JPH09105863A - Variable power viewfinder - Google Patents

Variable power viewfinder

Info

Publication number
JPH09105863A
JPH09105863A JP7289305A JP28930595A JPH09105863A JP H09105863 A JPH09105863 A JP H09105863A JP 7289305 A JP7289305 A JP 7289305A JP 28930595 A JP28930595 A JP 28930595A JP H09105863 A JPH09105863 A JP H09105863A
Authority
JP
Japan
Prior art keywords
group
lens
image
positive
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7289305A
Other languages
Japanese (ja)
Inventor
Yasunori Murata
安規 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7289305A priority Critical patent/JPH09105863A/en
Publication of JPH09105863A publication Critical patent/JPH09105863A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Abstract

PROBLEM TO BE SOLVED: To provide a real-image type variable power viewfinder through which an excellent viewfinder image can be observed over the entire power variation range by correcting diopter scale variation accompanying power variation and providing an objective system with at least one aspherical surface. SOLUTION: An image inversion optical system P consists of a triangular prism P1 and a roof prism P2 and an object image formed by an objective system 10 at a position 4 between the triangular prism P1 and roof prism P2 is inverted upside down and between the right and left and converted into an erect image. This objective system 10 consists of four 1st-4th lens groups L1-L4 and at least one aspherical surface in a specific shape is provided. Then the object image is formed by the objective system 10 at the position between the triangular prism P1 and roof prism P2 to make it easy to correct aberrations, so that the excellent object image can be observed. Further, the 3rd group L3 is moved toward an object to vary the power, thereby effectively obtaining a specific power variation ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は実像式の変倍ファイ
ンダーに関し、特に撮影系とは別体に設けた外部式のフ
ァインダーにおいて、そのファインダーを構成する対物
レンズ系のレンズ構成を適切に設定することにより良好
なるファインダー像の観察を可能とした、例えばスチル
カメラやビデオカメラ等に好適な実像式の変倍ファイン
ダーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real image type variable power viewfinder, and more particularly, in an external viewfinder provided separately from a photographing system, the lens configuration of an objective lens system constituting the viewfinder is appropriately set. Thus, the present invention relates to a real image type variable magnification finder suitable for a still camera, a video camera or the like, which enables good observation of a finder image.

【0002】[0002]

【従来の技術】従来より撮影系とファインダー系が別体
に構成されているカメラでは撮影系が変倍系のときには
ファインダー系も変倍系より構成し、撮影系の変倍に伴
いファインダー視野倍率が変化するように構成してい
る。一般に変倍ファインダーにはカメラに組み込むこと
から小型でしかも所定の変倍比が容易に得られる構成の
ものが要求されている。
2. Description of the Related Art Conventionally, in a camera in which a photographing system and a finder system are separately configured, when the photographing system is a variable magnification system, the finder system is also constituted by a variable magnification system, and the finder field magnification is changed according to the variation of the photographing system. Is configured to change. Generally, the variable magnification finder is required to have a small size because it is incorporated in a camera and a predetermined variable magnification ratio can be easily obtained.

【0003】本出願人は特開昭61−156018号公
報や特開平1−116616号公報等において対物レン
ズを多群のレンズ群で構成し、変倍の際、各レンズ群の
空気間隔を変化させることによって変倍を行い、該対物
レンズにより倍率を種々と変えた物体像をポロプリズム
等の像反転部材を介して正立像とし、該正立像を接眼レ
ンズで観察するようにした実像式の変倍ファインダーを
提案している。
The applicant of the present invention, in Japanese Patent Laid-Open No. 61-156018 and Japanese Patent Laid-Open No. 1-116616, configures the objective lens with a multi-lens group, and changes the air spacing of each lens group during zooming. The object image with various magnifications changed by the objective lens is made an erect image through an image inverting member such as a Porro prism, and the erect image is observed by an eyepiece lens. Proposing a variable magnification finder.

【0004】特開平5−203876号公報ではこのよ
うなタイプの変倍ファインダーにおいて対物レンズを構
成する第1群を2つの負レンズと非球面を用いて構成
し、軸外光線の収差補正を良好に行いファインダー視野
角の広画角化を図った変倍ファインダーを提案してい
る。
In Japanese Patent Laid-Open No. 5-203876, the first group constituting the objective lens in the variable power finder of this type is constructed by using two negative lenses and an aspherical surface, and the aberration correction of off-axis rays is excellent. We have proposed a variable-magnification viewfinder with a wide view angle.

【0005】[0005]

【発明が解決しようとする課題】実像式のファインダー
ではレンズ系全体の小型化が求められているが、最近で
はカメラ本体の小型化に伴いファインダーの更なる小型
化が求められている。ファインダーを小型化する為に例
えばファインダー全体を比例倍し、縮小する方法はそれ
に伴って接眼レンズも小さくなり、この結果、接眼瞳径
の小さい見難いファインダーになってしまうという問題
点がある。
In the real image type finder, it is required to downsize the entire lens system, but recently, as the camera body is downsized, further downsizing of the finder is required. In order to reduce the size of the finder, for example, the method of proportionally multiplying the entire finder and reducing the size of the finder accordingly reduces the size of the eyepiece lens, resulting in an inconvenient finder with a small eyepiece pupil diameter.

【0006】これに対して接眼レンズの瞳径を確保する
為に接眼レンズの焦点距離を維持したまま対物レンズの
焦点距離を短くするとファインダー系は小型化になるが
ファインダー倍率が小さくなりファインダー観察が見難
いファインダーとなってしまうという問題点がある。
On the other hand, if the focal length of the objective lens is shortened while maintaining the focal length of the eyepiece lens in order to secure the pupil diameter of the eyepiece lens, the viewfinder system becomes smaller but the viewfinder magnification becomes smaller and the viewfinder observation becomes easier. There is a problem that it becomes an invisible finder.

【0007】本発明は、変倍部を有する対物レンズ系の
レンズ構成を適切に設定することにより十分な接眼瞳径
とファインダー倍率を確保しながら所定の変倍比が容易
に得られ、しかも全変倍範囲にわたり良好なるファイン
ダー像の観察ができる実像式の変倍ファインダーの提供
を目的とする。
According to the present invention, by appropriately setting the lens configuration of the objective lens system having a variable power portion, a predetermined variable power ratio can be easily obtained while ensuring a sufficient eyepiece pupil diameter and a viewfinder magnification, and further, It is an object of the present invention to provide a real image type variable power viewfinder capable of observing a good viewfinder image over a variable power range.

