irradiate the electromagnetic waves.

【0011】拡散領域13では赤外線が広い角度で拡散
する。したがって、受信装置14で受光できる赤外線の
光量は、拡散領域13が受信装置14から離れるにつれ
て急速に減少する。ここで、図2(a) に示すように、拡
散領域13と受信装置14の水平距離をxとし、xを変
化させた場合の受光効率の計算例を図2(b) に示す。計
算条件は、送信装置11と受信装置14との間の距離を
5mとし、この間でxが変化するものとした。また、拡
散領域13の高さは 1.3mとした。ここに示すように、
拡散領域13が受信装置14から離れるにつれて受光効
率が極端に減少することがわかる。
In the diffusion area 13, infrared rays are diffused at a wide angle. Therefore, the amount of infrared light that can be received by the receiving device 14 rapidly decreases as the diffusion region 13 moves away from the receiving device 14. Here, as shown in FIG. 2 (a), the horizontal distance between the diffusion region 13 and the receiver 14 is x, and an example of calculation of the light receiving efficiency when x is changed is shown in FIG. 2 (b). The calculation condition is that the distance between the transmission device 11 and the reception device 14 is 5 m, and x changes during this period. The height of the diffusion region 13 was 1.3 m. As shown here,
It can be seen that the light receiving efficiency significantly decreases as the diffusion region 13 moves away from the receiving device 14.

【0012】本発明では、拡散領域13と受信装置14
が距離的に近くなるように送信装置11から送信する赤
外線の出射方向を設定する。これにより、受信装置14
における受光効率を高めることができる。
In the present invention, the diffusion area 13 and the receiving device 14 are provided.
The emission directions of the infrared rays transmitted from the transmission device 11 are set so that they are closer in distance. As a result, the receiving device 14
It is possible to improve the light receiving efficiency.

【0013】[0013]

【実施例】図3は、本発明のデータ通信方法および装置
の実施例を示す。図において、10は赤外線が拡散する
曲面である。ここで、送信装置11Aと受信装置14
A、送信装置11Bと受信装置14Bが通信を行うもの
とする。送信装置11Aは、狭い出射広がり角15Aで
出射した赤外線12Aを拡散領域13Aに照射し、拡散
領域13Aで拡散した赤外線12aを受信装置14Aに
入射させる。送信装置11Bは、狭い出射広がり角15
Bで出射した赤外線12Bを拡散領域13Bに照射し、
拡散領域13Bで拡散した赤外線12bを受信装置14
Bに入射させる。このとき、拡散領域13A,13Bの
位置を相違させ、かつ各受信装置14A,14Bの近傍
にそれぞれ配置することにより、拡散領域13A,13
Bで拡散した赤外線12a,12bがそれぞれ反対側の
受信装置14B,14Aに入射する確率を低下させるこ
とができる。すなわち、2組の通信の相互干渉を小さく
することができる。
FIG. 3 shows an embodiment of the data communication method and apparatus of the present invention. In the figure, 10 is a curved surface on which infrared rays are diffused. Here, the transmitter 11A and the receiver 14
A, the transmitter 11B and the receiver 14B communicate with each other. The transmitter 11A irradiates the diffusion area 13A with the infrared rays 12A emitted at a narrow emission divergence angle 15A, and causes the infrared rays 12a diffused in the diffusion area 13A to enter the reception apparatus 14A. The transmitter 11B has a narrow exit divergence angle 15
Irradiate the infrared rays 12B emitted in B to the diffusion area 13B,
The receiving device 14 receives the infrared rays 12b diffused in the diffusion area 13B.
It is incident on B. At this time, by making the positions of the diffusion regions 13A and 13B different and arranging them in the vicinity of the receiving devices 14A and 14B, respectively, the diffusion regions 13A and 13B are arranged.
It is possible to reduce the probability that the infrared rays 12a and 12b diffused by B enter the receiving devices 14B and 14A on the opposite sides, respectively. That is, mutual interference between two sets of communication can be reduced.

【0014】また、受信装置14A,14Bにおいて、
入射広がり角16A,16Bを狭めることにより、拡散
領域13A,13Bで拡散した赤外線12a,12bが
それぞれ反対側の受信装置14B,14Aに入射する確
率をさらに低下させることができる。すなわち、2組の
通信の相互干渉をさらに小さくすることができる。ま
た、以上のことは通信の組数が多くなっても同様であ
り、赤外線を拡散させる領域を各々変えることにより、
互いに干渉することなくn対nの同時多重通信を行うこ
とができる。これにより、多重数が多くなってもデータ
伝送速度を下げる必要がなく、n対nの同時多重通信に
おけるデータ伝送速度の高速化を図ることができる。
In the receivers 14A and 14B,
By narrowing the incident divergence angles 16A and 16B, it is possible to further reduce the probability that the infrared rays 12a and 12b diffused in the diffusion regions 13A and 13B are incident on the receiving devices 14B and 14A on the opposite sides, respectively. That is, mutual interference between two sets of communication can be further reduced. Also, the above is the same even if the number of communication sets increases, and by changing the area where infrared rays are diffused,
It is possible to perform n-to-n simultaneous multiplex communication without interfering with each other. As a result, it is not necessary to reduce the data transmission rate even when the number of multiplexed signals increases, and it is possible to increase the data transmission rate in n to n simultaneous multiplex communication.

