JPH0910564A - Micro-filtration film and its production - Google Patents

Micro-filtration film and its production

Info

Publication number
JPH0910564A
JPH0910564A JP16728795A JP16728795A JPH0910564A JP H0910564 A JPH0910564 A JP H0910564A JP 16728795 A JP16728795 A JP 16728795A JP 16728795 A JP16728795 A JP 16728795A JP H0910564 A JPH0910564 A JP H0910564A
Authority
JP
Japan
Prior art keywords
membrane
polyethylene glycol
glycol diacrylate
solution
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16728795A
Other languages
Japanese (ja)
Inventor
Sumio Otani
純生 大谷
Masato Nishimura
正人 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP16728795A priority Critical patent/JPH0910564A/en
Publication of JPH0910564A publication Critical patent/JPH0910564A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a micro-filtration film which has high fungus- and particle- removing performance and long life by covering the inside of a pore and the surface of the film with a cross-linked polymer containing polyethylene glycol diacrylate. SOLUTION: A micro-filtration film is immersed in the solution of a polyethylene glycol diacrylate monomer. Thereafter, a cross-linked polymer is formed by thermal polymerization and the whole surface of a pore wall in the inside of the film is covered with the cross-linked polymer and dried after washing and extracting an unreacted monomer. A compound shown in the formula (wherein (n) is 2-20) is used for polyethylene glycol diacrylate. Liquid containing fermentation liquid, polymeric sugar such as fruit juice and protein or the like is filtrated through the micro-filtration film obtained such a way. The micro- filtration film has fungus- and, particle-removing performances for a long period.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体の精密ろ過に使
用される精密ろ過フィルターに関する。特に、水及び水
溶液のろ過に使用される精密ろ過膜の親水化処理に関す
る。
The present invention relates to a microfiltration filter used for microfiltration of a liquid. In particular, it relates to hydrophilization treatment of microfiltration membranes used for filtering water and aqueous solutions.

【0002】[0002]

【従来の技術】精密濾過膜に用いられている素材はその
ほとんどが本来疎水性の材料であり、できた膜の多くは
そのままでは撥水性であり、水や水溶液のろ過には支障
が多い。また蛋白質を含む発酵液や食品・医薬用途の水
溶液においては、膜表面に蛋白質が吸着しやすく、従っ
て目詰まりをおこしやすいという欠点を有する。このた
め従来精密ろ過膜の表面を種々の処理により親水化して
ろ過寿命を長くする試みが行われている。特開平7−5
1550号公報では、第一ポリマーで形成される平均細
孔寸法0.001〜10ミクロンを有する多孔質膜基体
から形成し、該基体の表面全体に渡って第二架橋ポリマ
ーを被覆し、該多孔質基体と本質的に同じ多孔質構造を
有する複合多孔質膜が記載されている。しかしこの方法
では第二ポリマーの単量体と該単量体用架橋剤と該単量
体用重合開始剤との溶液の安定性が悪く、工業的に大量
の親水性精密ろ過膜を生産する方法としては適当ではな
い。
2. Description of the Related Art Most of the materials used for microfiltration membranes are inherently hydrophobic materials, and most of the membranes formed are water repellent as they are, and there are many obstacles to filtration of water and aqueous solutions. In addition, in a fermented liquor containing a protein or an aqueous solution for food / medicine use, there is a drawback that the protein is likely to be adsorbed on the surface of the membrane and thus clogging is likely to occur. For this reason, attempts have been made to extend the filtration life by hydrophilizing the surface of conventional microfiltration membranes by various treatments. JP-A-7-5
In 1550, a porous membrane substrate formed of a first polymer having an average pore size of 0.001 to 10 microns is formed, and a second cross-linked polymer is coated over the entire surface of the substrate to form a porous membrane substrate. A composite porous membrane is described that has essentially the same porous structure as the porous substrate. However, in this method, the stability of the solution of the monomer of the second polymer, the crosslinking agent for the monomer, and the polymerization initiator for the monomer is poor, and a large amount of hydrophilic microfiltration membrane is industrially produced. It is not a suitable method.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、発酵
液、果汁、食品や医薬品など、高分子糖、たんぱく質お
よびまたはこれら成分からなる凝集粒子を含有する液体
のろ過において、特に日本酒、ワインやビールの如き酒
類、醤油や食酢の如き食品、アミノ酸、有機酸、核酸、
ビタミン類や蛋白質等の医薬用途や一般工業用途に使用
される各種薬品等の微生物醗酵で生産される醗酵液のろ
過、特に終段の除菌ろ過用途において、従来にない高い
除菌・除粒子性能と長寿命の両方の特性を有する精密ろ
過膜を提供することである。
The object of the present invention is to filter fermentation liquors, fruit juices, foods, pharmaceuticals and the like, which contain high molecular weight sugars, proteins and / or agglomerated particles composed of these components, particularly sake and wine. Alcohol like beer and beer, food such as soy sauce and vinegar, amino acids, organic acids, nucleic acids,
Filtration of fermented liquid produced by microbial fermentation of various chemicals used for pharmaceuticals such as vitamins and proteins and general industrial applications, especially in the final stage sterilization filtration application, high sterilization and particle removal that has never been seen before It is an object of the present invention to provide a microfiltration membrane having characteristics of both performance and long life.