【0008】[0008]

【課題を解決するための手段】本発明の変倍ファインダ
ーは、物体側より順に正の屈折力の対物レンズ系により
形成した物体像を像反転光学系を介して正立像とし、該
正立像を接眼レンズ系により観察する際、該対物レンズ
系は正又は負の第1群、負の第2群、正の第3群、そし
て物体側に凹面を向けたメニスカス状の正の第41レン
ズより成る第4群の4つのレンズ群を有し、該第3群を
光軸上移動させて変倍を行い、変倍に伴う視度変化を該
第1群又は第2群又は第4群により補正すると共に該第
4群から射出する軸外光束が光軸と略平行となるように
し、該対物レンズ系に少なくとも1つの非球面を設けた
ことを特徴としている。
The variable power finder of the present invention makes an object image formed by an objective lens system having a positive refracting power in order from the object side, forms an erect image through an image inverting optical system, and forms the erect image. When observing with an eyepiece lens system, the objective lens system is composed of a positive or negative first lens group, a negative second lens group, a positive third lens group, and a meniscus positive 41st lens element having a concave surface facing the object side. The fourth lens group of the fourth lens group, the third lens group is moved on the optical axis for zooming, and the diopter change due to zooming is changed by the first lens group, the second lens group, or the fourth lens group. The objective lens system is characterized in that at least one aspherical surface is provided in the objective lens system so that the off-axis light flux emitted from the fourth lens unit is corrected and is substantially parallel to the optical axis.

【0009】[0009]

【発明の実施の形態】図1は本発明の実施形態1の要部
断面図、図2〜図4は本発明の数値実施例1〜3の光路
を展開したときのレンズ断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of an essential part of a first embodiment of the present invention, and FIGS. 2 to 4 are sectional views of lenses when numerical paths 1 to 3 of the present invention are expanded.

【0010】図中、10は変倍部を有する正の屈折力の
対物レンズ系であり、物体像(ファインダー像)を所定
面上に形成している。Pは像反転光学系であり、三角プ
リズムP1とダハプリズムP2より成っており、対物レ
ンズ系10によって三角プリズムP1とダハプリズムP
2との間の位置4に形成された物体像を上下左右に反転
して正立像に変換している。
In the figure, reference numeral 10 denotes an objective lens system having a positive refractive power having a zooming portion, which forms an object image (finder image) on a predetermined surface. Reference numeral P denotes an image inverting optical system, which includes a triangular prism P1 and a roof prism P2, and the objective lens system 10 allows the triangular prism P1 and the roof prism P.
The object image formed at the position 4 between 2 and 2 is inverted vertically and horizontally to be converted into an erect image.

【0011】図2〜図4では三角プリズムP1とダハプ
リズムP2は簡単の為に光路を展開した2つのガラスブ
ロックとして示している。Leは正の屈折力の接眼レン
ズであり、位置4に形成した物体像を像反転光学系Pを
介して正立の物体像としてアイポイントEより観察して
いる。位置4にはファインダー視野範囲を示すフレーム
5aや各種の情報5b等を有した表示用部材5を設けて
いる。
2 to 4, the triangular prism P1 and the roof prism P2 are shown as two glass blocks whose optical paths are expanded for simplicity. Le is an eyepiece lens having a positive refractive power, and the object image formed at the position 4 is observed from the eyepoint E as an upright object image through the image inverting optical system P. At the position 4, a display member 5 having a frame 5a indicating the viewfinder field range and various information 5b is provided.

【0012】対物レンズ系10は正又は負の第1群L
1、負の第2群L2、正の第3群L3、そして正の第4
群L4の4つのレンズ群より構成している。
The objective lens system 10 is a positive or negative first lens unit L.
1, the negative second group L2, the positive third group L3, and the positive fourth group
It is composed of four lens groups of the group L4.

【0013】本実施形態では第3群を矢印の如く物体側
へ移動させて変倍を行い、それに伴うファインダー視度
の変化を第2群を矢印の如く像面側に凸状の軌跡を有し
つつ移動させて補正している。第1群と第4群は変倍の
際、固定である。
In the present embodiment, the third lens group is moved to the object side as indicated by the arrow to change the magnification, and the change in the finder diopter caused by the change is caused by the second lens group having a convex locus on the image plane side as shown by the arrow. While moving, it is corrected. The first and fourth groups are fixed during zooming.

【0014】尚本実施形態において第1群又は第4群を
光軸上移動させて変倍に伴う視度を補正するようにして
も良い。
In the present embodiment, the first group or the fourth group may be moved on the optical axis to correct the diopter associated with zooming.

【0015】本実施形態において第1群L1は正又は負
の単一の第11レンズより成り、第2群L2は物体側に
凹面を向けた単一の負の第21レンズより成り、第3群
L3は両レンズ面が凸面の正の第31レンズより成り、
第4群L4は像面側(瞳側)に凸面を向けたメニスカス
状の正の第4レンズより成っている。
In this embodiment, the first lens unit L1 is composed of a single positive or negative eleventh lens, and the second lens unit L2 is composed of a single negative twenty-first lens having a concave surface facing the object side. The group L3 is composed of a positive 31st lens whose both lens surfaces are convex surfaces,
The fourth unit L4 is composed of a positive meniscus fourth lens having a convex surface directed toward the image plane side (pupil side).

【0016】本実施形態においては対物レンズ系10を
第1,第2,第3,そして第4群の4つのレンズ群より
構成すると共に、少なくとも1つの所定形状の非球面を
有するようにしている。そして該対物レンズ系10によ
る物体像を三角プリズムP1とダハプリズムP2との間
の位置4に形成する構成をとることにより収差補正を容
易にし、良好なる物体像の観察を可能としている。又第
3群を物体側へ移動させて変倍を行うことにより所定の
変倍比を効果的に得ている。
In the present embodiment, the objective lens system 10 is composed of four lens groups of first, second, third and fourth groups, and has at least one aspherical surface of a predetermined shape. . Then, the object image by the objective lens system 10 is formed at the position 4 between the triangular prism P1 and the roof prism P2, whereby the aberration correction is facilitated and a good object image can be observed. Further, by moving the third lens unit to the object side for zooming, a predetermined zoom ratio is effectively obtained.

