JP3190382B2 - Real image type zoom finder optical system - Google Patents

Real image type zoom finder optical system

Info

Publication number
JP3190382B2
JP3190382B2 JP25541091A JP25541091A JP3190382B2 JP 3190382 B2 JP3190382 B2 JP 3190382B2 JP 25541091 A JP25541091 A JP 25541091A JP 25541091 A JP25541091 A JP 25541091A JP 3190382 B2 JP3190382 B2 JP 3190382B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
image
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25541091A
Other languages
Japanese (ja)
Other versions
JPH0593859A (en
Inventor
優 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP25541091A priority Critical patent/JP3190382B2/en
Priority to US07/823,472 priority patent/US5257129A/en
Publication of JPH0593859A publication Critical patent/JPH0593859A/en
Application granted granted Critical
Publication of JP3190382B2 publication Critical patent/JP3190382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、写真用カメラ又はビデ
オカメラ等に用いられる実像式変倍ファインダー光学系
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a real image type variable magnification finder optical system used for a photographic camera or a video camera.

【0002】[0002]

【従来の技術】撮像系とファインダー系が別体になった
ファインダー光学系としては、逆ガリレオファインダー
光学系が良く知られている。しかし、このファインダー
光学系は、視野枠の見えが不明瞭であったり、視野枠を
形成するためのハーフミラーにて生ずるゴースト,フレ
アーのため視野自体の見えが悪い等の欠点がある。これ
に対して、ケプラー式ファインダー光学系は、対物系に
て形成された実像を接眼系で観察するので、前記の逆ガ
リレオファインダー光学系のもつ欠点はおおむね解消さ
れ見えのよいファインダーが得られる。
2. Description of the Related Art An inverted Galilean finder optical system is well known as a finder optical system in which an image pickup system and a finder system are separated. However, this finder optical system has drawbacks such as an unclear appearance of the field frame, a ghost generated by a half mirror for forming the field frame, and a poor view of the field itself due to flare. On the other hand, the Keplerian finder optical system observes the real image formed by the objective system through the eyepiece system, so that the disadvantages of the above-mentioned inverted Galileo finder optical system are almost eliminated, and a good-looking finder is obtained.

【0003】又、ケプラー式ファインダー光学系に変倍
機能をもたせた例として、対物系が2群ズームタイプの
ものと、3群ズームタイプのものがある。前者のタイプ
のものとしては、特開昭61−156018号,特開昭
64−65519号、特開平1−257817号の各公
報に記載されたものが知られている。又、後者のタイプ
のものとして特開平1−131510号公報に記載され
たものが知られている。
Further, as examples in which a Keplerian finder optical system is provided with a zooming function, there are a two-group zoom type objective system and a three-group zoom type objective system. As the former type, those described in JP-A-61-156018, JP-A-64-65519, and JP-A-1-257817 are known. Further, the latter type is known from Japanese Patent Application Laid-Open No. 1-131510.

【0004】[0004]

【発明が解決しようとする課題】ところが、前者のタイ
プのものは、対物レンズ最終面から中間結像面までの距
離即ちバックフォーカスが比較的長いため、そこに像正
立のための第1反射面を配置して光路を折り曲げること
で、ファインダー部の全長を短くすることができるもの
の、変倍比が小さいという欠点があった。一方、後者の
タイプのものは変倍比を2倍以上とることは容易であ
る。その上、このタイプのものの広角端のみに着目して
みると、第1レンズ群から第3レンズ群までの長さが短
く且つバックフォーカスも長いため、前者のタイプのも
のと同様に第3レンズ群と中間結像面との間に第1反射
面を設置して光路を折り曲げることにより、ファインダ
ー部の全長を短くできるように思われる。しかし、実際
は望遠端においてはバックフォーカスが非常に短くなっ
てしまうため、そこに反射面を入れることは不可能であ
り、中間結像面以後に第1反射面を設置せざるを得な
い。従って、このタイプのものは、第1レンズ群から中
間結像面までの長さが長くなってしまい、その結果とし
てファインダー部の全長を短くすることができないとい
う欠点があった。
However, in the case of the former type, since the distance from the final surface of the objective lens to the intermediate image plane, that is, the back focus, is relatively long, the first reflection for image erecting is provided there. By arranging the surfaces and bending the optical path, the entire length of the finder portion can be shortened, but there is a disadvantage that the zoom ratio is small. On the other hand, it is easy for the latter type to have a zoom ratio of 2 or more. In addition, focusing only on the wide-angle end of this type, since the length from the first lens group to the third lens group is short and the back focus is long, the third lens is similar to the former type. It seems that the total length of the finder part can be shortened by installing the first reflecting surface between the group and the intermediate imaging surface and bending the optical path. However, in practice, at the telephoto end, the back focus becomes very short, so that it is impossible to provide a reflecting surface there, and the first reflecting surface must be provided after the intermediate image forming surface. Therefore, this type has a drawback that the length from the first lens group to the intermediate image plane is long, and as a result, the total length of the finder cannot be shortened.

【0005】本発明は、上述のような問題点に鑑み、変
倍比が3程度以上であると共にファインダー部の全長を
短くでき、更に収差も良好に補正され且つ製造コストも
安くて済む実像式変倍ファインダー光学系を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a real image type image forming apparatus which has a variable magnification ratio of about 3 or more, can shorten the entire length of a finder portion, can correct aberrations well, and can reduce manufacturing costs. It is intended to provide a variable magnification finder optical system.

