JPH09105879A - Deflection scanning device - Google Patents

Deflection scanning device

Info

Publication number
JPH09105879A
JPH09105879A JP28793395A JP28793395A JPH09105879A JP H09105879 A JPH09105879 A JP H09105879A JP 28793395 A JP28793395 A JP 28793395A JP 28793395 A JP28793395 A JP 28793395A JP H09105879 A JPH09105879 A JP H09105879A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary polygon
rotary
scanning device
flange member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28793395A
Other languages
Japanese (ja)
Inventor
Kenichi Tomita
健一 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28793395A priority Critical patent/JPH09105879A/en
Publication of JPH09105879A publication Critical patent/JPH09105879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the assembly of a rotary polygon mirror to a motor and to prevent an excessive thrust load from being placed during the assembling operation. SOLUTION: On the reverse surface of a flange member 4 united with a shaft 3, the rotor 5 of the motor M1 is fixed and on the top surface of a flange member 4, the rotary polygon mirror 8 is assembled. This assembling operation is performed by fitting a fixed pin 4a stood on the flange member 4 loosely in the through hole 8c of the rotary polygon mirror 8, and charging and setting photosetting resin 9 with light L. No large external force is needed to assemble the rotary polygon mirror 8, and the thrust load placed on the shaft 3 is only the weight of the rotary polygon mirror 8. Further, neither a G ring nor a leaf spring is needed and the assembling process is easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザプリンタや
レーザファクシミリ等に用いられる偏向走査装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflection scanning device used for laser printers, laser facsimiles and the like.

【0002】[0002]

【従来の技術】レーザプリンタやレーザファクシミリに
使用される光偏向走査装置の1例を図4および図5につ
いて説明する。まず図4において、半導体レーザSから
発生する光束は、コリメータレンズC1 によって平行化
されたのちにシリンドリカルレンズC2 によって線状に
集光され、回転多面鏡108の反射面108aに照射さ
れる。回転多面鏡108によって偏向走査された光束
は、球面レンズF1 およびトーリックレンズF2 からな
る結像レンズ系Fによって図示しない回転ドラム上の感
光体に結像し、回転多面鏡108の回転による主走査、
および前記回転ドラムの回転による副走査によって感光
体に静電潜像を形成する。
2. Description of the Related Art An example of an optical deflection scanning device used in a laser printer or a laser facsimile will be described with reference to FIGS. First, in FIG. 4, the light beam generated from the semiconductor laser S is collimated by the collimator lens C 1 , then linearly condensed by the cylindrical lens C 2 , and irradiated on the reflecting surface 108 a of the rotary polygon mirror 108. The light beam deflected and scanned by the rotary polygon mirror 108 is imaged on a photoconductor on a rotating drum (not shown) by an imaging lens system F including a spherical lens F 1 and a toric lens F 2, and is mainly rotated by the rotation polygon mirror 108. scanning,
And an electrostatic latent image is formed on the photoconductor by sub-scanning by rotation of the rotary drum.