【0004】[0004]

【課題を解決するための手段】本発明は、ポリエチレン
グリコールジアクリレートを含む架橋ポリマーにより孔
内部および膜の表面が覆われたことを特徴とする精密ろ
過膜により達成された。すなわち、ポリエチレングリコ
ールジアクリレートモノマーの溶液に精密ろ過膜を浸漬
した後、膜内部の孔壁全表面にわたって熱重合で架橋ポ
リマーを形成して被覆し、未反応モノマーを洗浄抽出し
た後、乾燥することによって作られた精密ろ過膜によっ
て上記課題は解決した。
The present invention has been accomplished by a microfiltration membrane characterized in that the inside of the pores and the surface of the membrane are covered with a cross-linked polymer containing polyethylene glycol diacrylate. That is, a microfiltration membrane is immersed in a solution of polyethylene glycol diacrylate monomer, and then a cross-linked polymer is formed by thermal polymerization over the entire surface of the pore walls inside the membrane to cover it, and the unreacted monomer is washed and extracted, and then dried. The above problems were solved by the obtained microfiltration membrane.

【0005】[0005]

【発明の実施の形態】本発明で使用されるポリエチレン
グリコールジアクリレートは化学式(1) の一般式で示さ
れるもので、式中のnが2から20のものを用いる。 化学式(1) CH2=CH-COO(-CH2CH2O-)n CH2CH2OOC-CH=CH2 被処理精密ろ過膜の素材がポリスルホンの場合は、n数
は7から16の範囲のものが特に好ましい。モノマーと
してはポリエチレングリコールジアクリレートの他にノ
ニオン性且つ親水性単官能あるいは多官能のモノマーを
混ぜて用いることもできる。ノニオン性且つ親水性のモ
ノマーとしては、ヒドロキシエチルメタクリレート、ヒ
ドロキシエチルアクリレート、ヒドロキシプロピルアク
リレートなどのヒドロキシアルキルアクリレート又はメ
タクリレート、アクリルアミド、メタクリルアミド、ヒ
ドロキシルエチルアクリルアミド又はメタクリルアミ
ド、ポリオキシエチレンのアクリレート又はメタクリレ
ート、ポリオキシプロピレンのアクリレート又はメタク
リレート、更にビニルピロリドンなどが挙げられる。塩
基性や酸性のモノマーはろ過量増の効果がほとんどない
かあるいは逆にろ過量が少なくなることもあって、使用
できない。塩基性や酸性のモノマーを使用してできた架
橋ポリマーは、蛋白質の塩基性部分や酸性部分と親和し
蛋白質を吸着しやすいために、ろ過量増加効果がなくな
るものと推定される。ポリエチレングリコールアクリレ
ートと混合して用いるモノマーの中でも特に効果的なモ
ノマーは、ヒドロキシエチルアクリレート、ヒドロキシ
エチルメタクリレート、ポリオキシエチレンのアクリレ
ートである。
BEST MODE FOR CARRYING OUT THE INVENTION The polyethylene glycol diacrylate used in the present invention is represented by the general formula (1), and n in the formula is from 2 to 20. Chemical formula (1) CH 2 = CH-COO (-CH 2 CH 2 O-) n CH 2 CH 2 OOC-CH = CH 2 When the material of the microfiltration membrane to be treated is polysulfone, the number of n is 7 to 16 Those in the range are particularly preferable. As the monomer, in addition to polyethylene glycol diacrylate, a nonionic and hydrophilic monofunctional or polyfunctional monomer may be mixed and used. Examples of the nonionic and hydrophilic monomer include hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxyalkyl acrylate or methacrylate such as hydroxypropyl acrylate, acrylamide, methacrylamide, hydroxylethyl acrylamide or methacrylamide, polyoxyethylene acrylate or methacrylate, and polyoxyethylene acrylate. Examples thereof include acrylate or methacrylate of oxypropylene, and vinylpyrrolidone. Basic or acidic monomers cannot be used because they have almost no effect of increasing the filtration amount or conversely the filtration amount decreases. It is presumed that the cross-linked polymer formed by using a basic or acidic monomer has no affinity for increasing the filtration amount because it has an affinity for the basic or acidic portion of the protein and easily adsorbs the protein. Particularly effective monomers among the monomers to be mixed with polyethylene glycol acrylate are hydroxyethyl acrylate, hydroxyethyl methacrylate, and polyoxyethylene acrylate.