【0006】[0006]

【課題を解決するための手段及び作用】本発明による実
像式変倍ファインダー光学系の一つは、物体側から順に
配置された、正の屈折力を有する対物レンズと、正の屈
折力を有する接眼レンズとを備えた実像式変倍ファイン
ダー光学系において、対物レンズが、負の屈折力を有す
る第1レンズ群と正の屈折力を有する第2レンズ群と正
の屈折力を有する第3レンズ群とから成り、この第3レ
ンズ群と中間結像面との間に少なくとも像正立のための
第1反射面を設置し、又第1レンズ群を固定し、第2レ
ンズ群と第3レンズ群との間隔が中間画角付近で最大と
なるように第2レンズ群及び第3レンズ群を光軸方向に
移動させることにより変倍及び視度補正を行なうと共
に、下記の条件を満足するようにしたことを特徴として
いる。
SUMMARY OF THE INVENTION One of the real image type variable magnification finder optical systems according to the present invention has an objective lens having a positive refractive power and a positive refractive power arranged in order from the object side. in real image type zoom finder optical system comprising an eyepiece, an objective lens, a third record with a second lens group and positive refractive power having a first lens group and positive refractive power having a negative refractive power A first reflecting surface for at least image erecting is provided between the third lens group and the intermediate image forming surface, and the first lens group is fixed, and the second lens group and the second lens group are fixed. The second lens group and the third lens group are moved in the direction of the optical axis such that the distance from the third lens group is maximized near the intermediate angle of view, so that zooming and diopter correction are performed, and the following condition is satisfied. It is characterized by doing so.

【0007】 但し、r1Iは第1レンズ群の最も像側の面の曲率半径、
1Oは第1レンズ群の最も物体側の面の曲率半径であ
る。
[0007] Here, r 1I is the radius of curvature of the most image side surface of the first lens unit,
r 1O is the radius of curvature of the surface closest to the object in the first lens group.

【0008】又、本発明による実像式変倍ファインダー
光学系の一つは、上述の構成に加えて、第2レンズ群の
最も物体側の面と最も像側の面が共に物体側に湾曲した
面であると共に、下記条件を満足するようにしたことを
特徴としている。但し、r21は第2レンズ群の最も像側
の面の曲率半径、r20は第2レンズ群の最も物体側の面
の曲率半径、r30は第3レンズ群の最も物体側の面の曲
率半径である。又、本発明による実像式変倍ファインダ
ー光学系は、前記第2レンズ群の少なくとも一面と前記
第3レンズ群の少なくとも一面を夫々非球面にしたこと
を特徴としている。又、本発明による実像式変倍ファイ
ンダー光学系は、前記第2レンズ群が正レンズ及び負レ
ンズから成ることを特徴としている。
Also, in one of the real image type variable magnification finder optical systems according to the present invention, in addition to the above configuration, both the most object side surface and the most image side surface of the second lens unit are curved toward the object side. And satisfying the following conditions. Here, r 21 is the radius of curvature of the most image side surface of the second lens group, r 20 is the radius of curvature of the most object side surface of the second lens group, and r 30 is the radius of curvature of the most object side surface of the third lens group. The radius of curvature. Also, a real image type zoom finder according to the present invention.
The optical system includes at least one surface of the second lens group and the
At least one surface of the third lens group is aspherical
It is characterized by. The real image type variable magnification finder optical system according to the present invention is characterized in that the second lens group includes a positive lens and a negative lens.

【0009】本発明によるファインダー光学系では、対
物レンズの第2レンズ群と第3レンズ群の両方によって
変倍を行なうと同時に視度の補正を行っている。即ち、
第2レンズ群及び第3レンズ群は共に正の屈折力を有し
ているので、これらを接眼レンズ側から物体側へ移動す
ることにより低倍(広角)から高倍(望遠)への変倍が
行なわれる。そして、変倍時には中間結像位置のズレ
(視度のズレ)が生じるので、第2レンズ群と第3レン
ズ群の間隔を変化させて中間結像位置を一定に保つ即ち
視度補正を行うようになっている。
In the finder optical system according to the present invention, both the second lens unit and the third lens unit of the objective lens perform zooming and correct diopter. That is,
Since both the second lens unit and the third lens unit have a positive refractive power, by moving them from the eyepiece lens side to the object side, zooming from low magnification (wide angle) to high magnification (telephoto) is achieved. Done. Then, at the time of zooming, a deviation of the intermediate imaging position (a deviation of the diopter) occurs, so that the intermediate imaging position is kept constant by changing the distance between the second lens group and the third lens group, that is, diopter correction is performed. It has become.

【0010】又、第2レンズ群と第3レンズ群の合成倍
率をβ23とすると、変倍時に|β23|=1となる点で中
間結像位置が最も物体側にずれるので、それを補正する
ために第2レンズ群と第3レンズ群の間隔が最も拡がっ
た状態となる。そのため、|β23|≧1の範囲で変倍さ
せると低倍時に第2レンズ群と第3レンズ群の間隔が最
大となり、更に第1レンズ群と第2レンズ群の間隔も最
大となるので、第3レンズ群と中間結像面との間に第1
反射部材を設置するのに十分なバックフォーカスが確保
できなくなり、ファインダー部の全長が長くなってしま
う。一方、|β23|≦1の範囲で変倍させると、高倍時
に中間結像位置のズレが最大となるが、低倍時よりもズ
レ量が大きくなるため、補正のための第2レンズ群と第
3レンズ群の間隔の変化量も大きくなり、その結果第3
レンズ群が低倍時よりも接眼レンズ側に移動してしま
い、十分なバックフォーカスが確保できず、ファインダ
ー部の全長が長くなってしまう。
If the combined magnification of the second lens unit and the third lens unit is β 23 , the intermediate imaging position is shifted to the object side at the point where | β 23 | = 1 at the time of zooming. In order to perform the correction, the distance between the second lens group and the third lens group is maximized. Therefore, when the magnification is changed within the range of | β 23 | ≧ 1, the distance between the second lens group and the third lens group becomes maximum at low magnification, and the distance between the first lens group and the second lens group also becomes maximum. Between the third lens group and the intermediate image forming surface.
A sufficient back focus for installing the reflecting member cannot be secured, and the entire length of the finder becomes long. On the other hand, if the magnification is changed within the range of | β 23 | ≦ 1, the shift of the intermediate imaging position becomes maximum at the time of high magnification, but the shift amount becomes larger than at the time of low magnification, so the second lens group for correction The amount of change in the distance between the lens and the third lens group also increases, and as a result,
The lens unit moves toward the eyepiece lens side at the time of low magnification, so that a sufficient back focus cannot be secured, and the entire length of the finder part becomes long.

