JPH09106511A - Magneto-resistance effect magnetic head - Google Patents

Magneto-resistance effect magnetic head

Info

Publication number
JPH09106511A
JPH09106511A JP26595395A JP26595395A JPH09106511A JP H09106511 A JPH09106511 A JP H09106511A JP 26595395 A JP26595395 A JP 26595395A JP 26595395 A JP26595395 A JP 26595395A JP H09106511 A JPH09106511 A JP H09106511A
Authority
JP
Japan
Prior art keywords
magnetoresistive effect
head
films
film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26595395A
Other languages
Japanese (ja)
Inventor
Minoru Hashimoto
実 橋本
Mikiya Kurosu
実喜也 黒須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26595395A priority Critical patent/JPH09106511A/en
Publication of JPH09106511A publication Critical patent/JPH09106511A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect minute magnetic field in high sensitivity and to improve productivity also without forming a bias conductor. SOLUTION: A magneto-resistance effect element consisting of two layers of MR films 7, 8 is arranged between a pair of shield magnetic bodies arranged at a prescribed interval facing to a magnetic recording medium opposite surface so as to become the direction nearly perpendicular to the magnetic recording medium opposite surface, and the directions of sense currents of respective MR films 7, 8 shown by the arrows S7 , S8 are made the directions having nearly equal angles shown by θ7 , θ8 for the orthogonal direction shown by the arrows V7 , V8 and sloping to the opposite directions each other. Further, it is preferable that the θ7 , θ8 are made nearly 45 deg., and the directions of the sense currents each other are nearly orthogonally intersected with each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体対向
面に臨んで所定の間隔で一対のシールド磁性体が配さ
れ、これらシールド磁性体間に2層の磁気抵抗効果膜よ
りなる磁気抵抗効果素子が磁気記録媒体対向面に対して
略直交方向に配されている、いわゆる2層縦型磁気抵抗
効果型磁気ヘッドに関する。詳しくは、磁気抵抗効果素
子に流れるセンス電流の向きを制御することにより、バ
イアス導体を形成することなく、微小磁界を高感度に検
出することを可能とした磁気抵抗効果型磁気ヘッドに係
わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect including a pair of shield magnetic bodies arranged at a predetermined interval facing a magnetic recording medium facing surface, and having a two-layer magnetoresistive film between the shield magnetic bodies. The present invention relates to a so-called two-layer vertical magnetoresistive effect magnetic head in which elements are arranged in a direction substantially orthogonal to a surface facing a magnetic recording medium. More specifically, it relates to a magnetoresistive effect magnetic head capable of detecting a minute magnetic field with high sensitivity without forming a bias conductor by controlling the direction of the sense current flowing in the magnetoresistive effect element. is there.

【0002】[0002]

【従来の技術】例えば、ハードディスクドライブ等の磁
気記録再生装置において再生用磁気ヘッドとして用いら
れている、いわゆる2層縦型磁気抵抗効果型磁気ヘッド
(以下、2層縦型MRヘッドと称する。)は、図7に模
式的に示すように、磁気記録媒体対向面103に臨む間
隙部である磁気ギャップG1 ,G2 ,G3 を有して相対
向して配される一対のシールド磁性体101,102間
に非磁性の絶縁層104,106を介して磁気抵抗効果
素子111(以下、MR素子111と称する。)が挟み
込まれてなるものである。そして、上記MR素子111
は、非磁性の絶縁層105を介して積層される2層の磁
気抵抗効果膜107,108(以下、MR膜107,1
08と称する。)よりなる。
2. Description of the Related Art For example, a so-called two-layer vertical magnetoresistive effect magnetic head (hereinafter referred to as a two-layer vertical MR head) is used as a reproducing magnetic head in a magnetic recording / reproducing apparatus such as a hard disk drive. As shown schematically in FIG. 7, a pair of shield magnetic bodies arranged to face each other with magnetic gaps G 1 , G 2 and G 3 which are gaps facing the magnetic recording medium facing surface 103. A magnetoresistive effect element 111 (hereinafter referred to as an MR element 111) is sandwiched between 101 and 102 with nonmagnetic insulating layers 104 and 106 interposed therebetween. Then, the MR element 111
Are two layers of magnetoresistive effect films 107 and 108 (hereinafter referred to as MR films 107 and 1) that are stacked with a non-magnetic insulating layer 105 interposed therebetween.
08. ) Consists of.

【0003】すなわち、上記2層縦型MRヘッドにおい
ては、一対のシールド磁性体101,102により余分
な外部磁界をシールドして、目的とする外部磁界のみが
MR素子111を構成するMR膜107,108に入る
ようにしており、上記外部磁界によりMR膜107,1
08の抵抗が変化することを利用して情報の再生を行
う。
That is, in the above-mentioned two-layer vertical MR head, a pair of shield magnetic bodies 101 and 102 shield an extra external magnetic field so that only the desired external magnetic field constitutes the MR film 107. 108, and the MR films 107, 1 are generated by the external magnetic field.
Information is reproduced by utilizing the change in the resistance of 08.

【0004】さらに、上記MR素子111においては、
感磁部となるMR膜107,108の先端部及び後端部
に図示しない電極が積層形成されている。
Further, in the MR element 111,
Electrodes (not shown) are laminated and formed on the front and rear ends of the MR films 107 and 108 which are the magnetically sensitive portions.

【0005】従って、情報の再生は、上記電極からMR
膜107,108にセンス電流を流すとともに、当該M
R膜107,108を所定の方向に磁化しておき、この
磁化方向が外部磁界により変化するために起きるMR膜
107,108の抵抗値の変化を電圧変化として検出し
て行われる。
Therefore, information is reproduced from the electrodes by MR.
A sense current is passed through the films 107 and 108, and the M
The R films 107 and 108 are magnetized in a predetermined direction, and a change in the resistance value of the MR films 107 and 108 caused by a change in the magnetization direction due to an external magnetic field is detected as a voltage change.