【0003】回転多面鏡108を回転させる駆動装置
は、図5に示すように、光学箱101に固定された軸受
ハウジング101aと、これに保持された軸受102
a,102bに回転自在に支承された軸103を有し、
軸103はフランジ部材104を介してヨーク105a
および駆動用マグネット105bからなるロータ105
に一体的に結合されており、ロータ105はハウジング
101aに固定されたモータ基板107上のステータ1
06とともにモータM0 を構成する。回転多面鏡108
は軸103に装着された板バネ109a、ワッシャ10
9bおよびGリング109c等からなる弾性押圧手段1
09によってフランジ部材104に押圧され、これによ
ってロータ105と一体的に結合され、前記モータM0
の駆動によって回転する。
As shown in FIG. 5, a driving device for rotating the rotary polygon mirror 108 includes a bearing housing 101a fixed to an optical box 101 and a bearing 102 held by the housing.
a and 102b have a shaft 103 rotatably supported,
The shaft 103 is connected to the yoke 105a via the flange member 104.
And a rotor 105 including a driving magnet 105b
And the rotor 105 is fixed to the housing 101a.
A motor M 0 is configured with 06. Rotating polygon mirror 108
Is a leaf spring 109a and a washer 10 mounted on the shaft 103.
Elastic pressing means 1 including 9b and G ring 109c
09 presses against the flange member 104, thereby integrally connecting with the rotor 105, and the motor M 0
Driven to rotate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記従来
の技術によれば、前述のように回転多面鏡をフランジ部
材に押圧する弾性押圧手段は板バネ、ワッシャおよび軸
に固着されたGリング等からなり、回転多面鏡の組付け
に当って、軸に嵌着した板バネを弾性変形させつつGリ
ングを軸に沿って所定の固着位置(例えば軸に設けられ
た溝)まで押下げるために15〜20kgfの力を必要
とし、これによって軸に過大なスラストがかかり、その
結果、軸受が損傷したり、モータの性能を損うおそれが
ある。さらに、前記弾性押圧手段を構成する部品数が多
いために偏向走査装置の製造コストの上昇を招き、ま
た、回転多面鏡が樹脂製である場合には、弾性押圧手段
の押圧力によって回転多面鏡に大きな歪を発生し、この
ために反射面が変形して偏向走査装置の光学性能を劣化
させるおそれもある。
However, according to the above-mentioned conventional technique, the elastic pressing means for pressing the rotary polygonal mirror against the flange member as described above comprises a leaf spring, a washer and a G ring fixed to the shaft. , 15 to push down the G ring along a shaft to a predetermined fixed position (for example, a groove provided on the shaft) while elastically deforming the leaf spring fitted to the shaft when assembling the rotary polygon mirror. It requires a force of 20 kgf, which causes excessive thrust on the shaft, which can result in bearing damage and impaired motor performance. Further, since the number of parts forming the elastic pressing means is large, the manufacturing cost of the deflection scanning device increases, and when the rotary polygon mirror is made of resin, the rotary polygon mirror is pressed by the pressing force of the elastic pressing means. There is also a possibility that a large amount of distortion will be generated, which will deform the reflecting surface and deteriorate the optical performance of the deflection scanning device.

【0005】本発明は上記従来の技術の有する未解決の
課題に鑑みてなされたものであり、回転多面鏡をモータ
のロータ等に組付けるに際して、数多くの部品を必要と
せず組付作業も簡単であり、ロータの軸に過大なスラス
ト荷重がかかるおそれもない偏向走査装置を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and when assembling a rotary polygon mirror to a rotor of a motor, many parts are not required and the assembling work is simple. It is therefore an object of the present invention to provide a deflection scanning device in which there is no fear that an excessive thrust load will be applied to the rotor shaft.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の偏向走査装置は、少なくとも1個の貫通孔
を有する回転多面鏡と、該回転多面鏡の反射光を感光体
に結像させる結像手段と、前記回転多面鏡の貫通孔に遊
嵌する突出部を有しそのまわりに充填された光硬化樹脂
によって前記回転多面鏡に接着された回転部材と、該回
転部材を回転させる駆動手段を有することを特徴とす
る。
In order to achieve the above object, the deflection scanning device of the present invention connects a rotary polygonal mirror having at least one through hole and a reflected light of the rotary polygonal mirror to a photoconductor. An image forming unit for forming an image, a rotating member which has a protruding portion loosely fitted in a through hole of the rotating polygon mirror and which is adhered to the rotating polygon mirror by a photo-curing resin filled around the rotating member, and the rotating member is rotated. It is characterized in that it has a driving means for driving.

【0007】回転多面鏡に複数の貫通孔が設けられ、こ
れらが前記回転多面鏡の中心軸のまわりに軸対称に配設
されているとよい。
It is preferable that a plurality of through-holes be provided in the rotary polygon mirror and that these holes be arranged symmetrically about the central axis of the rotary polygon mirror.