【0011】そこで、本発明によるファインダー光学系
では、中間倍率付近(中間画角付近)で|β23|=1と
なるようにすることにより、第2レンズ群と第3レンズ
群の間隔が最大となる点を低倍から高倍の中間に設定
し、低倍時には第2レンズ群と第3レンズ群の間隔が小
さくなって十分なバックフォーカスが確保されると共
に、高倍時においても第3レンズ群が低倍時よりも物体
側に移動して十分なバックフォーカスが確保され、その
結果、少なくとも第1反射部材を第3レンズ群と中間結
像面との間に設置することができ、ファインダー部の全
長を短くすることができるようになっている。
Therefore, in the finder optical system according to the present invention, by setting | β 23 | = 1 near the intermediate magnification (near the intermediate angle of view), the distance between the second lens unit and the third lens unit is maximized. Is set at an intermediate point between low magnification and high magnification. At low magnification, the distance between the second lens group and the third lens group is reduced to ensure a sufficient back focus, and the third lens group is also used at high magnification. Moves to the object side more than at low magnification, and a sufficient back focus is ensured. As a result, at least the first reflecting member can be installed between the third lens group and the intermediate imaging plane, and the finder section Can be shortened in length.

【0012】尚、第1反射部材を設置するのに十分なバ
ックフォーカスが確保できれば、任意の中間倍率時に第
3レンズ群が低倍時よりも僅かに接眼レンズ側へ移動し
ても問題がないのは言うまでもない。又、対物系と接眼
系との間に、反射後に中間結像した像を正立させるため
のミラー光学系又はポロプリズム又はイメージローテー
タ又は一回結像光学系等の光学素子を挿入すれば、正立
した視野像が得られる。
Incidentally, if a sufficient back focus can be secured for installing the first reflecting member, there is no problem even if the third lens group moves slightly toward the eyepiece lens at any intermediate magnification than at the low magnification. Needless to say. Also, if an optical element such as a mirror optical system or a Porro prism or an image rotator or a single imaging optical system for erecting an intermediately formed image after reflection is inserted between the objective system and the eyepiece system, An upright field image is obtained.

【0013】更に、ファインダー部の全長を短くするに
は、第2レンズ群を全体として物体側に湾曲したメニス
カス形状にしてその主点を第1レンズ群側へ出すのが望
ましい。何故なら、主点がレンズ群中にある状態でレン
ズ系の全長を縮めると、隣接するレンズ群同志特に第1
レンズ群と第2レンズ群との干渉が起きてしまう。そこ
で、第2レンズ群の主点を第1レンズ群側へ出すことで
第2レンズ群の位置を接眼系側へシフトさせれば、第1
レンズ群と第2レンズ群の空気間隔を確保することがで
きる。
Further, in order to shorten the entire length of the finder section, it is desirable to make the second lens group as a whole a meniscus shape curved toward the object side, and to project its principal point to the first lens group side. This is because if the total length of the lens system is reduced while the principal point is in the lens group, the adjacent lens groups, especially the first
Interference between the lens group and the second lens group occurs. Therefore, if the principal point of the second lens group is shifted toward the first lens group to shift the position of the second lens group toward the eyepiece, the first
The air gap between the lens group and the second lens group can be secured.

【0014】又、第1レンズ群の入射面及び射出面の曲
率半径r1O, 1Iと、第2レンズ群の入射面及び射出面
の曲率半径r2O,r2Iと、第3レンズ群の入射面の曲率
半径r3Oとが、上述の条件式(1),(2)及び(3)
を満足することが望ましい。条件式(1)の下限を越え
ると、高次の非点収差の変動が大きくなってしまう。
又、上限を越えると、低倍時の歪曲収差がマイナス側へ
大きくなってしまう。又、条件式(2)の下限を越える
と、低倍時の歪曲収差がマイナス側へ大きくなってしま
う。又、上限を越えると、変倍時の球面収差,コマ収差
の変動が大きくなり、結像性能が低下する。条件式
(3)の下限を越えると、高倍時の像面湾曲がマイナス
側へ大きくなってしまう。又、上限を越えると、変倍時
の歪曲収差の変動が大きくなってしまう。
The radii of curvature r 1O and r 1I of the entrance surface and the exit surface of the first lens unit, the radii of curvature r 2O and r 2I of the entrance surface and the exit surface of the second lens unit, and the radii of curvature of the third lens unit The radius of curvature r 3O of the entrance surface is determined by the above-mentioned conditional expressions (1), (2) and (3).
It is desirable to satisfy If the lower limit of conditional expression (1) is exceeded, the fluctuation of higher-order astigmatism will increase.
If the upper limit is exceeded, the distortion at the low magnification becomes large on the minus side. If the lower limit of conditional expression (2) is exceeded, the distortion at low magnification will become large on the negative side. If the upper limit is exceeded, fluctuations in spherical aberration and coma during zooming will increase, and the imaging performance will decrease. If the lower limit of conditional expression (3) is exceeded, the field curvature at the time of high magnification becomes large on the negative side. If the upper limit is exceeded, the fluctuation of distortion at the time of zooming will increase.

【0015】又、第2レンズ群の少なくとも一面と第3
レンズ群の少なくとも一面を夫々非球面にすることは、
低倍及び高倍時の歪曲収差を少なくした上で非点収差と
コマ収差のバランスをとる上で好ましい。更に、本発明
によるファインダー光学系は、第1レンズ群を変倍時に
固定しているので、光学系内へのゴミの進入を防ぐため
のカバーガラスを省くことができ、その結果コストを低
減できると共に、ファインダー部の全長を一層短くする
ことができる。
Also, at least one surface of the second lens unit and the third lens unit
Making at least one surface of the lens group aspherical respectively
It is preferable to reduce distortion at low and high magnifications and balance astigmatism and coma. Further, in the finder optical system according to the present invention, since the first lens group is fixed at the time of zooming, a cover glass for preventing dust from entering the optical system can be omitted, and as a result, costs can be reduced. At the same time, the overall length of the finder can be further reduced.