【0006】そして、上記2層縦型MRヘッドにおいて
は、上記MR素子111の磁気抵抗効果特性を優れた直
線性を有するものとし、当該MR素子111を高い感度
を示す特性領域で動作するようになすバイアス電流を流
すためのバイアス導体109が、絶縁層104を介して
上記MR素子111のMR膜107,108を横切る形
で設けられている。
In the two-layer vertical MR head, the magnetoresistive effect characteristic of the MR element 111 has excellent linearity so that the MR element 111 operates in a characteristic region showing high sensitivity. A bias conductor 109 for passing a bias current is provided across the MR films 107 and 108 of the MR element 111 via the insulating layer 104.

【0007】また、上記のようなMRヘッドにおいて
は、このバイアス導体109を、例えば一対のシールド
磁性体101,102の一方であるシールド磁性体10
1のMR素子対向面101aに設けられる溝部110に
非磁性材104を介して埋め込むようにし、バイアス導
体109とシールド磁性体101間の絶縁を確保するよ
うにしている。
Further, in the MR head as described above, the bias conductor 109 is connected to, for example, the shield magnetic body 10 which is one of the pair of shield magnetic bodies 101 and 102.
The groove portion 110 provided in the MR element facing surface 101a of No. 1 is embedded via the non-magnetic material 104 to ensure the insulation between the bias conductor 109 and the shield magnetic body 101.

【0008】上記のような構成の2層縦型MRヘッドに
おいてバイアス電流を流さない場合の外部磁界とMR膜
107,108の抵抗の関係を図8に示す。図8を見て
わかるように、外部磁界が零のときには、当然のことな
がら、MR膜の磁化方向が外部磁界による影響を受けな
いためMR膜の抵抗は極小値をとる。その一方、図8の
結果から、外部磁界が約±5(Oe)から±50(O
e)の範囲においては、MR膜の抵抗値は優れた直線性
を有して変化し、その変化が急激であることからMR膜
の感度が良好であることがわかる。
FIG. 8 shows the relationship between the external magnetic field and the resistances of the MR films 107 and 108 when a bias current does not flow in the two-layer vertical MR head having the above structure. As can be seen from FIG. 8, when the external magnetic field is zero, the magnetization direction of the MR film is naturally not affected by the external magnetic field, so that the resistance of the MR film has a minimum value. On the other hand, from the result of FIG. 8, the external magnetic field is about ± 5 (Oe) to ± 50 (Oe)
In the range of e), the resistance value of the MR film changes with excellent linearity, and since the change is abrupt, it can be seen that the sensitivity of the MR film is good.

【0009】そこで、上記のようにバイアス導体109
をMR膜107,108を横切るように配すれば、図9
に模式的に示すように、MR膜107,108に、図中
矢印S107 ,S108 で示すように例えば後端側から先端
側に向かってセンス電流が流れるのに対し、バイアス導
体109には図中矢印Bで示すように例えば図中手前側
から奥側に向かって図中矢印S107 ,S108 と直交する
方向にバイアス電流が流れることとなる。
Therefore, as described above, the bias conductor 109 is used.
Is arranged so as to cross the MR films 107 and 108.
As shown schematically in FIG. 3, a sense current flows in the MR films 107 and 108 from the rear end side to the front end side, as indicated by arrows S 107 and S 108 in the figure, while the bias conductor 109 does not. As indicated by an arrow B in the figure, for example, a bias current flows from the front side to the back side in the figure in a direction orthogonal to the arrows S 107 and S 108 in the figure.

【0010】すなわち、このバイアス導体109にバイ
アス電流を流した状態では、当該バイアス導体109の
周りに図中矢印h2 で示すような方向のバイアス磁界が
発生する。このバイアス磁界は図中矢印h1 で示すよう
にMR膜107,108の先端側から入ってくる磁気記
録媒体からの漏洩磁界に対して反対方向の磁界となる。
That is, when a bias current is applied to the bias conductor 109, a bias magnetic field is generated around the bias conductor 109 in the direction indicated by arrow h 2 in the figure. This bias magnetic field is a magnetic field in the opposite direction to the leakage magnetic field from the magnetic recording medium that enters from the tip side of the MR films 107 and 108 as indicated by an arrow h 1 in the figure.

【0011】従って、この状態でMR膜107,108
が感知する漏洩磁界の実際の強さは本来の強さからバイ
アス磁界の分を差し引いたものとなり、この状態での外
部磁界とMR膜の抵抗の関係は、図10に示すように図
8と比較して全体的に正の方向にずれたものとなる。そ
の結果、外部磁界零(Oe)近傍において、上記MR膜
107,108の磁気抵抗効果特性を優れた直線性を有
するものとし、当該MR膜107,108を高い感度を
示す特性領域で動作するようにして、MR素子111に
微小磁界を高感度に検出させることが可能となる。
Therefore, in this state, the MR films 107 and 108 are
The actual strength of the stray magnetic field sensed by is the original strength minus the bias magnetic field, and the relationship between the external magnetic field and the resistance of the MR film in this state is as shown in FIG. Compared with this, it is shifted in the positive direction as a whole. As a result, in the vicinity of zero external magnetic field (Oe), the magnetoresistive effect characteristics of the MR films 107 and 108 have excellent linearity, and the MR films 107 and 108 are operated in a characteristic region showing high sensitivity. Thus, the MR element 111 can detect a minute magnetic field with high sensitivity.

【0012】[0012]

【発明が解決しようとする課題】上記のように2層縦型
MRヘッドにバイアス導体を設けるようにすると、バイ
アス導体の配線は勿論のこと、バイアス導体と磁気シー
ルド間の絶縁を確保するために、磁気シールドに溝部を
形成する必要がある。
When the bias conductor is provided in the two-layer vertical MR head as described above, not only the wiring of the bias conductor but also the insulation between the bias conductor and the magnetic shield is ensured. It is necessary to form a groove in the magnetic shield.