【0008】貫通孔の断面寸法が、回転多面鏡の厚さ方
向に段階的または連続的に変化しているとよい。
The cross-sectional dimension of the through hole may be changed stepwise or continuously in the thickness direction of the rotary polygon mirror.

【0009】[0009]

【作用】モータ等の駆動手段に回転多面鏡を組付けるに
際して、まず、軸と一体であるフランジ部材等の回転部
材をモータのロータ等に結合させ、回転多面鏡の貫通孔
に回転部材の突出部を遊嵌させてそのまわりに光硬化樹
脂を充填しこれを硬化させる。
In assembling the rotary polygon mirror to the driving means such as the motor, first, the rotary member such as the flange member which is integral with the shaft is coupled to the rotor of the motor, and the rotary member is projected into the through hole of the rotary polygon mirror. The part is loosely fitted, and a photo-curing resin is filled around the part to cure it.

【0010】回転多面鏡の貫通孔に回転部材の突出部を
遊嵌させるだけであるからGリング等を組付ける場合の
ように大きな外力を必要とせず、この工程で軸にかかる
スラスト荷重は回転多面鏡の重さのみである。従って、
軸受が損傷したりモータの性能を損うおそれはない。
Since the projecting portion of the rotating member is only loosely fitted in the through hole of the rotary polygon mirror, a large external force is not required as in the case of assembling a G ring or the like, and the thrust load applied to the shaft is rotated in this step. Only the weight of the polygon mirror. Therefore,
There is no risk of bearing damage or loss of motor performance.

【0011】加えて、光硬化樹脂の接着力によって回転
多面鏡をフランジ部材等に固着するものであるから、板
バネやGリング等の組付け部品を必要とせず、偏向走査
装置の組立部品点数の削減と組立工程の簡略化に大きく
貢献できる。
In addition, since the rotary polygon mirror is fixed to the flange member or the like by the adhesive force of the photocurable resin, no assembly parts such as a leaf spring and a G ring are required, and the number of assembly parts of the deflection scanning device is increased. This greatly contributes to the reduction of manufacturing cost and simplification of the assembly process.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings.

【0013】図1は第一実施例による偏向走査装置の主
要部を示す部分模式断面図であって、これは、軸受ハウ
ジング1aを有する光学箱1と、軸受ハウジング1aに
保持された一対のボールベアリング2a,2bに回転自
在に支承された軸3と、軸3に固着された回転部材であ
るフランジ部材4と、これを介して軸3に一体的に結合
されたロータ5を有し、ロータ5はヨーク5aおよびマ
グネット5bからなる。軸受ハウジング1aの上面には
ステータ6を実装したモータ基板7が固定され、ロータ
5とステータ6によって駆動手段であるモータM1 が構
成される。
FIG. 1 is a partial schematic cross-sectional view showing the main part of the deflection scanning device according to the first embodiment, which is an optical box 1 having a bearing housing 1a and a pair of balls held by the bearing housing 1a. The rotor 3 includes a shaft 3 rotatably supported by bearings 2a and 2b, a flange member 4 that is a rotary member fixed to the shaft 3, and a rotor 5 integrally connected to the shaft 3 through the flange member 4. 5 comprises a yoke 5a and a magnet 5b. A motor board 7 on which a stator 6 is mounted is fixed to the upper surface of the bearing housing 1a, and the rotor 5 and the stator 6 constitute a motor M 1 that is a driving means.

【0014】図示しない光源から発生したレーザ光は回
転多面鏡8の反射面8aに線状に集光され、回転多面鏡
8の回転によって所定の走査方向に走査される。このよ
うにして走査される回転多面鏡8の反射光である走査光
は、図示しない結像手段である結像レンズ系によって回
転ドラム上の感光体に結像され、回転多面鏡8の回転に
よる主走査と回転ドラムの回転による副走査によって感
光体に静電潜像を形成する。
Laser light emitted from a light source (not shown) is linearly focused on the reflecting surface 8a of the rotary polygon mirror 8 and is scanned in a predetermined scanning direction by the rotation of the rotary polygon mirror 8. The scanning light, which is the reflected light of the rotary polygon mirror 8 thus scanned, is imaged on the photoconductor on the rotary drum by an imaging lens system which is an imaging means (not shown), and is rotated by the rotation polygon mirror 8. An electrostatic latent image is formed on the photoconductor by main scanning and sub-scanning by rotation of the rotating drum.