【0016】[0016]

【実施例】以下、図示した実施例に基づき本発明を詳細
に説明する。図1は本発明による実像式変倍ファインダ
ー光学系の第1実施例の斜視図である。1は対物レンズ
であって、これは負レンズから成る固定された第1レン
ズ群2と、正レンズ3a及び負レンズ3bから成り全体
として正の屈折力を有する可動の第2レンズ群3と、正
の屈折力を有する可動の第3レンズ群4とから構成され
ている。そして、第2レンズ群3の最も物体側の面3
a′と最も像側の面3b′は共に物体側に湾曲した面と
なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments. FIG. 1 is a perspective view of a first embodiment of a real image type variable magnification finder optical system according to the present invention. 1 is an objective lens, which is a fixed first lens group 2 composed of a negative lens, a movable second lens group 3 composed of a positive lens 3a and a negative lens 3b and having a positive refractive power as a whole, And a movable third lens group 4 having a positive refractive power. Then, the most object-side surface 3 of the second lens group 3
Both a 'and the most image-side surface 3b' are surfaces curved toward the object side.

【0017】5は第1反射面M1 及び第2反射面M2
有するプリズム、6は第3反射面M 3 及び第4反射面M
4を有するプリズムであって、これらが像正立系を構成
していると共に、プリズム5の射出面に視野枠7が設け
られており、そこが対物レンズ1による中間結像面とな
っている。即ち、第3レンズ群4と中間像面との間に第
1反射面M1 及び第2反射面M2 が設けられている。8
はプリズム6の射出面後方に設けられた接眼レンズであ
る。
5 is a first reflecting surface M1And the second reflecting surface MTwoTo
Prism 6 has a third reflecting surface M ThreeAnd the fourth reflecting surface M
FourPrisms, which constitute an image erecting system.
And a field frame 7 is provided on the exit surface of the prism 5.
Which is the intermediate image plane formed by the objective lens 1.
ing. That is, the third lens group 4 and the intermediate
1 reflection surface M1And the second reflecting surface MTwoIs provided. 8
Is an eyepiece provided behind the exit surface of the prism 6.
You.

【0018】図2は夫々本第1実施例の広角,中間,望
遠における展開図であり、図3,図4及び図5は夫々広
角,中間,望遠における球面収差,非点収差及び歪曲収
差の各収差曲線図である。そのデータを以下に示す。 倍 率 0.35〜0.70〜1.31, 視野角(2ω)=64.2゜〜36.1°〜18.4゜
FIG. 2 is a developed view of the first embodiment at wide-angle, intermediate, and telephoto, respectively. FIGS. 3, 4, and 5 show spherical aberration, astigmatism, and distortion at wide-angle, intermediate, and telephoto, respectively. It is each aberration curve figure. The data is shown below. Magnification 0.35 to 0.70 to 1.31, viewing angle (2ω) = 64.2 ° to 36.1 ° to 18.4 °

【0019】r1 =-233.8927 d1 =1.028 n1 =1.58362 ν1 =30.37 r2 =7.6021 (非球面) d2 (可変) r3 =5.3824 (非球面) d3 =2.100 n2 =1.49260 ν2 =58.02 r4 =10.5496 d4 =0.226 r5 =7.5158 d5 =1.000 n3 =1.58362 ν3 =30.37 r6 =6.3475 d6 (可変) r7 =10.2497(非球面) d7 =2.687 n4 =1.49260 ν4 =58.02 r8 =-21.0421 d8 (可変) r9 =56.7539 d9 =16.523 n5 =1.49260 ν5 =58.02 r10=∞ d10=1.0000 r11=15.5302 d11=28.862 n6 =1.49260 ν6 =58.02 r12=∞ d12=1.469 r13=9.9141 (非球面) d13=3.539 n7 =1.49260 ν7 =58.02 r14=111.0584 d14=15.0000 r15(アイポイント)R 1 = -233.8927 d 1 = 1.028 n 1 = 1.58362 ν 1 = 30.37 r 2 = 7.6021 (aspheric surface) d 2 (variable) r 3 = 5.3824 (aspheric surface) d 3 = 2.100 n 2 = 1.49260 ν 2 = 58.02 r 4 = 10.5496 d 4 = 0.226 r 5 = 7.5158 d 5 = 1.000 n 3 = 1.58362 ν 3 = 30.37 r 6 = 6.3475 d 6 (variable) r 7 = 10.2497 (aspherical surface) d 7 = 2.687 n 4 = 1.49260 ν 4 = 58.02 r 8 = -21.0421 d 8 ( variable) r 9 = 56.7539 d 9 = 16.523 n 5 = 1.49260 ν 5 = 58.02 r 10 = ∞ d 10 = 1.0000 r 11 = 15.5302 d 11 = 28.862 n 6 = 1.49260 v 6 = 58.02 r 12 = ∞ d 12 = 1.469 r 13 = 9.9141 (aspherical surface) d 13 = 3.539 n 7 = 1.49260 v 7 = 58.02 r 14 = 111.0584 d 14 = 15.0000 r 15 (eye point)

【0020】非球面係数 第2面 E=-0.60372×10-3 ,F=-0.34425×10-5, G=0.48191 ×10-8 第3面 E=-0.90093×10-3 ,F=-0.14004×10-4, G=-0.28893×10-6 第7面 E=-0.33538×10-3 ,F=0.76939 ×10-5, G=-0.32480×10-6 第1面 E=-0.16996×10-3 ,F=0.65951 ×10-6, G=-0.34414×10-7 Aspherical surface coefficient Second surface E = -0.60372 × 10 -3 , F = -0.34425 × 10 -5 , G = 0.48191 × 10 -8 Third surface E = -0.90093 × 10 -3 , F = -0.14004 × 10 -4 , G = -0.28893 × 10 -6 Surface 7 E = -0.33538 × 10 -3 , F = 0.76939 × 10 -5 , G = -0.32480 × 10 -6 Surface 3 E = -0.16996 × 10 -3 , F = 0.65951 x 10 -6 , G = -0.34414 x 10 -7