【0013】しかしながら、これらの工程は非常に煩雑
であり、2層縦型MRヘッドの生産性の向上を妨げる要
因となっている。
However, these steps are very complicated and are a factor that hinders the improvement of the productivity of the two-layer vertical MR head.

【0014】そこで本発明は、従来の実状に鑑みて提案
されるものであり、バイアス導体を形成する必要がな
く、微小磁界を高感度に検出することが可能で、かつ生
産性が良好な2層縦型MRヘッドを提供することを目的
とする。
Therefore, the present invention has been proposed in view of the conventional circumstances, and it is not necessary to form a bias conductor, a minute magnetic field can be detected with high sensitivity, and the productivity is good. An object is to provide a layer vertical MR head.

【0015】[0015]

【課題を解決するための手段】上述の課題を解決するた
めに本発明は、磁気記録媒体対向面に臨んで所定の間隔
で一対のシールド磁性体が配されるとともに、これらシ
ールド磁性体間に磁気抵抗効果素子が磁気記録媒体対向
面に対して略直交方向に配されてなる磁気抵抗効果型磁
気ヘッドの磁気抵抗効果素子を絶縁層を介して積層され
る2層の磁気抵抗効果膜により構成し、各磁気抵抗効果
膜のセンス電流の方向を、上記直交方向に対して互いに
反対方向に略等角度傾けることを特徴とするものであ
る。
In order to solve the above-mentioned problems, the present invention provides a pair of shield magnetic bodies arranged at a predetermined interval facing the magnetic recording medium facing surface, and between the shield magnetic bodies. The magnetoresistive effect element of the magnetoresistive effect type magnetic head in which the magnetoresistive effect element is arranged in a direction substantially orthogonal to the surface facing the magnetic recording medium is composed of two layers of magnetoresistive effect films laminated via an insulating layer. However, the directions of the sense currents of the respective magnetoresistive films are tilted in the opposite directions with respect to the orthogonal direction by substantially equal angles.

【0016】本発明の磁気抵抗効果型磁気ヘッドにおい
ては、各磁気抵抗効果膜のセンス電流の方向が上記直交
方向に対してそれぞれ略45゜傾けられ、互いに略直交
していることが好ましい。
In the magnetoresistive effect type magnetic head of the present invention, it is preferable that the sense current directions of the magnetoresistive effect films are tilted by approximately 45 ° with respect to the orthogonal direction and are substantially orthogonal to each other.

【0017】磁気抵抗効果膜に見られる異方性磁気抵抗
効果は、磁気抵抗効果膜の1方向に対してセンス電流の
方向がなす角度と上記1方向に対して磁化スピンがなす
角度の差の余弦の2乗に比例するものである。
The anisotropic magnetoresistive effect seen in the magnetoresistive film is the difference between the angle formed by the sense current direction with respect to one direction of the magnetoresistive film and the angle formed by the magnetization spin with respect to the one direction. It is proportional to the square of the cosine.

【0018】2層縦型磁気抵抗効果型磁気ヘッドにおい
ては、図11に模式的に示すように、MR膜107,1
08に図中矢印S107 ,S108 で示すように例えば後端
側から先端側、言い換えれば長手方向にセンス電流を流
しており、当該MR膜107,108の図中矢印J
107 ,J108 で示す幅方向に表れる磁化スピンとは直交
する。
In a two-layer vertical magnetoresistive effect type magnetic head, as schematically shown in FIG.
As indicated by arrows S 107 and S 108 in the figure, a sense current is made to flow from the rear end side to the front end side, in other words, in the longitudinal direction.
The magnetization spins appearing in the width direction indicated by 107 and J 108 are orthogonal to each other.

【0019】すなわち、バイアス磁界が存在せず、かつ
外部磁界が零の状態では、センス電流と磁化スピンは直
交した状態であり、磁気抵抗効果膜の1方向に対してセ
ンス電流の方向がなす角度と上記1方向に対して磁化ス
ピンがなす角度の差、言い換えればセンス電流の方向と
磁化スピンがなす角度が90゜となる。このため、異方
性磁気抵抗効果は最小値をとり、先に図8に示したよう
に抵抗値は最小値をとる。従って、バイアス磁界が存在
せず、外部磁界が零近傍では異方性磁気抵抗効果の影響
が小さく、これに伴い、先に図8に示したように抵抗値
の変化は小さいものとなってしまう。
That is, when the bias magnetic field is not present and the external magnetic field is zero, the sense current and the magnetization spin are orthogonal to each other, and the angle formed by the sense current direction with respect to one direction of the magnetoresistive film. And the angle formed by the magnetization spin with respect to the above-mentioned one direction, in other words, the angle formed by the magnetization spin and the direction of the sense current is 90 °. Therefore, the anisotropic magnetoresistive effect takes the minimum value, and the resistance value takes the minimum value as shown in FIG. Therefore, when there is no bias magnetic field and the external magnetic field is near zero, the influence of the anisotropic magnetoresistive effect is small, and accordingly, the change in the resistance value is small as shown in FIG. .

【0020】本発明の磁気抵抗効果型磁気ヘッドにおい
ては、前述のように、磁気記録媒体対向面に臨んで所定
の間隔を有して配される一対のシールド磁性体間に挟み
込まれ、磁気記録媒体対向面に対して略直交方向に配さ
れる磁気抵抗効果素子を絶縁層を介して積層される2層
の磁気抵抗効果膜により構成し、各磁気抵抗効果膜のセ
ンス電流の方向を、上記直交方向に対して互いに反対方
向に略等角度傾いた方向としている。
In the magnetoresistive effect magnetic head of the present invention, as described above, the magnetic recording is performed by being sandwiched between a pair of shield magnetic bodies arranged with a predetermined interval facing the magnetic recording medium facing surface. The magnetoresistive effect element arranged in a direction substantially orthogonal to the medium facing surface is composed of two layers of magnetoresistive effect films laminated with an insulating layer in between, and the direction of the sense current of each magnetoresistive effect film is set to The directions are inclined in the opposite directions with respect to the orthogonal direction by substantially equal angles.