【0017】本実施形態において像反転光学系Pを構成
する第1プリズムP1は対物レンズ10からの光束を入
射面P1aより入射させている。このとき対物レンズ1
0は射出テレセントリックとなるようにしている。そし
て入射面P1aから入射した光束が面P1bで入射面P
1aと同一平面上の面P1c方向に反射するようにして
いる。面P1cは面P1bからの光束を全反射させて面
(射出面)P1dに垂直入射させ、それより外部に射出
させている。
In the present embodiment, the first prism P1 forming the image inverting optical system P makes the light beam from the objective lens 10 incident from the incident surface P1a. At this time, the objective lens 1
0 is set to be injection telecentric. Then, the light beam incident from the incident surface P1a is incident on the incident surface P1b on the surface P1b.
The light is reflected in the direction P1c on the same plane as 1a. The surface P1c totally reflects the light flux from the surface P1b, makes it vertically enter the surface (emission surface) P1d, and emits it to the outside.

【0018】第2プリズムP2は第1プリズムP1の面
P1dからの光束を面(入射面)P2aより入射させて
いる。面P1dと面P2aとは略平行となっている。面
P2aから入射してきた光束を対物レンズ10の光軸1
0aに対して略垂直に設けた面P2bで全反射させてダ
ハ面より成る面P2cに入射している。面P2cは面P
2bからの光束を反射させて面P2aと同一平面上の面
P2dに導光している。このとき面P2cは面P2dに
入射した光束が面P2dより光軸10aと平行方向に全
反射するような角度で入射させている。
The second prism P2 allows the light flux from the surface P1d of the first prism P1 to enter through the surface (incident surface) P2a. The surface P1d and the surface P2a are substantially parallel to each other. The light beam incident from the surface P2a is reflected by the optical axis 1 of the objective lens 10.
The light is totally reflected by the surface P2b provided substantially perpendicular to 0a and is incident on the surface P2c formed of the roof surface. The surface P2c is the surface P
The light flux from 2b is reflected and guided to the surface P2d on the same plane as the surface P2a. At this time, the surface P2c is incident at an angle such that the light flux incident on the surface P2d is totally reflected by the surface P2d in a direction parallel to the optical axis 10a.

【0019】ダハ面である面P2cは観察視野(ファイ
ンダー視野)の短辺方向に、即ち通常のカメラでいう上
下方向を折り返している。そして面P2dで全反射した
光束を面P2bと同一平面上の面P2dに垂直入射させ
て、それより外部に射出させている。
The surface P2c, which is a roof surface, is folded back in the direction of the short side of the observation visual field (finder visual field), that is, in the vertical direction of a normal camera. Then, the light beam totally reflected by the surface P2d is vertically incident on the surface P2d on the same plane as the surface P2b, and is emitted to the outside from that.

【0020】第1プリズムP1の射出用の面P1d近
傍、即ち視野枠5a近傍に対物レンズ10によるファイ
ンダー像(物体像)を形成している。そして接眼レンズ
Leにより視野枠5a近傍に形成した倒立実像のファイ
ンダー像を第2プリズムP2を介して正立実像のファイ
ンダー像として観察している。
A finder image (object image) is formed by the objective lens 10 in the vicinity of the exit surface P1d of the first prism P1, that is, in the vicinity of the field frame 5a. Then, the finder image of the inverted real image formed by the eyepiece lens Le in the vicinity of the field frame 5a is observed as the finder image of the erect real image through the second prism P2.

【0021】本実施形態ではこのようにプリズムや視野
枠等の各要素を設定することにより、ファインダー系全
体の上下方向の突出量をポロプリズムを用いた場合に比
べて少なくして、空間の有効利用を図り、ファインダー
系全体の小型化を図っている。
In this embodiment, by setting the respective elements such as the prism and the field frame in this way, the amount of vertical projection of the entire finder system is made smaller than in the case of using the Porro prism, and the space is effectively used. We are trying to use it to reduce the size of the entire finder system.

【0022】接眼レンズ系Leは両レンズ面が凸面の正
レンズより成り、又レンズ中心からレンズ周辺に向けて
正の屈折力が弱くなる形状の非球面を有している。広角
域を含む変倍ファインダーの対物レンズ系においては負
と正の屈折力の2群ズームタイプ、あるいはその変形の
ズームタイプが光学系の小型化に適している。負と正の
屈折力の2群ズームレンズでは広角側での対角画角が6
0度にも及ぶ場合、負の歪曲収差が問題になる。
The eyepiece lens system Le is composed of a positive lens whose both lens surfaces are convex, and has an aspherical surface whose positive refractive power becomes weaker from the lens center toward the lens periphery. In the objective lens system of the variable-magnification viewfinder including the wide-angle range, the two-group zoom type of negative and positive refracting powers or its modified zoom type is suitable for downsizing of the optical system. With a two-group zoom lens having negative and positive refractive power, the diagonal angle of view on the wide-angle side is 6
When it reaches 0 degree, negative distortion becomes a problem.

【0023】そこで本実施形態では対物レンズ系の第1
群に広角側での歪曲収差を補正する為に近軸焦点距離が
無限でレンズ中心からレンズ周辺に向けて正の屈折力が
強くなる形状の非球面を設けて、広角側での歪曲収差を
良好に補正している。本実施形態では第1群の近軸屈折
力がゼロの場合を示しているが、弱い正又は負の屈折力
を有していても良い。
Therefore, in this embodiment, the first objective lens system
In order to correct distortion on the wide-angle side, an aspherical surface with an infinite paraxial focal length and a strong positive refractive power from the lens center to the lens periphery is provided to correct distortion on the wide-angle side. Corrected well. In the present embodiment, the case where the paraxial refractive power of the first group is zero is shown, but it may have a weak positive or negative refractive power.