【0021】 [0021]

【0022】条件式(1) −0.937 条件式(2) 0.082 条件式(3) 0.235Conditional expression (1) -0.937 Conditional expression (2) 0.082 Conditional expression (3) 0.235

【0023】第2実施例 本実施例は、図6に示すように、第1実施例と同様な構
成を備えている。図6(A),(B),(C)は夫々本
実施例の広角,中間,望遠における展開図であり、図
7,図8及び図9は夫々広角,中間,望遠における収差
曲線図である。そのデータを以下に示す。 倍 率 0.33〜0.66〜1.33 視野角(2ω)=54.6゜〜29.2°〜14.1°
Second Embodiment As shown in FIG. 6, this embodiment has a configuration similar to that of the first embodiment. FIGS. 6A, 6B, and 6C are developed views of the present embodiment at wide-angle, intermediate, and telephoto, respectively, and FIGS. 7, 8, and 9 are aberration curve diagrams at wide-angle, intermediate, and telephoto, respectively. is there. The data is shown below. Magnification 0.33 to 0.66 to 1.33 Viewing angle (2ω) = 54.6 ° to 29.2 ° to 14.1 °

【0024】r1 =-252.7357 d1 =1.028 n1 =1.58362 ν1 =30.37 r2 =7.6102 (非球面) d2 (可変) r3 =5.3054 (非球面) d3 =2.100 n2 =1.49260 ν2 =58.02 r4 =10.7043 d4 =0.226 r5 =7.6077 d5 =1.000 n3 =1.58362 ν3 =30.37 r6 =6.2686 d6 (可変) r7 =10.1823 (非球面) d7 =2.687 n4 =1.49260 ν4 =58.02 r8 =-23.2390 d8 (可変) r9 =56.7539 d9 =16.523 n5 =1.49260ν5 =58.02 r10=∞ d10=1.000 r11=15.7130 d11=28.862 n6 =1.49260ν6 =58.02 r12=∞ d12=1.469 r13=9.8776 (非球面) d13=3.539 n7 =1.49260 ν7 =58.02 r14=106.6582 d14=15.000 r15 (アイポイント)R 1 = −252.7357 d 1 = 1.028 n 1 = 1.58362 ν 1 = 30.37 r 2 = 7.6102 (aspherical surface) d 2 (variable) r 3 = 5.3054 (aspherical surface) d 3 = 2.100 n 2 = 1.49260 ν 2 = 58.02 r 4 = 10.7043 d 4 = 0.226 r 5 = 7.6077 d 5 = 1.000 n 3 = 1.58362 ν 3 = 30.37 r 6 = 6.2686 d 6 ( variable) r 7 = 10.1823 (aspherical) d 7 = 2.687 n 4 = 1.49260 ν 4 = 58.02 r 8 = -23.2390 d 8 (variable) r 9 = 56.7539 d 9 = 16.523 n 5 = 1.49260 ν 5 = 58.02 r 10 = ∞ d 10 = 1.000 r 11 = 15.7130 d 11 = 28.862 n 6 = 1.49260ν 6 = 58.02 r 12 = ∞ d 12 = 1.469 r 13 = 9.8776 (aspherical surface) d 13 = 3.539 n 7 = 1.49260 ν 7 = 58.02 r 14 = 106.6582 d 14 = 15.000 r 15 (eye point)

【0025】非球面係数 第2面 E=-0.50783×10-3 ,F=-0.14411×10-5, G= 0.74277×10-7 第3面 E=-0.89026×10-3 ,F=-0.12928×10-4, G=-0.21823×10-8 第7面 E=-0.25178×10-3 ,F= 0.87013×10-5, G=-0.10582×10-5 第1面 E=-0.16611×10-3 ,F= 0.13393×10-5, G=-0.64768×10-7 Aspherical surface second surface E = −0.50783 × 10 −3 , F = −0.14411 × 10 −5 , G = 0.74277 × 10 −7 Third surface E = −0.889026 × 10 −3 , F = −0.12928 × 10 -4 , G = -0.21823 × 10 -8 7th surface E = -0.25178 × 10 -3 , F = 0.87013 × 10 -5 , G = -0.10582 × 10 -5 3rd surface E = -0.16611 × 10 -3 , F = 0.13393 x 10 -5 , G = -0.664768 x 10 -7

【0026】 [0026]

【0027】条件式(1) −0.942 条件式(2) 0.083 条件式(3) 0.238Conditional expression (1) -0.942 Conditional expression (2) 0.083 Conditional expression (3) 0.238

【0028】第3実施例 本実施例は、図10に示した如く、第1反射面M1 を有
するプリズム5′と、第2反射面M2 ,第3反射面M3
及び第4反射面M4 を有するリレー光学系10とから像
正立系を構成し、プリズム5′とリレー光学系10との
間及びリレー光学系10と接眼レンズ8との間に、中間
結像面が夫々存在するようにして成るものである。
[0028] This example third embodiment, as shown in FIG. 10, the prism 5 'having a first reflecting surface M 1, the second reflecting surface M 2, the third reflecting surface M 3
And configure the image erecting system from the relay optical system 10 and having a fourth reflective surface M 4, between the prism 5 'and and between the relay optical system 10 and the eyepiece 8 the relay optical system 10, intermediate imaging The image planes are provided so as to exist.