【0021】このような構成の磁気抵抗効果型磁気ヘッ
ドの磁気抵抗効果膜の磁化スピンは、通常、上述のよう
に当該磁気抵抗効果膜の幅方向に表れ、上記磁化スピン
は上記直交方向と直交することとなる。すなわち、直交
方向とセンス電流の方向がなす角度をθとすると、磁化
スピンとセンス電流のなす角度は90゜−θとなる。こ
のことから、2層の磁気抵抗効果膜のそれぞれのセンス
電流は、磁化スピンに対しても、互いに反対方向に略等
角度傾いた方向となり、センス電流の方向と磁化スピン
が直交しないこととなる。
The magnetization spins of the magnetoresistive film of the magnetoresistive magnetic head having such a structure usually appear in the width direction of the magnetoresistive film as described above, and the magnetization spins are orthogonal to the orthogonal direction. Will be done. That is, if the angle formed by the orthogonal direction and the sense current direction is θ, the angle formed by the magnetization spin and the sense current is 90 ° −θ. Therefore, the sense currents of the two-layered magnetoresistive films are inclined in directions opposite to each other by substantially equal angles with respect to the magnetization spins, and the sense current direction and the magnetization spins are not orthogonal to each other. .

【0022】従って、バイアス磁界が存在せず、かつ外
部磁界が零の場合においても異方性磁気抵抗効果が最小
値とならず、抵抗値が最小値とならず、外部磁界が零近
傍の微小磁界でも磁気抵抗効果膜の抵抗値の変化が大き
くなる。
Therefore, even when there is no bias magnetic field and the external magnetic field is zero, the anisotropic magnetoresistive effect does not reach the minimum value, the resistance value does not reach the minimum value, and the external magnetic field is very small near zero. Even in a magnetic field, the change in the resistance value of the magnetoresistive film becomes large.

【0023】また、このような2層縦型磁気抵抗効果型
磁気ヘッドにおいては、磁気抵抗効果素子の2層の磁気
抵抗効果膜の磁化スピンが反平行状態とされているのが
エネルギー的に安定とされている。
In such a two-layer vertical magnetoresistive effect type magnetic head, it is energetically stable that the magnetization spins of the two-layer magnetoresistive effect films of the magnetoresistive effect element are in antiparallel state. It is said that.

【0024】そこで、このとき、本発明の磁気抵抗効果
型磁気ヘッドにおいて、各磁気抵抗効果膜のセンス電流
の方向を上記直交方向に対してそれぞれ略45゜傾け、
互いに略直交するようにすれば、磁化スピンに対しても
同様となり、当該磁気抵抗効果膜の磁気的挙動が最も安
定する。
Therefore, at this time, in the magnetoresistive effect type magnetic head of the present invention, the direction of the sense current of each magnetoresistive effect film is inclined by about 45 ° with respect to the orthogonal direction,
By making them substantially orthogonal to each other, the same applies to the magnetization spin, and the magnetic behavior of the magnetoresistive film is most stable.

【0025】[0025]

【発明の実施の形態】以下、本発明の具体的な実施の形
態について図面を参照しながら詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described in detail below with reference to the drawings.

【0026】本例の磁気抵抗効果型磁気ヘッドは、いわ
ゆる2層縦型磁気抵抗効果型磁気ヘッド(以下、2層縦
型MRヘッドと称する。)であり、図1に模式的に示す
ように、磁気記録媒体対向面3に臨む間隙部である磁気
ギャップg1 ,g2 ,g3 を有して相対向して配される
一対のシールド磁性体1,2間に非磁性の絶縁層4,6
を介して磁気抵抗効果素子12(以下、MR素子12と
称する。)が挟み込まれてなるものである。そして、上
記MR素子12は、非磁性の絶縁層5を介して積層され
る2層の磁気抵抗効果膜7,8(以下、MR膜7,8と
称する。)により構成される。
The magnetoresistive effect magnetic head of this example is a so-called two-layer vertical magnetoresistive effect magnetic head (hereinafter referred to as a two-layer vertical MR head), and as shown schematically in FIG. , A non-magnetic insulating layer 4 between a pair of shield magnetic bodies 1 and 2 arranged facing each other with magnetic gaps g 1 , g 2 and g 3 facing the magnetic recording medium facing surface 3. , 6
The magnetoresistive effect element 12 (hereinafter referred to as the MR element 12) is sandwiched between the two. The MR element 12 is composed of two layers of magnetoresistive effect films 7 and 8 (hereinafter, referred to as MR films 7 and 8) laminated with a nonmagnetic insulating layer 5 interposed therebetween.

【0027】上記一対のシールド磁性体1,2は、余分
な外部磁界をシールドして、目的とする外部磁界のみが
MR素子12を構成するMR膜7,8に入るように配さ
れるものである。
The pair of shield magnetic bodies 1 and 2 are arranged so as to shield an extra external magnetic field so that only the desired external magnetic field enters the MR films 7 and 8 constituting the MR element 12. is there.

【0028】また、上記MR素子12においては感磁部
となるMR膜7,8の先端部及び後端部に電極が積層形
成されているが、図2に模式的に示すように(図2中に
おいてはMR膜8のみを示す。)、MR膜8の先端部及
び後端部の側面に電極9,10を接続して、MR膜8の
センス電流が図中矢印S8 で示すように斜め方向に流れ
るようにしている。なお、このような接続方法は、一般
にサイドコンタクトと称される。
Further, in the MR element 12, electrodes are laminated on the front and rear ends of the MR films 7 and 8 which are magnetically sensitive portions, as shown schematically in FIG. In the figure, only the MR film 8 is shown.), Electrodes 9 and 10 are connected to the side surfaces of the front and rear ends of the MR film 8 so that the sense current of the MR film 8 is as indicated by an arrow S 8 in the figure. It is designed to flow diagonally. Note that such a connection method is generally called a side contact.