【0024】像反転光学系Pの第1プリズムP1と第2
プリズムP2の間に対物レンズ系10を1次結像させる
には、対物レンズ系は長いバックフォーカスを必要とす
る。負と正の屈折力の2群ズームレンズで十分なファイ
ンダー倍率を得る為に対物レンズ系の焦点距離を保った
まま、長いバックフォーカスを確保する為には正の第2
群の屈折力を強くしなければならない。しかしながら屈
折力を強くすると収差補正が困難になる。本実施形態で
は対物レンズ系の最終レンズ群に第4群として物体側に
凹面を向けたメニスカス状の正の第41レンズを設け、
対物レンズ系の後側主点を1次結像面側へ寄せ、十分な
バックフォーカスを確保しながら収差を良好に補正して
いる。
The first prism P1 and the second prism of the image inverting optical system P
In order to form the primary image of the objective lens system 10 between the prisms P2, the objective lens system requires a long back focus. In order to secure a long back focus while maintaining the focal length of the objective lens system in order to obtain a sufficient finder magnification with the two-group zoom lens having negative and positive refracting power, a positive second lens is used.
The refractive power of the group must be strengthened. However, if the refractive power is increased, it becomes difficult to correct the aberration. In this embodiment, a positive meniscus 41st lens having a concave surface facing the object side is provided as a fourth lens group in the final lens group of the objective lens system,
The rear principal point of the objective lens system is brought closer to the primary imaging plane side, and the aberration is favorably corrected while ensuring a sufficient back focus.

【0025】像反転光学系Pの第1のプリズムP1及び
第2のプリズムP2に全反射面を設けているので、全て
の画角で全反射条件を満たし、光線のけられがないよう
にする為に第4群を射出する軸外の主光線が光軸と略平
行になるような屈折力配置にしている。
Since the first and second prisms P1 and P2 of the image reversing optical system P are provided with total reflection surfaces, total reflection conditions are satisfied at all angles of view to prevent light rays from being vignetted. Therefore, the refractive power is arranged such that the off-axis chief ray that exits the fourth lens group is substantially parallel to the optical axis.

【0026】又第2群を物体側に強い凹面を向けた負の
第21レンズより構成し、球面収差の発生が少なくなる
ようにしている。第3群を両レンズ面が凸面の正の第3
1レンズより構成し、主に軸上収差と軸外収差をバラン
ス良く補正している。特に接眼側のレンズ面が対物側の
レンズ面よりもきつい屈折力となるようにして諸収差を
良好に補正している。更にレンズ中心からレンズ周辺に
向けて正の屈折力が弱くなる形状の非球面を用いるのが
良く、これにより収差を良好に補正しながら屈折力を強
くしてファインダー系の小型化を容易にしている。
Further, the second lens unit is composed of a negative 21st lens element having a strong concave surface facing the object side, so that the occurrence of spherical aberration is reduced. The third lens group is a positive third lens element with convex lens surfaces.
It is composed of one lens, and mainly corrects axial and off-axis aberrations in good balance. In particular, various aberrations are satisfactorily corrected by making the lens surface on the eyepiece side have a stronger refracting power than the lens surface on the objective side. Furthermore, it is better to use an aspherical surface with a shape in which the positive refracting power becomes weaker from the lens center to the lens periphery. This makes it possible to enhance the refracting power while compensating for aberrations well and to facilitate downsizing of the finder system. There is.

【0027】又、前記第41レンズの物体側と像面側の
レンズ面の曲率半径を各々R41a,R41bとしたと
き 0<R41b/R41a<1 ‥‥‥(1) なる条件を満足するようにしている。これにより全変倍
範囲にわたり、又ファインダー視野全体にわたり高い光
学性能を得ている。
Further, when the radii of curvature of the object-side and image-side lens surfaces of the 41st lens are R41a and R41b, respectively, the condition 0 <R41b / R41a <1 (1) should be satisfied. ing. As a result, high optical performance is obtained over the entire zoom range and over the entire viewfinder field.

【0028】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。R9〜R22
までは像反転光学系を構成する各プリズムの反射面を示
しており、各々∞となっている。R25はアイポイント
である。非球面形状は光軸方向にX軸、光軸と垂直方向
にH軸、光の進行方向を正とし、Rを近軸曲率半径、
K,B,Cを各々非球面係数としたとき
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing from the object side, and Ni and νi are the i-th lens surfaces in order from the object side. The refractive index and Abbe number of glass. R9 ~ R22
Up to the above, the reflecting surface of each prism constituting the image inverting optical system is shown, and each is ∞. R25 is an eye point. The aspherical shape has an X axis in the optical axis direction, an H axis in the direction perpendicular to the optical axis, a light traveling direction is positive, and R is a paraxial radius of curvature,
When K, B, and C are aspherical coefficients, respectively

【0029】[0029]

【数1】 なる式で表している。又、「D−0X」は「10-X」を
意味している。
(Equation 1) It is represented by the following expression. Further, "D-0X" means "10 -X ".