【0029】図10(A),(B),(C)は、夫々本
実施例の広角,中間,望遠における展開図、図11乃至
図13は、夫々広角,中間,望遠における収差曲線図で
ある。そのデータを以下に示す。 倍 率 0.35〜0.68〜1.31 視野角(2ω)=60.1゜〜32.8°〜16.8゜
FIGS. 10A, 10B, and 10C are developed views of the present embodiment at wide-angle, intermediate, and telephoto, respectively, and FIGS. 11 to 13 are aberration curves at wide-angle, intermediate, and telephoto, respectively. is there. The data is shown below. Magnification 0.35 to 0.68 to 1.31 Viewing angle (2ω) = 60.1 ° to 32.8 ° to 16.8 °

【0030】r1 =-44.3975 d1 =1.000 n1 =1.58362 ν1 =30.37 r2 =16.2878 ( 非球面) d2 (可変) r3 =5.8117 ( 非球面) d3 =3.300 n2 =1.49241 ν2 =57.66 r4 =-95.7654 d4 =0.300 r5 =13.5066 d5 =1.505 n3 =1.58362 ν3 =30.37 r6 =5.2183 d6 (可変) r7 =11.5788 ( 非球面) d7 =1.907 n4 =1.49241 ν4 =57.66 r8 =159.4279 d8 (可変) r9 =12.2271 d9 =9.019 n5 =1.49241 ν5 =57.66 r10=68.4590 d10=1.500 r11=146.3630 d11=27.227 n6 =1.49241 ν6 =57.66 r12=-30.9370 d12=0.300R 1 = -44.3975 d 1 = 1.000 n 1 = 1.58362 ν 1 = 30.37 r 2 = 16.2878 (aspheric surface) d 2 (variable) r 3 = 5.8117 (aspheric surface) d 3 = 3.300 n 2 = 1.49241 ν 2 = 57.66 r 4 = -95.7654 d 4 = 0.300 r 5 = 13.5066 d 5 = 1.505 n 3 = 1.58362 ν 3 = 30.37 r 6 = 5.2183 d 6 (variable) r 7 = 11.5788 (aspherical surface) d 7 = 1.907 n 4 = 1.49241 ν 4 = 57.66 r 8 = 159.4279 d 8 ( variable) r 9 = 12.2271 d 9 = 9.019 n 5 = 1.49241 ν 5 = 57.66 r 10 = 68.4590 d 10 = 1.500 r 11 = 146.3630 d 11 = 27.227 n 6 = 1.49241 ν 6 = 57.66 r 12 = -30.9370 d 12 = 0.300

【0031】r13=8.2425 (非球面) d13=5.000 n7 =1.49241 ν7 =57.66 r14=-38.6987 d14=0.109 r15=5.4707 d15=3.741 n8 =1.49241 ν8 =57.66 r16=11.2327 d16=0.888 r17=-28.4658 d17=1.500 n9 =1.80518 ν9 =25.43 r18=3.0718 d18=1.000 r19=10.9769 d19=8.889 n10=1.49241 ν10=57.66 r20=-4.9000 d20=14.294 r21=9.8636 d21=3.800 n11=1.49241 ν11=57.66 r22=-309.2520 d22=20.501 r23=-28.5841 d23=2.900 n12=1.49241 ν12=57.66 r24=-8.4475 d24=15.000 r25 (アイポイント)R 13 = 8.2425 (aspherical surface) d 13 = 5.000 n 7 = 1.49241 v 7 = 57.66 r 14 = -38.6987 d 14 = 0.109 r 15 = 5.4707 d 15 = 3.741 n 8 = 1.49241 v 8 = 57.66 r 16 = 11.2327 d 16 = 0.888 r 17 = -28.4658 d 17 = 1.500 n 9 = 1.80518 ν 9 = 25.43 r 18 = 3.0718 d 18 = 1.000 r 19 = 10.9769 d 19 = 8.889 n 10 = 1.49241 ν 10 = 57.66 r 20 = -4.9000 d 20 = 14.294 r 21 = 9.8636 d 21 = 3.800 n 11 = 1.49241 ν 11 = 57.66 r 22 = -309.2520 d 22 = 20.501 r 23 = -28.5841 d 23 = 2.900 n 12 = 1.49241 ν 12 = 57.66 r 24 = -8.4475 d 24 = 15.000 r 25 ( eye point)

【0032】非球面係数 第2面 E=-0.16562×10-3 ,F=-0.27842×10-5, G=0.19045 ×10-6 H=-0.35490×10-8 第3面 E=-0.67756×10-3 ,F=0.57243 ×10-5, G=-0.73587×10-6 H=-0.26009×10-8 第7面 E= 0.20717×10-3 ,F=-0.62740×10-4, G=0.30001 ×10-5 H=-0.30416×10-7 第1面 E=-0.34821×10-3 ,F=0.30552 ×10-5, G=-0.84034×10-7 H=-0.28550×10-9 Aspheric surface second surface E = -0.16562 × 10 -3 , F = -0.27842 × 10 -5 , G = 0.19045 × 10 -6 H = -0.35490 × 10 -8 Third surface E = −0.667756 × 10 -3 , F = 0.57243 x 10 -5 , G = -0.73587 x 10 -6 H = -0.26009 x 10 -8 7th surface E = 0.20717 x 10 -3 , F = -0.62740 x 10 -4 , G = 0.30001 × 10 −5 H = −0.30416 × 10 −7 First 3rd surface E = −0.34821 × 10 −3 , F = 0.30552 × 10 −5 , G = −0.84034 × 10 −7 H = −0.28550 × 10 −9

【0033】 [0033]

【0034】条件式(1) −0.463 条件式(2) −0.054 条件式(3) 0.379Conditional expression (1) -0.463 Conditional expression (2) -0.054 Conditional expression (3) 0.379

【0035】尚、上記各実施例において、r1 ,r2
・・・・は各レンズ面の曲率半径、d1 ,d2 ,・・・・は各レ
ンズの肉厚及びレンズ間隔、n1 ,n2 ,・・・・は各レン
ズの屈折率、ν1 ,ν2 ,・・・・は各レンズのアツベ数で
ある。
In each of the above embodiments, r 1 , r 2 ,
.... is the radius of curvature of each lens surface, d 1, d 2, ···· wall thickness and lens distance of each lens, n 1, n 2, ···· is the refractive index of each lens, [nu 1 , ν 2 ,... Are the Abbe numbers of each lens.