【0029】そして、本例の2層縦型MRヘッドにおい
ては、図3に模式的に示すようにMR膜7,8のそれぞ
れのセンス電流を、図中矢印S7 ,S8 で示すように、
当該MR膜7,8の図中矢印V7 ,V8 で示す磁気記録
媒体対向面3との直交方向(長手方向にあたる。)に対
して、それぞれ図中θ7 及び図中θ8 で示す角度を有し
て互いに反対方向に傾いた方向となるように流してい
る。そして、図中θ7 及び図中θ8 で示される角度は、
それぞれ45゜とされ、同じ角度となされている。
In the two-layer vertical MR head of this example, the sense currents of the MR films 7 and 8 are as shown by arrows S 7 and S 8 in the figure, as schematically shown in FIG. ,
The angles of the MR films 7 and 8 with respect to the direction orthogonal to the magnetic recording medium facing surface 3 (corresponding to the longitudinal direction) indicated by arrows V 7 and V 8 in the drawing, which are indicated by θ 7 in the drawing and θ 8 in the drawing, respectively. And flow in such a manner that they are inclined in opposite directions. Then, the angles indicated by θ 7 and θ 8 in the figure are
The angles are 45 °, which are the same.

【0030】本例の2層縦型MRヘッドにおいては、そ
の構成上、2層のMR膜7,8の磁化スピンが図3中矢
印J7 ,J8 で示されるように当該MR膜7,8の幅方
向に表れ、この磁化スピンは、図中矢印V7 ,V8 で示
す磁気記録媒体対向面3との直交方向に対して直交する
こととなる。すなわち、直交方向とセンス電流の方向が
なす角度θ7 ,θ8 に対して、磁化スピンとセンス電流
のなす角度は90゜−θ7 ,90゜−θ8 となる。この
ことから、2層のMR膜7,8のそれぞれのセンス電流
の方向は、幅方向の磁化スピンに対しても、45゜の角
度を有して互いに反対方向に傾くこととなり、センス電
流の方向同士は直交することとなる。
In the two-layer vertical MR head of this example, due to the constitution, the magnetization spins of the two-layer MR films 7 and 8 are as shown by arrows J 7 and J 8 in FIG. This magnetized spin appears in the width direction of 8 and is orthogonal to the direction orthogonal to the magnetic recording medium facing surface 3 shown by arrows V 7 and V 8 in the figure. That is, the angle theta 7 the direction of the orthogonal direction and the sense current is formed, relative theta 8, the angle of the magnetization spin and the sense current is 90 ° - [theta] 7, 90 ° - [theta] 8. From this, the directions of the sense currents of the two layers of the MR films 7 and 8 are inclined to the opposite directions with an angle of 45 ° with respect to the magnetization spin in the width direction. The directions are orthogonal to each other.

【0031】また、本例の2層縦型MRヘッドにおいて
は、エネルギー的な安定を確保するべく、図3中に示さ
れるように図中矢印J7 で示されるMR膜7の磁化スピ
ン,と図中矢印J8 で示されるMR膜8の磁化スピンを
反平行としている。
Further, in the two-layer vertical MR head of this example, in order to secure energy stability, as shown in FIG. 3, the magnetization spin of the MR film 7 indicated by the arrow J 7 in the drawing, The magnetization spins of the MR film 8 indicated by an arrow J 8 in the drawing are antiparallel.

【0032】本例の2層縦型MRヘッドにおいて、情報
を再生するには、例えばMR膜8の上記電極9,10か
らMR膜8にセンス電流を流すとともに、当該MR膜8
を所定の方向に磁化しておき、この磁化方向が外部磁界
により変化するために起きるMR膜8の抵抗値の変化を
電圧変化として検出すれば良く、MR膜7においても同
様である。
In the two-layer vertical MR head of this example, in order to reproduce information, for example, a sense current is passed from the electrodes 9 and 10 of the MR film 8 to the MR film 8 and at the same time the MR film 8 is reproduced.
Is magnetized in a predetermined direction, and a change in the resistance value of the MR film 8 caused by a change in the magnetization direction due to an external magnetic field may be detected as a voltage change. The same applies to the MR film 7.

【0033】本例の2層縦型MRヘッドの外部磁界に対
する抵抗値の変化を図4に示す。本例の2層縦型MRヘ
ッドにおいては、外部磁界が零のときにセンス電流の向
きと磁化スピンとのなす角度が45゜となるので、異方
性磁気抵抗効果は最小値をとらず、外部磁界が零近傍で
も抵抗値が大きく変化することとなる。また、この2層
縦型MRヘッドにおいては、当然のことながら、外部磁
界による磁化スピンの向きの変化によりセンス電流の向
きと磁化スピンのなす角度が変化し、この変化に合わせ
て異方性磁気抵抗効果が変化することから、抵抗値の変
化を示す曲線は分散型の曲線となる。
FIG. 4 shows a change in resistance value of the two-layer vertical MR head of this example with respect to an external magnetic field. In the two-layer vertical MR head of this example, when the external magnetic field is zero, the angle formed by the sense current direction and the magnetization spin is 45 °, so the anisotropic magnetoresistive effect does not take the minimum value, Even if the external magnetic field is near zero, the resistance value changes greatly. In addition, in this two-layer vertical MR head, as a matter of course, the angle between the sense current direction and the magnetization spin changes due to the change in the direction of the magnetization spin due to the external magnetic field. Since the resistance effect changes, the curve showing the change in the resistance value is a dispersion type curve.