【0030】 〈数値実施例1〉 f= 352 〜644 2ω= 60.8°〜34.6° R 1= ∞ D 1= 1.20 N 1=1.49171 ν 1= 57.4 R 2= ∞ D 2= 可変 R 3= -6.194 D 3= 1.20 N 2=1.58306 ν 2= 30.2 R 4=-300.298 D 4= 可変 R 5= 8.398 D 5= 3.40 N 3=1.49171 ν 3= 57.4 R 6= -6.454 D 6= 可変 R 7= -9.172 D 7= 1.90 N 4=1.49171 ν 4= 57.4 R 8= -6.145 D 8= 0.20 R 9= ∞ D 9= 3.75 N 5=1.5709 ν 5= 33.8 R10= ∞ D10= 5.30 N 6=1.5709 ν 6= 33.8 R11= ∞ D11= 4.35 N 7=1.5709 ν 7= 33.8 R12= ∞ D12 0.00 N 8=1.5709 ν 8= 33.8 R13= ∞ D13= 0.40 R14= ∞ D14= 0.40 N 9=1.5230 ν 9= 58.6 R15= ∞ D15= 0.40 N10=1.5230 ν10= 58.6 R16= ∞ D16= 0.40 R17= ∞ D17= 5.15 N11=1.5709 ν11= 33.8 R18= ∞ D18= 6.78 N12=1.5709 ν12= 33.8 R19= ∞ D19= 0.00 N13=1.5709 ν13= 33.8 R20= ∞ D20= 7.28 N14=1.5709 ν14= 33.8 R21= ∞ D21= 4.79 N15=1.5709 ν15= 33.8 R22= ∞ D22= 0.20 R23= 27.633 D23= 2.50 N16=1.49171 ν16= 57.4 R24= -12.281 D24=15.00 R25= アイホ゜イント R41b/R41a=0.67 非球面係数 No R K B C 1 0 0 8.121 D-04 1.881 D-05 3 -6.194 D+00 -1.222 D-01 -7.540 D-04 -7.140 D-05 5 8.398 D+00 -5.570 D-01 -6.369 D-04 9.271 D-06 6 -6.453 D+00 -6.855 D-01 3.097 D-05 7.812 D-06 7 -9.172 D+00 2.145 D+00 -6.967 D-04 5.145 D-06 23 2.763 D+01 0 -9.653 D-05 -9.117 D-08 焦点距離 可変間隔 352.28 489.73 643.91 D2 1.32 1.95 1.48 D4 5.67 2.94 1.33 D6 0.40 2.49 4.57 〈数値実施例2〉 f= 402 〜739 2ω= 60.8°〜34.6° R 1= ∞ D 1= 1.20 N 1=1.49171 ν 1= 57.4 R 2= ∞ D 2= 可変 R 3= -5.779 D 3= 1.20 N 2=1.58306 ν 2= 30.2 R 4= -95.787 D 4= 可変 R 5= 8.488 D 5= 3.66 N 3=1.49171 ν 3= 57.4 R 6= -6.438 D 6= 可変 R 7= -32.832 D 7= 1.50 N 4=1.49171 ν 4= 57.4 R 8= -12.646 D 8= 0.20 R 9= ∞ D 9= 3.75 N 5=1.5709 ν 5= 33.8 R10= ∞ D10= 5.30 N 6=1.5709 ν 6= 33.8 R11= ∞ D11= 4.35 N 7=1.5709 ν 7= 33.8 R12= ∞ D12 0.00 N 8=1.5709 ν 8= 33.8 R13= ∞ D13= 0.40 R14= ∞ D14= 0.40 N 9=1.5230 ν 9= 58.6 R15= ∞ D15= 0.40 N10=1.5230 ν10= 58.6 R16= ∞ D16= 0.40 R17= ∞ D17= 5.15 N11=1.5709 ν11= 33.8 R18= ∞ D18= 6.78 N12=1.5709 ν12= 33.8 R19= ∞ D19= 0.00 N13=1.5709 ν13= 33.8 R20= ∞ D20= 7.28 N14=1.5709 ν14= 33.8 R21= ∞ D21= 4.79 N15=1.5709 ν15= 33.8 R22= ∞ D22= 0.20 R23= 27.633 D23= 2.50 N16=1.49171 ν16= 57.4 R24= -12.281 D24=15.00 R25= アイホ゜イント R41b/R41a=0.385 非球面係数 No R K B C 1 0 0 9.756 D-04 3.418 D-05 3 -5.779 D+00 -2.053 D-01 -8.940 D-04 -1.228 D-04 5 8.487 D+00 -6.812 D-01 -4.957 D-04 4.527 D-06 6 -6.438 D+00 -9.964 D-01 1.763 D-05 2.342 D-06 7 -3.283 D+01 -3.742 D+00 -4.419 D-04 7.522 D-07 23 2.763 D+01 0 -9.653 D-05 -9.117 D-08 焦点距離 可変間隔 402.45 559.69 738.56 D2 1.19 1.80 1.33 D4 5.87 3.17 1.56 D6 0.40 2.49 4.57 〈数値実施例3〉 f= 349 〜658 2ω= 60.8°〜34.6° R 1= ∞ D 1= 1.20 N 1=1.49171 ν 1= 57.4 R 2= ∞ D 2= 可変 R 3= -5.266 D 3= 1.20 N 2=1.58306 ν 2= 30.2 R 4=-807.090 D 4= 可変 R 5= 7.950 D 5= 3.68 N 3=1.49171 ν 3= 57.4 R 6= -5.416 D 6= 可変 R 7= -6.753 D 7= 1.90 N 4=1.49171 ν 4= 57.4 R 8= -5.592 D 8= 0.20 R 9= ∞ D 9= 3.75 N 5=1.5709 ν 5= 33.8 R10= ∞ D10= 5.30 N 6=1.5709 ν 6= 33.8 R11= ∞ D11= 4.35 N 7=1.5709 ν 7= 33.8 R12= ∞ D12 0.00 N 8=1.5709 ν 8= 33.8 R13= ∞ D13= 0.40 R14= ∞ D14= 0.40 N 9=1.5230 ν 9= 58.6 R15= ∞ D15= 0.40 N10=1.5230 ν10= 58.6 R16= ∞ D16= 0.40 R17= ∞ D17= 5.15 N11=1.5709 ν11= 33.8 R18= ∞ D18= 6.78 N12=1.5709 ν12= 33.8 R19= ∞ D19= 0.00 N13=1.5709 ν13= 33.8 R20= ∞ D20= 7.28 N14=1.5709 ν14= 33.8 R21= ∞ D21= 4.79 N15=1.5709 ν15= 33.8 R22= ∞ D22= 0.20 R23= 27.633 D23= 2.50 N16=1.49171 ν16= 57.4 R24= -12.281 D24=15.00 R25= アイホ゜イント R41b/R41a=0.828 非球面係数 No R K B C 1 0 0 1.084 D-03 -1.732 D-05 3 -5.265 D+00 -7.281 D-01 -1.085 D-03 -1.166 D-04 5 7.950 D+00 -6.646 D-01 -8.297 D-04 7.275 D-06 6 -5.415 D+00 -8.693 D-01 1.617 D-04 -4.008 D-06 7 -6.753 D+00 9.278 D-01 -4.263 D-04 -6.244 D-06 23 2.763 D+01 0 -9.653 D-05 -9.117 D-08 焦点距離 可変間隔 348.85 494.16 658.47 D2 1.52 1.88 1.21 D4 4.89 2.44 1.03 D6 0.80 2.89 4.97Numerical Example 1 f = 352 to 644 2ω = 60.8 ° to 34.6 ° R 1 = ∞ D 1 = 1.20 N 1 = 1.49171 ν 1 = 57.4 R 2 = ∞ D 2 = variable R 3 = -6.194 D 3 = 1.20 N 2 = 1.58306 ν 2 = 30.2 R 4 = -300.298 D 4 = Variable R 5 = 8.398 D 5 = 3.40 N 3 = 1.49171 ν 3 = 57.4 R 6 = -6.454 D 6 = Variable R 7 =- 9.172 D 7 = 1.90 N 4 = 1.49171 ν 4 = 57.4 R 8 = -6.145 D 8 = 0.20 R 9 = ∞ D 9 = 3.75 N 5 = 1.5709 ν 5 = 33.8 R10 = ∞ D10 = 5.30 N 6 = 1.5709 ν 6 = 33.8 R11 = ∞ D11 = 4.35 N 7 = 1.5709 ν 7 = 33.8 R12 = ∞ D12 0.00 N 8 = 1.5709 ν 8 = 33.8 R13 = ∞ D13 = 0.40 R14 = ∞ D14 = 0.40 N 9 = 1.5230 ν 9 = 58.6 R15 = ∞ D15 = 0.40 N10 = 1.5230 ν10 = 58.6 R16 = ∞ D16 = 0.40 R17 = ∞ D17 = 5.15 N11 = 1.5709 ν11 = 33.8 R18 = ∞ D18 = 6.78 N12 = 1.5709 ν12 = 33.8 R19 = ∞ D19 = 0.00 N13 = 1.5709 ν13 = 33.8 R20 = ∞ D20 = 7.28 N14 = 1.5709 ν14 = 33.8 R21 = ∞ D21 = 4.79 N15 = 1.5709 ν15 = 33.8 R22 = ∞ D22 = 0.20 R23 = 27.633 D23 = 2.50 N16 = 1.49171 ν16 = 57.4 R24 = -12.281 D24 = 15.00 R25 = Eye point R41b / R41a = 0.67 Asphere Coefficient No RK B C 1 0 0 8.121 D-04 1.881 D-05 3 -6.194 D + 00 -1.222 D-01 -7.540 D-04 -7.140 D-05 5 8.398 D + 00 -5.570 D-01 -6.369 D-04 9.271 D-06 6 -6.453 D + 00 -6.855 D-01 3.097 D-05 7.812 D-06 7 -9.172 D + 00 2.145 D + 00 -6.967 D-04 5.145 D-06 23 2.763 D + 01 0 -9.653 D-05 -9.117 D-08 Focal length Variable distance 352.28 489.73 643.91 D2 1.32 1.95 1.48 D4 5.67 2.94 1.33 D6 0.40 2.49 4.57 <Numerical example 2> f = 402 ~ 739 2ω = 60.8 ° ~ 34.6 ° R 1 = ∞ D 1 = 1.20 N 1 = 1.49171 ν 1 = 57.4 R 2 = ∞ D 2 = Variable R 3 = -5.779 D 3 = 1.20 N 2 = 1.58306 ν 2 = 30.2 R 4 = -95.787 D 4 = Variable R 5 = 8.488 D 5 = 3.66 N 3 = 1.49171 ν 3 = 57.4 R 6 = -6.438 D 6 = Variable R 7 = -32.832 D 7 = 1.50 N 4 = 1.49171 ν 4 = 57.4 R 8 = -12.646 D 8 = 0.20 R 9 = ∞ D 9 = 3.75 N 5 = 1.5709 ν 5 = 33.8 R10 = ∞ D10 = 5.30 N 6 = 1.5709 ν 6 = 33.8 R11 = ∞ D11 = 4.35 N 7 = 1.5709 ν 7 = 33.8 R12 = ∞ D12 0.00 N 8 = 1.5709 ν 8 = 33.8 R13 = ∞ D13 = 0.40 R14 = ∞ D14 = 0.40 N 9 = 1.5230 ν 9 = 58.6 R15 = ∞ D15 = 0.40 N10 = 1.5230 ν10 = 58.6 R16 = ∞ D16 = 0.40 R17 = ∞ D17 = 5.15 N11 = 1.5709 ν11 = 33.8 R18 = ∞ D18 = 6.78 N12 = 1.5709 ν12 = 33.8 R19 = ∞ D19 = 0.00 N13 = 1.5709 ν13 = 33.8 R20 = ∞ D20 = 7.28 N14 = 1.5709 ν14 = 33.8 R21 = ∞ D21 = 4.79 N15 = 1.5709 ν15 = 33.8 R22 = ∞ D22 = 0.20 R23 = 27.633 D23 = 2.50 N16 = 1.49171 ν16 = 57.4 R24 = -12.281 D24 = 15.00 R25 = Eyepoint R41b / R41a = 0.385 Aspheric coefficient No RK B C 1 0 0 9.756 D-04 3.418 D-05 3 -5.779 D + 00 -2.053 D-01 -8.940 D-04 -1.228 D-04 5 8.487 D + 00 -6.812 D-01 -4.957 D-04 4.527 D-06 6 -6.438 D + 00 -9.964 D-01 1.763 D-05 2.342 D-06 7 -3.283 D + 01 -3.742 D + 00 -4.419 D-04 7.522 D- 07 23 2.763 D + 01 0 -9.653 D-05 -9.117 D-08 Focal length Variable interval 402.45 559.69 738.56 D2 1.19 1.80 1.33 D4 5.87 3.17 1.56 D6 0.40 2.49 4.57 <Numerical example 3> f = 349 to 658 2ω = 60.8 ° ~ 34.6 ° R 1 = ∞ D 1 = 1.20 N 1 = 1.49171 ν 1 = 57.4 R 2 = ∞ D 2 = Variable R 3 = -5.266 D 3 = 1.20 N 2 = 1.58306 ν 2 = 30.2 R 4 = -807.090 D 4 = Yes Variable R 5 = 7.950 D 5 = 3.68 N 3 = 1.49171 ν 3 = 57.4 R 6 = -5.416 D 6 = Variable R 7 = -6.753 D 7 = 1.90 N 4 = 1.49171 ν 4 = 57.4 R 8 = -5.592 D 8 = 0.20 R 9 = ∞ D 9 = 3.75 N 5 = 1.5709 ν 5 = 33.8 R10 = ∞ D10 = 5.30 N 6 = 1.5709 ν 6 = 33.8 R11 = ∞ D11 = 4.35 N 7 = 1.5709 ν 7 = 33.8 R12 = ∞ D12 0.00 N 8 = 1.5709 ν 8 = 33.8 R13 = ∞ D13 = 0.40 R14 = ∞ D14 = 0.40 N 9 = 1.5230 ν 9 = 58.6 R15 = ∞ D15 = 0.40 N10 = 1.5230 ν10 = 58.6 R16 = ∞ D16 = 0.40 R17 = ∞ D17 = 5.15 N11 = 1.5709 ν11 = 33.8 R18 = ∞ D18 = 6.78 N12 = 1.5709 ν12 = 33.8 R19 = ∞ D19 = 0.00 N13 = 1.5709 ν13 = 33.8 R20 = ∞ D20 = 7.28 N14 = 1.5709 ν14 = 33.8 R21 = ∞ D21 = 4.79 N15 = 1.5709 ν15 = 33.8 R22 = ∞ D22 = 0.20 R23 = 27.633 D23 = 2.50 N16 = 1.49171 ν16 = 57.4 R24 = -12.281 D24 = 15.00 R25 = Eyepoint R41b / R41a = 0.828 Aspherical coefficient No R K B C 100 0 1.084 D-03 -1.732 D-05 3 -5.265 D + 00 -7.281 D-01 -1.085 D-03 -1.166 D-04 5 7.950 D + 00 -6.646 D-01 -8.297 D-04 7.275 D-06 6 -5.415 D + 00 -8.693 D-01 1.617 D-04 -4.008 D-06 7 -6.753 D + 00 9.278 D-01 -4.263 D-04 -6.244 D-06 23 2.763 D + 01 0 -9.653 D-05 -9.117 D-08 Focal length variable distance 348.85 494.16 658.47 D2 1.52 1.88 1.21 D4 4.89 2.44 1.03 D6 0.80 2.89 4.97