【0015】以下、送信装置11において、拡散領域1
3と受信装置14が距離的に近くなるように赤外線の出
射方向を設定する方法について示す。送信装置11およ
び受信装置14がほとんど固定状態にある場合には、送
信装置11側で受信装置14および対応する拡散領域1
3の位置を確認し、手動で赤外線の出射方向を拡散領域
13に定める。
Hereinafter, in the transmitter 11, the diffusion area 1
3 shows a method of setting the emission direction of infrared rays so that the reception device 14 and the reception device 14 are close to each other in distance. When the transmitting device 11 and the receiving device 14 are almost in the fixed state, the receiving device 14 and the corresponding diffusion area 1 on the transmitting device 11 side.
The position of 3 is confirmed, and the emission direction of infrared rays is manually set to the diffusion region 13.

【0016】送信装置11および受信装置14が頻繁に
移動する場合には、まず送信装置11から受信装置14
に対して、その位置を示す赤外線を出すように求める要
求信号を出す。この要求信号を受信した受信装置14
は、例えば所定の波長の赤外線あるいは所定のコードを
のせた赤外線を出射する。送信装置11は、位置検出フ
ォトダイオード(PSD)や2次元アレイ化されたフォ
トダイオードアレイなどとレンズなどの組み合わせを用
いて、受信装置14から出射された赤外線を受光し、そ
の位置を把握する。その位置情報に基づいて対応する拡
散領域13を判断し、赤外線の出射方向を定める。
When the transmitter 11 and the receiver 14 frequently move, first the transmitter 11 to the receiver 14 are moved.
, A request signal requesting that infrared rays indicating the position be emitted. Receiving device 14 that has received this request signal
Emits infrared rays having a predetermined wavelength or infrared rays having a predetermined code, for example. The transmitting device 11 receives the infrared light emitted from the receiving device 14 and grasps the position thereof by using a combination of a position detection photodiode (PSD), a two-dimensional arrayed photodiode array and the like, and a lens. The corresponding diffusion area 13 is determined based on the position information, and the emission direction of infrared rays is determined.

【0017】なお、赤外線の出射方向を設定する方法
は、特開平7−143063号公報(データ通信方法お
よびデータ通信装置)に記載の送信装置を保持する駆動
装置がその出射方向を制御する構成、あるいは駆動装置
が鏡を保持し、赤外線の反射方向を鏡の角度によって制
御する構成等を用いることができる。また、出射広がり
角15および入射広がり角16を絞る方法は、同公報に
記載のレンズや凹面鏡を用いて集光する構成により実現
される。
A method for setting the emission direction of infrared rays is described in Japanese Patent Laid-Open No. 7-143063 (data communication method and data communication device), in which a drive device holding a transmitter controls the emission direction. Alternatively, a configuration in which the driving device holds the mirror and the infrared reflection direction is controlled by the angle of the mirror can be used. Further, the method of narrowing the exit divergence angle 15 and the entrance divergence angle 16 is realized by the configuration described in the publication, in which light is condensed using a lens or a concave mirror.

【0018】[0018]

【発明の効果】以上説明したように、本発明のデータ通
信方法および装置は、送信装置の出射広がり角を絞り、
かつ拡散領域を受信装置の近傍とすることにより、電磁
波の効率的な使用を可能とし、かつ複数の通信信号間の
相互干渉を低減することができる。これにより、データ
伝送速度の高速化を図ることができ、またn対nの同時
多重通信を可能とすることができる。
As described above, the data communication method and apparatus of the present invention reduces the emission spread angle of the transmitter,
In addition, by making the diffusion region near the receiving device, it is possible to use electromagnetic waves efficiently and reduce mutual interference between a plurality of communication signals. As a result, the data transmission speed can be increased, and n to n simultaneous multiplex communication can be enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のデータ通信方法および装置の実施形態
を示す図。
FIG. 1 is a diagram showing an embodiment of a data communication method and device of the present invention.

【図2】本発明のデータ通信方法および装置における受
信装置と拡散領域の関係を示す図。
FIG. 2 is a diagram showing a relationship between a receiving device and a spreading area in the data communication method and device of the present invention.

【図3】本発明のデータ通信方法および装置の実施例を
示す図。
FIG. 3 is a diagram showing an embodiment of a data communication method and device of the present invention.

【図4】赤外線の拡散を用いた従来のデータ通信方法を
示す図。
FIG. 4 is a diagram showing a conventional data communication method using infrared diffusion.