【0034】さらに、本例の2層縦型MRヘッドにおい
ては、2層のMR膜のセンス電流の向き同士を直交させ
ていることから、磁気的挙動が安定化され、上記分散型
の曲線の対称性が良好であり、リニアリティーが高い。
Furthermore, in the two-layer vertical MR head of this example, since the directions of the sense currents of the two-layer MR films are orthogonal to each other, the magnetic behavior is stabilized, and Good symmetry and high linearity.

【0035】さらにまた、図4と図10を比較すると、
図4の方が外部磁界が零近傍の領域における直線性が優
れており、本例のMRヘッドにおいては、従来のMRヘ
ッドに比べて再生波形において不要な高次歪が低減され
る。
Furthermore, comparing FIG. 4 with FIG. 10,
FIG. 4 has better linearity in the region where the external magnetic field is near zero, and in the MR head of this example, unnecessary higher-order distortion in the reproduced waveform is reduced as compared with the conventional MR head.

【0036】従って、本例の2層縦型MRヘッドにおい
ては、バイアス導体を形成することなく、外部磁界零近
傍の微小磁界を高感度に検出することが可能である。ま
た、本例の2層縦型MRヘッドにおいては、バイアス導
体を形成する必要がないことから、バイアス導体の配線
は勿論のこと、シールド磁性体に溝部を設ける必要もな
くなり、生産性が向上する。
Therefore, in the two-layer vertical MR head of this example, it is possible to detect a minute magnetic field in the vicinity of zero external magnetic field with high sensitivity without forming a bias conductor. Further, in the two-layer vertical MR head of this example, since it is not necessary to form the bias conductor, it is not necessary to provide the wiring of the bias conductor and it is not necessary to provide the groove portion in the shield magnetic body, and the productivity is improved. .

【0037】上述の2層縦型MRヘッドにおいては、M
R膜に流れるセンス電流の向きを電極の形成位置により
規定するようにしたが、以下のような方法により規定し
ても良い。
In the above-mentioned two-layer vertical MR head, M
Although the direction of the sense current flowing in the R film is defined by the position where the electrode is formed, it may be defined by the following method.

【0038】すなわち、図5に模式的に示すように(図
5中にはMR膜8のみを示す。)、MR膜8の先端部及
び後端部の側面に電極19,20を接続する。さらに、
MR膜8上に、その一端が電極19と接続して他端がM
R膜8の長手方向に対して斜めになるように配される平
面三角形の第1の導電パターン21a、第1の導電パタ
ーン21aの他端と平行に相対向する平面平行四辺形の
第2の導電パターン21b、第2の導電パターン21b
と平行に相対向する平面平行四辺形の第3の導電パター
ン21c、一端が第3の導電パターン21cと平行に相
対向して他端が電極20に接続される平面三角形の第4
の導電パターン21dを形成する。
That is, as schematically shown in FIG. 5 (only the MR film 8 is shown in FIG. 5), the electrodes 19 and 20 are connected to the side surfaces of the front and rear ends of the MR film 8. further,
On the MR film 8, one end is connected to the electrode 19 and the other end is M
The first conductive pattern 21a having a plane triangle arranged obliquely with respect to the longitudinal direction of the R film 8 and the second parallelogrammic plane parallel to the other end of the first conductive pattern 21a. Conductive pattern 21b, second conductive pattern 21b
A third parallel conductive parallelepiped conductive pattern 21c that is parallel to the third conductive pattern 21c, and a fourth planar triangle whose one end is parallel to the third conductive pattern 21c and the other end is connected to the electrode 20.
Forming a conductive pattern 21d.

【0039】従って、電極19,20間を流れるセンス
電流は、上記第1〜4の導電パターン21a,21b,
21c,21dに沿って流れるため、その方向が図中矢
印S8 で示すようにMR膜8の斜め方向に規制されるこ
ととなる。なお、このような接続方法を、一般にバーバ
ーポール法と称する。
Therefore, the sense current flowing between the electrodes 19 and 20 is the same as the first to fourth conductive patterns 21a, 21b,
21c, to flow along the 21d, so that the its direction is restricted in a diagonal direction of the MR films 8 as indicated by arrow S 8. Note that such a connection method is generally called a barber pole method.

【0040】また、図6に模式的に示すように(図6中
においては、MR膜8のみを示す。)、平面四角形のM
R膜8を、一方の対角線方向で相対向する角部を平面三
角形の第1及び第3の部材8a,8cにより構成し、残
りの部分を第2の部材8bにより構成したものとしても
良い。そして、上記第1及び第3の部材8a,8cと第
2の部材8bを磁気特性が同等で導電性の異なる材料に
より構成し、第1及び第3の部材8a,8cを比較的導
電性の低い材料、第2の部材8bを比較的導電性の高い
材料により構成するようにする。さらに、この状態でM
R膜8の先端部及び後端部の側面に電極29,30を接
続する。
Further, as schematically shown in FIG. 6 (only the MR film 8 is shown in FIG. 6), a planar square M is formed.
The R film 8 may be configured such that the corner portions facing each other in one diagonal direction are composed of the first and third members 8a and 8c having a planar triangle, and the remaining part is composed of the second member 8b. The first and third members 8a and 8c and the second member 8b are made of materials having the same magnetic characteristics and different conductivity, and the first and third members 8a and 8c are made of a relatively conductive material. The second material 8b is made of a low material, and the second member 8b is made of a material having a relatively high conductivity. Furthermore, in this state M
The electrodes 29 and 30 are connected to the side surfaces of the front and rear ends of the R film 8.

【0041】すると、電極29,30間を流れるセンス
電流は、比較的導電性の高い第2の部材8b内を選択的
に流れるため、その方向が図中矢印S8 で示すようにM
R膜8の斜め方向に規制されることとなる。
Then, the sense current flowing between the electrodes 29 and 30 selectively flows in the second member 8b having relatively high conductivity, so that the direction thereof is M as shown by an arrow S 8 in the figure.
The R film 8 is restricted in the oblique direction.