【0015】回転多面鏡8は、正六角柱状部材の6個の
側面をそれぞれ鏡面化して反射面8aを形成したもので
あり、軸3を嵌合させる中心穴8bと、フランジ部材4
に立設された突出部である一対の固定ピン4aをそれぞ
れ遊嵌させる貫通孔8cを有し、各貫通孔8cの内径
は、図1の(b)に示すように、フランジ部材4の各固
定ピン4aを嵌合させたときにそのまわりに所定寸法の
間隙Aを形成するように設定される モータM1 のロータ5に対する回転多面鏡8の組付け
は、回転多面鏡8の中心穴8bに軸3を嵌合させるとと
もに回転多面鏡8の各貫通孔8cをフランジ部材4の固
定ピン4aに嵌合させ、各固定ピン4aのまわりの間隙
Aに光硬化樹脂9を充填してこれを光Lによって硬化さ
せることによって行なわれる。
The rotary polygon mirror 8 is a regular hexagonal columnar member in which six side surfaces are mirror-finished to form reflecting surfaces 8a, and a central hole 8b into which the shaft 3 is fitted and a flange member 4 are formed.
1 has a through hole 8c into which a pair of fixing pins 4a, which are protruding parts, are loosely fitted, and the inner diameter of each through hole 8c is as shown in FIG. The fixing of the fixed pin 4a is set so that a gap A having a predetermined size is formed around the fixed pin 4a. Assembling of the rotary polygon mirror 8 to the rotor 5 of the motor M 1 is performed by the center hole 8b of the rotary polygon mirror 8. The shaft 3 is fitted to the shaft 3, the through holes 8c of the rotary polygon mirror 8 are fitted to the fixing pins 4a of the flange member 4, and the gap A around each fixing pin 4a is filled with the photo-curing resin 9 to be fixed. It is performed by curing with the light L.

【0016】回転多面鏡8の各貫通孔8cは回転多面鏡
8の中心から半径rの円周上に軸対称に配設され、フラ
ンジ部材4の各固定ピン4aも同じくフランジ部材4の
中心から半径rの円周上に軸対称に配設される。これ
は、回転多面鏡8をフランジ部材4やロータ5とともに
回転させたときに、回転多面鏡8やフランジ部材4の貫
通孔8cや固定ピン4aによる質量の不均衡のために著
しい動的アンバランスが発生するのを防ぎ、このような
動的アンバランスに起因する振動のために騒音を発生し
たり偏向走査装置の光学特性が変化するのを回避するた
めである。
The through holes 8c of the rotary polygonal mirror 8 are arranged axially symmetrically on the circumference of a radius r from the center of the rotary polygonal mirror 8, and each fixing pin 4a of the flange member 4 also extends from the center of the flange member 4. They are arranged symmetrically on the circumference of a radius r. This is because when the rotary polygon mirror 8 is rotated together with the flange member 4 and the rotor 5, there is a significant dynamic imbalance due to the imbalance of mass due to the through holes 8c of the rotary polygon mirror 8 and the flange member 4 and the fixed pin 4a. This is to prevent noise from being generated and the optical characteristics of the deflection scanning device from changing due to the vibration caused by such dynamic imbalance.

【0017】なお、回転多面鏡8の貫通孔8cおよびフ
ランジ部材4の固定ピン4aの数は、一対に限らず、前
記の円周上に等間隔に3個以上設けてもよい。
The numbers of the through holes 8c of the rotary polygon mirror 8 and the fixing pins 4a of the flange member 4 are not limited to one pair, and three or more holes may be provided on the circumference at equal intervals.