【0036】又、上記各実施例中の非球面形状は、非球
面係数を用いて以下の式で表わされる。但し、光軸方向
はX、光軸と垂直な方向はSとする。 ここで、Cは非球面頂点での曲率(=1/r)である。
The aspherical shape in each of the above embodiments is represented by the following equation using an aspherical coefficient. However, the direction of the optical axis is X, and the direction perpendicular to the optical axis is S. Here, C is the curvature (= 1 / r) at the aspherical vertex.

【0037】又、上記各実施例中の対物レンズの光学要
素はプラスチックを材料としているが、コスト的に見合
うならガラスを材料としても良い。
Although the optical element of the objective lens in each of the above embodiments is made of plastic, glass may be used if the cost is appropriate.

【0038】[0038]

【発明の効果】上述の如く、本発明による実像式変倍フ
ァインダー光学系は、変倍比が3程度以上であると共に
ファインダー部の全長を短くできる。更に収差も良好に
補正され、特に非点収差の抑制により効果的である。し
かも、製造コストも安くて済むという実用上重要な利点
を有している。
As described above, the real image type variable magnification finder optical system according to the present invention has a variable magnification ratio of about 3 or more and can shorten the entire length of the finder section. Further, aberration is also corrected well, and it is particularly effective to suppress astigmatism. In addition, it has an important practical advantage that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実像式変倍ファインダー光学系の
第1実施例の斜視図である。
FIG. 1 is a perspective view of a first embodiment of a real image type variable magnification finder optical system according to the present invention.

【図2】図1に示す第1実施例の光学系を光軸方向に展
開した構成図であり、(A)は広角,(B)は中間,
(C)は望遠状態を表す。
FIGS. 2A and 2B are configuration diagrams in which the optical system of the first embodiment shown in FIG. 1 is developed in the optical axis direction, wherein FIG.
(C) shows a telephoto state.

【図3】第1実施例について、広角状態の球面収差,非
点収差,歪曲収差を夫々示す図である。
FIG. 3 is a diagram illustrating spherical aberration, astigmatism, and distortion in a wide angle state, respectively, for the first example.

【図4】第1実施例について、中間状態の球面収差,非
点収差,歪曲収差を夫々示す図である。
FIG. 4 is a diagram illustrating spherical aberration, astigmatism, and distortion in an intermediate state, respectively, for the first example.

【図5】第1実施例について、望遠状態の球面収差,非
点収差,歪曲収差を夫々示す図である。
FIG. 5 is a diagram illustrating spherical aberration, astigmatism, and distortion in a telephoto state with respect to the first example, respectively.

【図6】本発明による実像式変倍ファインダー光学系の
第2実施例の光学系を光軸方向に展開した構成図であ
り、(A)は広角,(B)は中間,(C)は望遠状態を
表す。
FIGS. 6A and 6B are configuration diagrams in which the optical system of the second embodiment of the real image type variable magnification finder optical system according to the present invention is developed in the optical axis direction, where FIG. 6A is a wide angle, FIG. Represents the telephoto state.

【図7】第2実施例について、広角状態の球面収差,非
点収差,歪曲収差を夫々示す図である。
FIG. 7 is a diagram illustrating spherical aberration, astigmatism, and distortion in a wide-angle state, respectively, for the second example.

【図8】第2実施例について、中間状態の球面収差,非
点収差,歪曲収差を夫々示す図である。
FIG. 8 is a diagram illustrating a spherical aberration, an astigmatism, and a distortion in an intermediate state, respectively, in a second example.

【図9】第2実施例について、望遠状態の球面収差,非
点収差,歪曲収差を夫々示す図である。
FIG. 9 is a diagram illustrating spherical aberration, astigmatism, and distortion in a telephoto state, respectively, for the second example.

【図10】本発明による実像式変倍ファインダー光学系
の第3実施例の光学系を光軸方向に展開した構成図であ
り、(A)は広角,(B)は中間,(C)は望遠状態を
表す。
10A and 10B are configuration diagrams in which the optical system of the third embodiment of the real image type variable magnification finder optical system according to the present invention is developed in the optical axis direction, where FIG. 10A is a wide angle, FIG. Represents the telephoto state.

【図11】第3実施例について、広角状態の球面収差,
非点収差,歪曲収差を夫々示す図である。
FIG. 11 shows the spherical aberration in the wide-angle state,
It is a figure which shows astigmatism and distortion respectively.

【図12】第3実施例について、中間状態の球面収差,
非点収差,歪曲収差を夫々示す図である。
FIG. 12 shows the spherical aberration in the intermediate state,
It is a figure which shows astigmatism and distortion respectively.

【図13】第3実施例について、望遠状態の球面収差,
非点収差,歪曲収差を夫々示す図である。
FIG. 13 shows the spherical aberration in the telephoto state,
It is a figure which shows astigmatism and distortion respectively.