【0042】このようにしてセンス電流の向きを規制し
たMR素子を使用しても、上述の2層縦型MRヘッドと
同等の効果が得られる。
Even if the MR element in which the direction of the sense current is regulated is used in this way, the same effect as that of the above-mentioned two-layer vertical MR head can be obtained.

【0043】[0043]

【発明の効果】以上の説明からも明らかなように、本発
明の磁気抵抗効果型磁気ヘッドにおいては、磁気記録媒
体対向面に臨んで所定の間隔を有して配される一対のシ
ールド磁性体間に挟み込まれ、磁気記録媒体対向面に対
して略直交方向に配される磁気抵抗効果素子を絶縁層を
介して積層される2層の磁気抵抗効果膜により構成し、
各磁気抵抗効果膜のセンス電流の方向を、上記直交方向
に対して互いに反対方向に略等角度傾いた方向としてい
る。
As is clear from the above description, in the magnetoresistive effect magnetic head of the present invention, a pair of shield magnetic bodies are arranged facing the magnetic recording medium facing surface with a predetermined interval. A magnetoresistive effect element sandwiched between and arranged in a direction substantially orthogonal to the surface facing the magnetic recording medium is constituted by two layers of magnetoresistive effect films laminated via an insulating layer,
The direction of the sense current of each magnetoresistive film is a direction inclined by approximately equal angles in mutually opposite directions with respect to the orthogonal direction.

【0044】このような構成の磁気抵抗効果型磁気ヘッ
ドの磁気抵抗効果膜の磁化スピンは、通常、当該磁気抵
抗効果膜の幅方向に表れ、上記磁化スピンは上記直交方
向と直交することとなる。すなわち、直交方向とセンス
電流の方向がなす角度をθとすると、磁化スピンとセン
ス電流のなす角度は90゜−θとなる。このことから、
2層の磁気抵抗効果膜のそれぞれのセンス電流は、磁化
スピンに対しても、互いに反対方向に略等角度傾いた方
向となり、センス電流の方向と磁化スピンが直交しない
こととなる。
The magnetization spins of the magnetoresistance effect film of the magnetoresistance effect type magnetic head having such a structure usually appear in the width direction of the magnetoresistance effect film, and the magnetization spins are orthogonal to the orthogonal direction. . That is, if the angle formed by the orthogonal direction and the sense current direction is θ, the angle formed by the magnetization spin and the sense current is 90 ° −θ. From this,
The sense currents of the two-layered magnetoresistive films are also inclined with respect to the magnetization spins in directions opposite to each other by substantially equal angles, and the sense current direction and the magnetization spins are not orthogonal to each other.

【0045】従って、バイアス磁界が存在せず、かつ外
部磁界が零の場合においても異方性磁気抵抗効果が最小
値とならず、抵抗値が最小値とならず、外部磁界が零近
傍の微小磁界でも磁気抵抗効果膜の抵抗値の変化が大き
くなり、外部磁界零近傍の微小磁界を高感度に検出する
ことが可能である。
Therefore, even when there is no bias magnetic field and the external magnetic field is zero, the anisotropic magnetoresistive effect does not reach the minimum value, the resistance value does not reach the minimum value, and the external magnetic field is very small near zero. Even in a magnetic field, the change in the resistance value of the magnetoresistive film becomes large, and it is possible to detect a minute magnetic field in the vicinity of zero external magnetic field with high sensitivity.

【0046】また、本発明の磁気抵抗効果型磁気ヘッド
においては、バイアス導体を形成する必要がないことか
ら、バイアス導体の配線は勿論のこと、シールド磁性体
に溝部を設ける必要もなくなり、生産性が向上する。
Further, in the magnetoresistive head of the present invention, since it is not necessary to form the bias conductor, it is not necessary to provide the wiring of the bias conductor, and it is not necessary to provide the groove portion in the shield magnetic body, and the productivity is improved. Is improved.

【0047】なお、このような2層縦型磁気抵抗効果型
磁気ヘッドにおいては、磁気抵抗効果素子の磁気抵抗効
果膜の磁化スピンが反平行状態とされているのがエネル
ギー的に安定とされている。
In such a two-layer vertical magnetoresistive effect type magnetic head, it is energy-stable that the magnetization spins of the magnetoresistive effect film of the magnetoresistive effect element are in antiparallel state. There is.

【0048】そこで、このとき、本発明の磁気抵抗効果
型磁気ヘッドにおいて、各磁気抵抗効果膜のセンス電流
の方向を上記直交方向に対してそれぞれ略45゜傾け、
互いに略直交するようにすれば、磁化スピンに対しても
同様となり、当該磁気抵抗効果膜の磁気的挙動が最も安
定する。
Therefore, at this time, in the magnetoresistive effect type magnetic head of the present invention, the direction of the sense current of each magnetoresistive effect film is tilted by approximately 45 ° with respect to the orthogonal direction,
By making them substantially orthogonal to each other, the same applies to the magnetization spin, and the magnetic behavior of the magnetoresistive film is most stable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したMRヘッドを模式的に示す断
面図である。
FIG. 1 is a sectional view schematically showing an MR head to which the present invention is applied.

【図2】本発明を適用したMRヘッドのMR膜の一例を
模式的に示す平面図である。
FIG. 2 is a plan view schematically showing an example of an MR film of an MR head to which the present invention is applied.

【図3】本発明を適用したMRヘッドの2層のMR膜に
おけるセンス電流の向きと磁化スピンの関係を示す模式
図である。
FIG. 3 is a schematic diagram showing a relationship between a sense current direction and a magnetization spin in a two-layer MR film of an MR head to which the present invention is applied.