【0018】本実施例によれば、フランジ部材に対する
回転多面鏡の組付けに際して、前述のように回転多面鏡
の各貫通孔にフランジ部材の固定ピンを遊嵌させたうえ
でそのまわりに光硬化樹脂を充填してこれを硬化させる
ものであり、回転多面鏡を介して軸にかかるスラスト荷
重は回転多面鏡の重量のみである。状況によっては光硬
化樹脂を硬化させる工程で回転多面鏡が動かないように
押さえておく必要があるが、これに要する荷重はわずか
であり従来例のGリング等を用いる場合のように軸に過
大なスラスト荷重がかかるおそれはない。さらに、Gリ
ングやワッシャ等を個別に製作して組付ける工程も不必
要であるから、偏向走査装置の組立部品点数や組立工程
数を大幅に削減し、組立工程の自動化も大きく促進でき
る。
According to the present embodiment, when the rotary polygon mirror is assembled to the flange member, the fixing pins of the flange member are loosely fitted in the through holes of the rotary polygon mirror as described above, and the light curing is performed around the fixing pins. The resin is filled and cured, and the thrust load applied to the shaft through the rotary polygon mirror is only the weight of the rotary polygon mirror. Depending on the situation, it may be necessary to hold the rotating polygonal mirror so that it does not move in the process of curing the photo-curing resin, but the load required for this is small and the axis is too large as in the case of using the conventional G ring. There is no risk of applying a heavy thrust load. Further, since it is not necessary to separately manufacture and assemble the G ring and washer, the number of assembly parts and the number of assembly steps of the deflection scanning device can be significantly reduced, and automation of the assembly process can be greatly promoted.

【0019】加えて、合成樹脂製の回転多面鏡を用いる
ときは、回転多面鏡が軟質で上記のスラスト荷重によっ
て反射面が変形しやすい傾向があるため、このようにス
ラスト荷重を低減することは偏向走査装置の光学特性を
確保するうえで特に重要である。
In addition, when a rotary polygon mirror made of synthetic resin is used, since the rotary polygon mirror is soft and the reflecting surface tends to be deformed by the thrust load, it is difficult to reduce the thrust load in this way. This is particularly important for ensuring the optical characteristics of the deflection scanning device.

【0020】また、回転多面鏡が透明な合成樹脂で作ら
れている場合は、各固定ピンのまわりに充填された光硬
化樹脂に光が届きやすくなるため硬化が迅速に行なわ
れ、固定ピンと回転多面鏡の結合強度も向上するという
利点が付加される。
When the rotary polygon mirror is made of a transparent synthetic resin, the photocurable resin filled around each fixing pin can easily reach the light, so that the curing is performed quickly and the rotating pin and the rotating pin are rotated. The added advantage is that the bond strength of the polygon mirror is also improved.

【0021】図2は一変形例を示すもので、これは、回
転多面鏡18に設ける各貫通孔18cの上半部分18d
の内径を拡大し、下半部分18eとの間の段差18fに
よって光硬化樹脂19と回転多面鏡18との間の結合面
積を大きくしてフランジ部材14と回転多面鏡18の間
の結合力を強化するものである。また、光硬化樹脂19
を硬化させる光が貫通孔18cの奥深くまでスムーズに
到達することができるため、より迅速に光硬化樹脂19
を硬化させることができるうえに、図2の(b)に示す
ように、回転多面鏡18の貫通孔18cにフランジ部材
14の固定ピン14aが偏心して嵌合した場合でも固定
ピン14の上半部分はその全周が光硬化樹脂19によっ
て回転多面鏡18に強固に結合される。すなわち、固定
ピン14aの片側の側面が完全に未接着のままで残され
て回転多面鏡18とフランジ部材14の結合力が不足す
る等のトラブルを回避できる。
FIG. 2 shows a modification, which is an upper half portion 18d of each through hole 18c formed in the rotary polygon mirror 18.
The inner diameter of is increased and the step area 18f between the lower half portion 18e and the photocurable resin 19 and the rotary polygon mirror 18 is increased to increase the coupling force between the flange member 14 and the rotary polygon mirror 18. To strengthen. In addition, the photocurable resin 19
Since the light for curing the resin can reach deep inside the through hole 18c smoothly, the light curing resin
2B, the upper half of the fixed pin 14 can be hardened even when the fixed pin 14a of the flange member 14 is eccentrically fitted into the through hole 18c of the rotary polygon mirror 18, as shown in FIG. 2B. The entire circumference of the part is firmly bonded to the rotary polygon mirror 18 by a photo-curing resin 19. That is, it is possible to avoid a trouble that one side surface of the fixing pin 14a is left completely unbonded and the coupling force between the rotary polygon mirror 18 and the flange member 14 is insufficient.