【0031】[0031]

【発明の効果】本発明によれば以上のように、変倍部を
有する対物レンズ系のレンズ構成を適切に設定すること
により十分な接眼瞳径とファインダー倍率を確保しなが
ら所定の変倍比が容易に得られ、しかも全変倍範囲にわ
たり良好なるファインダー像の観察ができる実像式の変
倍ファインダーを達成することができる。
As described above, according to the present invention, by appropriately setting the lens configuration of the objective lens system having the variable power portion, a predetermined variable power ratio can be obtained while ensuring a sufficient eyepiece pupil diameter and viewfinder magnification. It is possible to achieve a variable magnification finder of a real image type, which can easily obtain an image and can observe a good finder image over the entire magnification range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の要部断面図FIG. 1 is a sectional view of a main part according to a first embodiment of the present invention.

【図2】本発明の数値実施例1のレンズ断面図FIG. 2 is a lens cross-sectional view of Numerical Example 1 of the present invention.

【図3】本発明の数値実施例2のレンズ断面図FIG. 3 is a lens cross-sectional view of Numerical Example 2 of the present invention.

【図4】本発明の数値実施例3のレンズ断面図FIG. 4 is a lens cross-sectional view of Numerical Example 3 of the present invention.

【図5】本発明の数値実施例1の広角端の収差図FIG. 5 is an aberration diagram at a wide-angle end according to Numerical Embodiment 1 of the present invention.

【図6】本発明の数値実施例1の中間の収差図FIG. 6 is an intermediate aberration diagram of Numerical example 1 of the present invention.

【図7】本発明の数値実施例1の望遠端の収差図FIG. 7 is an aberration diagram at a telephoto end according to Numerical Example 1 of the present invention.

【図8】本発明の数値実施例2の広角端の収差図FIG. 8 is an aberration diagram at the wide-angle end according to Numerical Example 2 of the present invention.

【図9】本発明の数値実施例2の中間の収差図FIG. 9 is an intermediate aberration diagram of Numerical example 2 of the present invention.

【図10】本発明の数値実施例2の望遠端の収差図FIG. 10 is an aberration diagram at a telephoto end according to Numerical Example 2 of the present invention.

【図11】本発明の数値実施例3の広角端の収差図FIG. 11 is an aberration diagram at a wide-angle end according to Numerical Example 3 of the present invention.

【図12】本発明の数値実施例3の中間の収差図FIG. 12 is an intermediate aberration diagram of Numerical example 3 of the present invention.

【図13】本発明の数値実施例3の望遠端の収差図FIG. 13 is an aberration diagram at a telephoto end according to Numerical Example 3 of the present invention.