【図4】外部磁界の強さと抵抗の関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing the relationship between the strength of an external magnetic field and the resistance.

【図5】本発明を適用したMRヘッドのMR膜の他の例
を模式的に示す平面図である。
FIG. 5 is a plan view schematically showing another example of the MR film of the MR head to which the present invention is applied.

【図6】本発明を適用したMRヘッドのMR膜のさらに
他の例を模式的に示す平面図である。
FIG. 6 is a plan view schematically showing still another example of the MR film of the MR head to which the present invention is applied.

【図7】従来のMRヘッドを模式的に示す断面図であ
る。
FIG. 7 is a cross-sectional view schematically showing a conventional MR head.

【図8】外部磁界の強さと抵抗の関係の一例を示す特性
図である。
FIG. 8 is a characteristic diagram showing an example of the relationship between the strength of an external magnetic field and the resistance.

【図9】従来のMRヘッドにおけるセンス電流とバイア
ス電流の関係を示す模式図である。
FIG. 9 is a schematic diagram showing a relationship between a sense current and a bias current in a conventional MR head.

【図10】外部磁界の強さと抵抗の関係の他の例を示す
特性図である。
FIG. 10 is a characteristic diagram showing another example of the relationship between the strength of an external magnetic field and the resistance.

【図11】従来のMRヘッドにおける磁化スピンとセン
ス電流の関係を示す模式図である。
FIG. 11 is a schematic diagram showing a relationship between a magnetization spin and a sense current in a conventional MR head.

【符号の説明】[Explanation of symbols]

1,2 シールド磁性体 3 磁気記録媒体対向面 4,5,6 絶縁層 7,8 MR膜 11 MR素子 1, 2 Shield magnetic body 3 Magnetic recording medium facing surface 4, 5, 6 Insulating layer 7, 8 MR film 11 MR element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気記録媒体対向面に臨んで所定の間隔
で一対のシールド磁性体が配されるとともに、これらシ
ールド磁性体間に磁気抵抗効果素子が磁気記録媒体対向
面に対して略直交方向に配されてなる磁気抵抗効果型磁
気ヘッドにおいて、 上記磁気抵抗効果素子が絶縁層を介して積層される2層
の磁気抵抗効果膜からなり、各磁気抵抗効果膜のセンス
電流の方向が、上記直交方向に対して互いに反対方向に
略等角度傾けられていることを特徴とする磁気抵抗効果
型磁気ヘッド。
1. A pair of shield magnetic bodies are arranged at a predetermined interval facing the magnetic recording medium facing surface, and a magnetoresistive effect element is provided between the shield magnetic bodies in a direction substantially orthogonal to the magnetic recording medium facing surface. In the magnetoresistive effect type magnetic head, the magnetoresistive effect element is composed of two layers of magnetoresistive effect films laminated via an insulating layer, and the direction of the sense current of each magnetoresistive effect film is A magnetoresistive effect magnetic head characterized by being tilted at substantially equal angles in mutually opposite directions with respect to an orthogonal direction.
【請求項2】 各磁気抵抗効果膜のセンス電流の方向が
上記直交方向に対してそれぞれ略45゜傾けられ、互い
に略直交していることを特徴とする請求項1記載の磁気
抵抗効果型磁気ヘッド。
2. The magnetoresistive effect type magnetic element according to claim 1, wherein the directions of the sense currents of the respective magnetoresistive effect films are inclined substantially 45 ° with respect to the orthogonal direction and are substantially orthogonal to each other. head.
JP26595395A 1995-10-13 1995-10-13 Magneto-resistance effect magnetic head Withdrawn JPH09106511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26595395A JPH09106511A (en) 1995-10-13 1995-10-13 Magneto-resistance effect magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26595395A JPH09106511A (en) 1995-10-13 1995-10-13 Magneto-resistance effect magnetic head

Publications (1)

Publication Number Publication Date
JPH09106511A true JPH09106511A (en) 1997-04-22

Family

ID=17424362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26595395A Withdrawn JPH09106511A (en) 1995-10-13 1995-10-13 Magneto-resistance effect magnetic head

Country Status (1)

Country Link
JP (1) JPH09106511A (en)

Similar Documents

Publication Publication Date Title
US5768066A (en) Magnetoresistive head having an antiferromagnetic layer interposed between first and second magnetoresistive elements
US6469873B1 (en) Magnetic head and magnetic storage apparatus using the same
CA1224565A (en) Twin track vertical read-write head structure
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
JPH117614A (en) Anti-parallel pin spin-bulb read-in sensor having symmetry property in read-in signal
WO2002047182A1 (en) Magnetoresistance effect device, and magnetoresistance effect magnetic head
JPH01269218A (en) Yoke type thin film magnetic head
JPH07192227A (en) Magneto-resistance effect type magnetic head
JPH07302412A (en) Magnetoresistance converter
JP2000113421A (en) Magnetic tunnel junction magneto-resistive head
KR100267411B1 (en) Magnetoresistive head
JPH09106511A (en) Magneto-resistance effect magnetic head
JPH1125431A (en) Magneto-resistance effect type reproducing head and magnetic recording and reproducing device
JPH1125425A (en) Magnetic head
JPH09260742A (en) Magnetoresistance effect device
JP3270174B2 (en) Magnetoresistive head and magnetic disk drive
JP2000200404A (en) Magneto-resistance effect type thin film magnetic head
JPH11203634A (en) Magneto-resistive head
JPH09270550A (en) Magnetoresistance effect element
JPH09180131A (en) Giant magnetoresistance effect element and magnetoresistive head formed by using the same
JPH10222817A (en) Magneto-resistive sensor
JPH08249617A (en) Spin valve magnetoresistance effect element
JPH0721530A (en) Magneto-resistance effect type head
JPH07110921A (en) Magnetoresistance effect type thin film head
JPH0981916A (en) Magnetoresistance effect type head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107