【0022】また、回転多面鏡18の各貫通孔18cに
段差18fを設ける替わりに、図3に示すように大径の
上端部28dから小径の下端部28eまでテーパー状に
内径を縮小する貫通孔28cを有する回転多面鏡28で
もよい。これは、回転多面鏡28が合成樹脂製である場
合に成形が容易であるという長所を有し、また、貫通孔
28cの内面にシボ模様の凹凸を設けたり、スプライン
状の溝を形成することで光硬化樹脂29に対する結合力
をより一層強化できるという利点も付加される。
Further, instead of providing the step 18f in each through hole 18c of the rotary polygon mirror 18, as shown in FIG. 3, the through hole for tapering the inner diameter from the upper end 28d having a large diameter to the lower end 28e having a small diameter is formed. The rotary polygon mirror 28 having 28c may be used. This has an advantage that the rotary polygon mirror 28 can be easily molded when it is made of synthetic resin, and also, it is possible to form a textured pattern on the inner surface of the through hole 28c or to form a spline groove. Therefore, the advantage that the binding force to the photocurable resin 29 can be further strengthened is added.

【0023】[0023]

【発明の効果】本発明は上述のとおり構成されているの
で、次に記載するような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0024】回転多面鏡をモータのロータ等に組付ける
に際して、数多くの部品を必要とせず組付作業も簡単で
あるうえに、ロータの軸に過大なスラスト荷重がかかり
このために軸受が損傷したりモータの性能が損われるお
それもない。その結果、安価でしかも高性能な偏向走査
装置を実現できる。
When assembling the rotary polygon mirror to the rotor of the motor, many parts are not required and the assembling work is easy, and an excessive thrust load is applied to the rotor shaft, which damages the bearing. There is no fear that the performance of the motor will be impaired. As a result, an inexpensive and high-performance deflection scanning device can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例による偏向走査装置の主要部を示すも
ので、(a)はその模式部分断面図、(b)は固定ピン
の近傍を拡大して示す拡大部分断面図である。
1A and 1B show a main part of a deflection scanning device according to an embodiment, FIG. 1A is a schematic partial cross-sectional view thereof, and FIG. 1B is an enlarged partial cross-sectional view showing the vicinity of a fixing pin in an enlarged manner.

【図2】一変形例を示すもので、(a)はその固定ピン
の近傍を拡大して示す拡大部分断面図、(b)は固定ピ
ンが貫通孔に対して偏心して組付けられた場合を示す拡
大部分断面図である。
FIG. 2 shows a modified example, in which (a) is an enlarged partial cross-sectional view showing the vicinity of the fixing pin in an enlarged manner, and (b) is a case where the fixing pin is eccentrically assembled with respect to the through hole. It is an expanded partial sectional view showing.

【図3】別の変形例の固定ピンの近傍を拡大して示す拡
大部分断面図である。
FIG. 3 is an enlarged partial sectional view showing the vicinity of a fixing pin of another modification in an enlarged manner.

【図4】一従来例による偏向走査装置を示す平面図であ
る。
FIG. 4 is a plan view showing a deflection scanning device according to a conventional example.