【符号の説明】 10 対物レンズ系 P 像反転光学系 Le 接眼レンズ系 L1 第1群 L2 第2群 L3 第3群 L4 第4群 E アイポイント ΔS サジタル像面 ΔM メリディオナル像面[Explanation of Codes] 10 Objective Lens System P Image Inversion Optical System Le Eyepiece Lens System L1 1st group L2 2nd group L3 3rd group L4 4th group E Eyepoint ΔS Sagittal image surface ΔM Meridional image surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の対物レンズ
系により形成した物体像を像反転光学系を介して正立像
とし、該正立像を接眼レンズ系により観察する際、該対
物レンズ系は正又は負の第1群、負の第2群、正の第3
群、そして物体側に凹面を向けたメニスカス状の正の第
41レンズより成る第4群の4つのレンズ群を有し、該
第3群を光軸上移動させて変倍を行い、変倍に伴う視度
変化を該第1群又は第2群又は第4群により補正すると
共に該第4群から射出する軸外光束が光軸と略平行とな
るようにし、該対物レンズ系に少なくとも1つの非球面
を設けたことを特徴とする変倍ファインダー。
1. An object image formed by an objective lens system having a positive refracting power in order from the object side is made into an erected image through an image inverting optical system, and when the erected image is observed by an eyepiece lens system, the objective lens system is used. Is a positive or negative first group, a negative second group, a positive third group
Group, and four lens groups of a fourth group consisting of a positive meniscus 41st lens with the concave surface facing the object side. The third group is moved along the optical axis to perform magnification change. Is corrected by the first group, the second group, or the fourth group, and the off-axis light beam emitted from the fourth group is made substantially parallel to the optical axis, and at least 1 is set in the objective lens system. Magnification finder featuring two aspherical surfaces.
【請求項2】 前記第1群,第2群,第3群そして第4
群は各々単一のレンズより成っていることを特徴とする
請求項1の変倍ファインダー。
2. The first group, the second group, the third group and the fourth group
2. The variable power viewfinder according to claim 1, wherein each group is composed of a single lens.
【請求項3】 前記第41レンズの物体側と像面側のレ
ンズ面の曲率半径を各々R41a,R41bとしたとき 0<R41b/R41a<1 なる条件を満足することを特徴とする請求項1の変倍フ
ァインダー。
3. The condition of 0 <R41b / R41a <1 is satisfied when the radiuses of curvature of the object-side and image-side lens surfaces of the 41st lens are R41a and R41b, respectively. Magnification finder.
【請求項4】 前記第3群は両レンズ面が凸面の正の第
31レンズより成り、かつレンズ中心からレンズ周辺に
いくに従い正の屈折力が弱くなる形状の非球面を有して
いることを特徴とする請求項1の変倍ファインダー。
4. The third lens group is composed of a positive thirty-first lens element having convex lens surfaces on both sides, and has an aspherical surface whose positive refractive power becomes weaker from the lens center to the lens periphery. The variable magnification finder according to claim 1, wherein:
【請求項5】 前記第1群は少なくとも1つの非球面を
有した単一の第11レンズより成り、該非球面はレンズ
中心からレンズ周辺にいくに従い正の屈折力が強くなる
形状より成っていることを特徴とする請求項1の変倍フ
ァインダー。
5. The first group is composed of a single eleventh lens having at least one aspherical surface, and the aspherical surface has a shape in which the positive refracting power becomes stronger from the lens center to the lens periphery. The variable magnification finder according to claim 1, wherein
JP7289305A 1995-10-11 1995-10-11 Variable power viewfinder Pending JPH09105863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7289305A JPH09105863A (en) 1995-10-11 1995-10-11 Variable power viewfinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7289305A JPH09105863A (en) 1995-10-11 1995-10-11 Variable power viewfinder

Publications (1)

Publication Number Publication Date
JPH09105863A true JPH09105863A (en) 1997-04-22

Family

ID=17741467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7289305A Pending JPH09105863A (en) 1995-10-11 1995-10-11 Variable power viewfinder

Country Status (1)

Country Link
JP (1) JPH09105863A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144502A (en) * 1997-12-24 2000-11-07 Canon Kabushiki Kaisha Viewfinder optical system and optical apparatus having the same
KR101034103B1 (en) * 2008-10-27 2011-05-13 엘지이노텍 주식회사 Zoom Lens
WO2013024576A1 (en) * 2011-08-15 2013-02-21 富士フイルム株式会社 Real-image variable magnification finder and imaging device
CN109143569A (en) * 2017-06-16 2019-01-04 阿瓦特拉医药有限公司 Camera object lens and endoscope for endoscope
CN113376825A (en) * 2021-06-15 2021-09-10 河南平原光电有限公司 Variable-focus ocular lens visual field monitoring optical system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144502A (en) * 1997-12-24 2000-11-07 Canon Kabushiki Kaisha Viewfinder optical system and optical apparatus having the same
KR101034103B1 (en) * 2008-10-27 2011-05-13 엘지이노텍 주식회사 Zoom Lens
WO2013024576A1 (en) * 2011-08-15 2013-02-21 富士フイルム株式会社 Real-image variable magnification finder and imaging device
CN103748498A (en) * 2011-08-15 2014-04-23 富士胶片株式会社 Real-image variable magnification finder and imaging device
US8896927B2 (en) 2011-08-15 2014-11-25 Fujifilm Corporation Real-image variable-magnification viewfinder and imaging apparatus
JPWO2013024576A1 (en) * 2011-08-15 2015-03-05 富士フイルム株式会社 Real-image variable magnification finder and imaging device
CN109143569A (en) * 2017-06-16 2019-01-04 阿瓦特拉医药有限公司 Camera object lens and endoscope for endoscope
CN113376825A (en) * 2021-06-15 2021-09-10 河南平原光电有限公司 Variable-focus ocular lens visual field monitoring optical system
CN113376825B (en) * 2021-06-15 2022-11-11 河南平原光电有限公司 Variable-focus ocular lens visual field monitoring optical system

Similar Documents

Publication Publication Date Title
JP3365780B2 (en) Real image type zoom finder optical system
JPH0850244A (en) Zoom lens having high variable power ratio
US7075730B2 (en) Zoom lens system and image pickup apparatus including the same
US6476983B2 (en) Eyepiece lens, objective lens, and optical apparatus having them
JP2001296476A (en) Zoom lens and optical equipment using the same
JP3363688B2 (en) Zoom lens
JP3018742B2 (en) Zoom lens
JPH075360A (en) Real image type variable power finder
JP3402834B2 (en) Zoom finder
JP2586520B2 (en) Zoom finder
JP3301815B2 (en) Zoom lens
JP3434619B2 (en) Real image type zoom finder optical system
JP3183047B2 (en) Zoom lens
JPH09105863A (en) Variable power viewfinder
JPH1010440A (en) Finder optical system
JPH0784184A (en) Real image type variable power finder optical system
JP4217306B2 (en) Variable magnification finder
JPH08248315A (en) Real image type variable power finder
JP2984503B2 (en) Zoom finder
JP2001166226A (en) Eyepiece and telescope and binoculars using the same
JP2958124B2 (en) Real image type variable magnification finder optical system
JP3254797B2 (en) Secondary imaging finder optical system
JP3190382B2 (en) Real image type zoom finder optical system
JPH08129202A (en) Variable power finder optical system
JPH1039237A (en) Real image type zoom finder