【符号の説明】[Explanation of symbols]

10 赤外線が拡散する曲面 11 送信装置 12 赤外線 13 拡散領域 14 受信装置 15 出射広がり角 16 入射広がり角 10 Curved surface where infrared rays are diffused 11 Transmitter 12 Infrared 13 Diffusion area 14 Receiver 15 Exit spread angle 16 Entrance spread angle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一部が拡散波を生じる材料の
曲面で囲まれた空間内で、送信装置と受信装置が無線に
より、ミリ波より高い周波数の搬送波に通信データをの
せた電磁波を送受信するデータ通信方法において、 前記送信装置は、各受信装置に送信する電磁波の出射広
がり角を狭く絞り、かつ送信先の受信装置から距離的に
近い曲面上の拡散領域に電磁波を照射することを特徴と
するデータ通信方法。
1. A transmitting device and a receiving device wirelessly transmit and receive an electromagnetic wave carrying communication data on a carrier wave having a frequency higher than a millimeter wave, in a space surrounded at least in part by a curved surface of a material that generates a diffuse wave. In the data communication method, the transmitting device narrows the outgoing divergence angle of the electromagnetic wave to be transmitted to each receiving device, and irradiates the electromagnetic wave to a diffusion area on a curved surface that is close in distance from the receiving device of the transmission destination. Data communication method.
【請求項2】 少なくとも一部が拡散波を生じる材料の
曲面で囲まれた空間内に配置される送信装置と受信装置
とから構成され、ミリ波より高い周波数の搬送波に通信
データをのせた電磁波を送受信するデータ通信装置にお
いて、 前記送信装置は、前記電磁波の出射広がり角を狭く絞
り、かつ前記電磁波の出射方向を送信先の受信装置から
距離的に近い曲面上の拡散領域に設定する手段を備えた
ことを特徴とするデータ通信装置。
2. An electromagnetic wave comprising at least a transmitter and a receiver arranged in a space surrounded by a curved surface of a material that generates a diffuse wave, and carrying communication data on a carrier wave having a frequency higher than a millimeter wave. In the data communication device for transmitting / receiving, the transmitting device narrows the outgoing divergence angle of the electromagnetic wave, and sets a means for setting the outgoing direction of the electromagnetic wave in a diffusion region on a curved surface that is close in distance from the receiving device of the transmission destination. A data communication device provided with.
JP7263808A 1995-10-12 1995-10-12 Data communication method and data communication equipment Pending JPH09107329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7263808A JPH09107329A (en) 1995-10-12 1995-10-12 Data communication method and data communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263808A JPH09107329A (en) 1995-10-12 1995-10-12 Data communication method and data communication equipment

Publications (1)

Publication Number Publication Date
JPH09107329A true JPH09107329A (en) 1997-04-22

Family

ID=17394534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263808A Pending JPH09107329A (en) 1995-10-12 1995-10-12 Data communication method and data communication equipment

Country Status (1)

Country Link
JP (1) JPH09107329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339789A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Stream communication system
JP2008514146A (en) * 2004-09-23 2008-05-01 エアバス・ドイチュラント・ゲーエムベーハー Indirect free-space optical communication system and high-speed data transmission method using broadband

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514146A (en) * 2004-09-23 2008-05-01 エアバス・ドイチュラント・ゲーエムベーハー Indirect free-space optical communication system and high-speed data transmission method using broadband
JP4726905B2 (en) * 2004-09-23 2011-07-20 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Indirect free-space optical communication system and high-speed data transmission method using broadband
EP1792419B1 (en) * 2004-09-23 2018-08-08 Airbus Operations GmbH Indirect optical free-space communications system and method for the broadband transmission of high-speed data
JP2006339789A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Stream communication system

Similar Documents

Publication Publication Date Title
Abumarshoud et al. LiFi through reconfigurable intelligent surfaces: A new frontier for 6G?
US8755692B2 (en) Wireless data transmission with terahertz waves
US6804465B2 (en) Wireless optical system for multidirectional high bandwidth communications
WO2023040228A1 (en) Visible light positioning assisted multi-user light communication system and method
CN108476067A (en) Intensity modulated directly detects wide spectrum sources traffic
US11863234B2 (en) Wireless optical communication network and apparatus for wireless optical communication
Lomba et al. Propagation losses and impulse response of the indoor optical channel: A simulation package
JPH09107329A (en) Data communication method and data communication equipment
US7181143B2 (en) Free space optics communication apparatus and free space optics communication system
JP3911958B2 (en) Wireless transmission method and wireless transmission system
US7400834B2 (en) Optical space transmission apparatus and optical space communication system
JP3661912B2 (en) Optical access station and terminal device
JPH09135207A (en) Data communication method and its equipment
JP3694155B2 (en) Optical transceiver
JPH07143063A (en) Data communication method and data communication equipment
US20060003701A1 (en) Alignment system for communications
JPS59122141A (en) Infrared ray communicating system
JPH05206946A (en) Optical communication system
JP3647628B2 (en) Satellite-type full-duplex infrared LAN system
JPH037166B2 (en)
JPH08111666A (en) Optical receiver
Pei et al. A study of visual MIMO channel for intelligent vehicle
EP3793105A1 (en) Non-imaging receiver utilizing mirrors in optical wireless communication system
CN117749273A (en) Wireless optical communication system and method for cooperative work of array light source and intelligent reflecting surface
JP2006340280A (en) Optical axis alignment initializing apparatus of optical spatial communication system