【図5】図4の装置の主要部を示す模式部分断面図であ
る。
5 is a schematic partial cross-sectional view showing a main part of the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 光学箱 3 軸 4,14 フランジ部材 5 ロータ 6 ステータ 8,18,28 回転多面鏡 8c,18c,28c 貫通孔 9,19,29 光硬化樹脂 1 Optical Box 3 Axis 4,14 Flange Member 5 Rotor 6 Stator 8,18,28 Rotating Polyhedral Mirror 8c, 18c, 28c Through Hole 9,19,29 Light Curing Resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1個の貫通孔を有する回転多
面鏡と、該回転多面鏡の反射光を感光体に結像させる結
像手段と、前記回転多面鏡の貫通孔に遊嵌する突出部を
有しそのまわりに充填された光硬化樹脂によって前記回
転多面鏡に接着された回転部材と、該回転部材を回転さ
せる駆動手段を有する偏向走査装置。
1. A rotary polygonal mirror having at least one through-hole, an image forming means for forming an image of reflected light of the rotary polygonal mirror on a photosensitive member, and a projection portion loosely fitted in the through-hole of the rotary polygonal mirror. A deflection scanning device having a rotating member adhered to the rotary polygonal mirror by a photo-curing resin filled around the rotating member, and a driving unit for rotating the rotating member.
【請求項2】 回転多面鏡に複数の貫通孔が設けられ、
これらが前記回転多面鏡の中心軸のまわりに軸対称に配
設されていることを特徴とする請求項1記載の偏向走査
装置。
2. The rotary polygon mirror is provided with a plurality of through holes,
2. The deflection scanning device according to claim 1, wherein these are arranged in axial symmetry about the central axis of the rotary polygon mirror.
【請求項3】 貫通孔の断面寸法が、回転多面鏡の厚さ
方向に段階的または連続的に変化していることを特徴と
する請求項1または2記載の偏向走査装置。
3. The deflection scanning device according to claim 1, wherein the cross-sectional size of the through hole changes stepwise or continuously in the thickness direction of the rotary polygon mirror.
JP28793395A 1995-10-09 1995-10-09 Deflection scanning device Pending JPH09105879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28793395A JPH09105879A (en) 1995-10-09 1995-10-09 Deflection scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28793395A JPH09105879A (en) 1995-10-09 1995-10-09 Deflection scanning device

Publications (1)

Publication Number Publication Date
JPH09105879A true JPH09105879A (en) 1997-04-22

Family

ID=17723617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28793395A Pending JPH09105879A (en) 1995-10-09 1995-10-09 Deflection scanning device

Country Status (1)

Country Link
JP (1) JPH09105879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116180A (en) * 2017-01-19 2018-07-26 キヤノン株式会社 Optical deflector and optical scanning device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116180A (en) * 2017-01-19 2018-07-26 キヤノン株式会社 Optical deflector and optical scanning device using the same

Similar Documents

Publication Publication Date Title
JPH09105879A (en) Deflection scanning device
JPH0749463A (en) Optical deflector
JP3453474B2 (en) Rotating polygon mirror
JPH08136847A (en) Light deflection scanning device
KR20010098786A (en) Method of fixing polygon mirror and polygon scanner motor
JPH1096872A (en) Deflection scanner
JPH08152574A (en) Optical deflection scanning device
JPH0655113U (en) Polyhedral mirror fixing mechanism
JPH09197329A (en) Light deflecting scanner
JPH08160333A (en) Deflection scanning device
JP2001166246A (en) Optical deflecting device and writing optical device
JPH0651222A (en) Deflection scanning device
JP2725266B2 (en) Optical scanning device
JP4250226B2 (en) Deflection scanner
JP2000249959A (en) Light deflector
JP2004279859A (en) Deflecting scanner
JPH11264951A (en) Deflection scanning device
JPH08338961A (en) Light deflector
JPH032887Y2 (en)
JP2945183B2 (en) Deflection scanning device
JPH11183834A (en) Deflecting scanner
JPH07181417A (en) Light deflector
JP2001004949A (en) Deflection scanner
JPH063619A (en) Polarizing scanner
JPH11183828A (en) Deflecting scanner