【符号の説明】[Explanation of symbols]

1 対物レンズ 2 第1レンズ群 3 第2レンズ群 4 第3レンズ群 5,5′ プリズム 6 プリズム 7 視野枠 8 接眼レンズ 10 リレー光学系。 DESCRIPTION OF SYMBOLS 1 Objective lens 2 1st lens group 3 2nd lens group 4 3rd lens group 5, 5 'prism 6 Prism 7 Field frame 8 Eyepiece 10 Relay optical system.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から順に配置された、正の屈折力を
有する対物レンズと、正の屈折力を有する接眼レンズと
を備えた実像式変倍ファインダー光学系において、 前記対物レンズが負の屈折力を有する第1レンズ群と正
の屈折力を有する第2レンズ群と正の屈折力を有する第
3レンズ群とから成り、該第3レンズ群と中間結像面と
の間に少なくとも像正立のための第1反射面を設置し、
前記第1レンズ群を固定し、前記第2レンズ群と第3レ
ンズ群との間隔が中間画角付近で最大となるように前記
第2レンズ群及び第3レンズ群を光軸方向に移動させる
ことにより変倍及び視度補正を行なうと共に、下記条件
を満足するようにしたことを特徴とする実像式変倍ファ
インダー光学系。 但し、r11は第1レンズ群の最も像側の面の曲率半径、
10は第1レンズ群の最も物体側の面の曲率半径であ
る。
1. A real image type variable magnification finder optical system comprising an objective lens having a positive refractive power and an eyepiece having a positive refractive power, which are arranged in order from the object side, wherein the objective lens has a negative refractive power. A first lens group having a refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power, wherein at least an image is formed between the third lens group and an intermediate image forming surface. Install the first reflective surface for erecting,
The first lens group is fixed, and the second lens group and the third lens group are moved in the optical axis direction such that the distance between the second lens group and the third lens group is maximized near the intermediate angle of view. A real-image variable-magnification finder optical system characterized by performing zooming and diopter correction thereby satisfying the following conditions. Here, r 11 is the radius of curvature of the most image side surface of the first lens unit,
r 10 is the radius of curvature of the most object side surface of the first lens group.
【請求項2】前記第2レンズ群の最も物体側の面と最も
像側の面とが共に物体側に湾曲した面であると共に、下
記条件を満足するようにしたことを特徴とする請求項1
に記載の実像式変倍ファインダー光学系。 但し、r21は第2レンズ群の最も像側の面の曲率半径、
20は第2レンズ群の最も物体側の面の曲率半径、r30
は第3レンズ群の最も物体側の面の曲率半径である。
2. The apparatus according to claim 1, wherein both the most object-side surface and the most image-side surface of said second lens group are surfaces curved toward the object side, and satisfy the following conditions. 1
2. The real-image variable magnification finder optical system according to 1. Here, r 21 is the radius of curvature of the most image side surface of the second lens group,
r 20 is the radius of curvature of the surface closest to the object side of the second lens group, r 30
Is the radius of curvature of the surface closest to the object side of the third lens group.
【請求項3】前記第2レンズ群の少なくとも一面と前記
第3レンズ群の少なく とも一面を夫々非球面にしたこと
を特徴とする請求項1又は2に記載の実像式変倍ファイ
ンダー光学系。
3. The apparatus according to claim 2, wherein at least one surface of said second lens group and
That the at least one surface of the third lens group, respectively aspherical
3. A real image type variable magnification file according to claim 1, wherein
Optical system.
【請求項4】前記第2レンズ群が正レンズ及び負レンズ
から成ることを特徴とする請求項1又は2に記載の実像
式変倍ファインダー光学系。
4. The second lens group comprises a positive lens and a negative lens.
The real image according to claim 1, wherein the real image comprises:
Variable magnification finder optical system.
JP25541091A 1991-01-22 1991-10-02 Real image type zoom finder optical system Expired - Fee Related JP3190382B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25541091A JP3190382B2 (en) 1991-10-02 1991-10-02 Real image type zoom finder optical system
US07/823,472 US5257129A (en) 1991-01-22 1992-01-22 Real image type variable magnification viewfinder optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25541091A JP3190382B2 (en) 1991-10-02 1991-10-02 Real image type zoom finder optical system

Publications (2)

Publication Number Publication Date
JPH0593859A JPH0593859A (en) 1993-04-16
JP3190382B2 true JP3190382B2 (en) 2001-07-23

Family

ID=17278383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25541091A Expired - Fee Related JP3190382B2 (en) 1991-01-22 1991-10-02 Real image type zoom finder optical system

Country Status (1)

Country Link
JP (1) JP3190382B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343182B1 (en) 1996-10-07 2002-01-29 Samsung Electronics Disk detecting device and method
CN104303929A (en) * 2014-09-30 2015-01-28 徐世慧 Fruit culture method adopting double-layer paper sheathing bag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650270B2 (en) 1998-07-21 2005-05-18 オリンパス株式会社 Real-image viewfinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343182B1 (en) 1996-10-07 2002-01-29 Samsung Electronics Disk detecting device and method
CN104303929A (en) * 2014-09-30 2015-01-28 徐世慧 Fruit culture method adopting double-layer paper sheathing bag

Also Published As

Publication number Publication date
JPH0593859A (en) 1993-04-16

Similar Documents

Publication Publication Date Title
JP3365780B2 (en) Real image type zoom finder optical system
JP2628633B2 (en) Compact zoom lens
JP3064337B2 (en) Real image type variable magnification finder optical system
JP3035830B2 (en) Zoom lens
JP2647504B2 (en) Real image type zoom finder
JPH0658454B2 (en) Variable magnification finder
JP3346604B2 (en) Real image type zoom finder
JP3709252B2 (en) Real-image magnification finder
JP3805390B2 (en) Real-image variable magnification viewfinder optical system
JP3301815B2 (en) Zoom lens
JP3288436B2 (en) Real image type zoom finder
JP3506796B2 (en) Real image type zoom finder
JP3190382B2 (en) Real image type zoom finder optical system
JPH0784184A (en) Real image type variable power finder optical system
JP4077579B2 (en) Real-image magnification finder
JP2002182109A (en) Zoom lens and optical equipment using the same
JP2958124B2 (en) Real image type variable magnification finder optical system
JP2984503B2 (en) Zoom finder
JPH10333033A (en) Real image type variable power finder
JP2782712B2 (en) Zoom finder
JP2796819B2 (en) Zoom finder
JPH07306361A (en) Compact zoom lens
JPH08129202A (en) Variable power finder optical system
JPH1172706A (en) Real image type zoom finder
JP3628739B2 (en) Kepler type zoom finder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010501

LAPS Cancellation because of no payment of annual fees