【0006】混合モノマーを使用する場合のポリエチレ
ングリコールジアクリレートの比率は、モノマー全体量
に対してポリエチレングリコールジアクリレートが20
%以上、好ましくは30%以上が必要であり、ポリエチ
レングリコールジアクリレートを単独で使用することも
できる。実験した範囲内では溶液中のモノマー濃度は0.
2 %から5%が好ましく、0.5 %から2.0 %が特に好ま
しい。最適モノマー濃度は使用するモノマー種、重合温
度や精密ろ過膜の素材や孔径によって変化する。平均孔
径0.65ミクロンのポリスルホンを素材とする精密ろ過膜
では、重合温度120 度Cにおいては例えば、ポリエチレ
ングリコールジアクリレート単独使用の場合は、0.5
から1.2%が最も好ましく、ポリエチレングリコール
ジアクリレート63部とヒドロキシエチルメタクリレー
ト37部との混合使用の場合は、1.0から1.5%が
最も好ましかった。モノマー濃度が高すぎると、処理さ
れてできた膜の水透過性低下が著しくなり非実用的にな
る。重合は、ラジカル開始剤を用いてもよいが、重合開
始剤のない熱重合が好ましい。重合開始剤を用いた時
は、溶液の保存中及び使用中に溶液内で重合反応が進行
し、処理した膜の品質低下を招きやすい。モノマー溶液
の好ましい溶媒はメタノール、エタノール、プロパノー
ルの如きモノアルコール類、エチレングリコールやプロ
ピレングリコール、ジエチレングリコールの如き多価ア
ルコール類及び水などがあり、これら単独あるいは混合
溶媒として用いることができる。架橋ポリマー処理され
る元の精密ろ過膜素材は特に限定することなく前述した
如き多くの膜素材に適用可能であるが、ポリスルホンを
素材とする精密ろ過膜に適用した時に特に顕著な効果を
示した。次に架橋ポリマー処理される元の精密ろ過膜の
好ましい孔特性について述べる。元の精密ろ過膜の平均
孔径はASTM F−316の方法で測定した時の値が
0.1ミクロン以上5ミクロン以下の膜に適用可能であ
る。又特開平2−151636号公報に開示されている
如き膜内部に最緻密な孔層を有し、膜の表裏には相対的
に大きな孔径を有する膜の場合、架橋ポリマー形成に伴
う水透過性の減少がほとんどなくて好ましい。本溶液に
膜を浸漬した後余分に付着した溶液をかき落とし、その
後直ちに加熱して重合させる。重合温度は80度C以上で
あるが、好ましくは 100度Cから 170度C、最も好まし
い温度は 120度Cから140 度Cである。重合時間は1分
から30分であるが、重合温度が低い程時間を長くする
必要がある。重合終了後、未反応モノマーや溶媒を除去
するために洗浄処理し、しかる後に膜を乾燥する。以下
実施例に従って更に詳しく説明する。
When the mixed monomer is used, the ratio of polyethylene glycol diacrylate to polyethylene glycol diacrylate is 20 with respect to the total amount of the monomers.
% Or more, preferably 30% or more is necessary, and polyethylene glycol diacrylate can be used alone. Within the experimental range, the monomer concentration in the solution was 0.
2% to 5% is preferable, and 0.5% to 2.0% is particularly preferable. The optimum monomer concentration varies depending on the type of monomer used, the polymerization temperature, the material of the microfiltration membrane, and the pore size. With a microfiltration membrane made of polysulfone with an average pore size of 0.65 micron, at a polymerization temperature of 120 ° C, for example, when polyethylene glycol diacrylate is used alone, 0.5
To 1.2% is most preferable, and in the case where 63 parts of polyethylene glycol diacrylate and 37 parts of hydroxyethyl methacrylate are used in combination, 1.0 to 1.5% is most preferable. If the monomer concentration is too high, the water permeability of the treated membrane will be significantly reduced, making it impractical. A radical initiator may be used for the polymerization, but thermal polymerization without a polymerization initiator is preferable. When a polymerization initiator is used, the polymerization reaction proceeds in the solution during storage and use of the solution, and the quality of the treated film is likely to deteriorate. Preferred solvents for the monomer solution include monoalcohols such as methanol, ethanol and propanol, polyhydric alcohols such as ethylene glycol, propylene glycol and diethylene glycol, and water. These can be used alone or as a mixed solvent. The original microfiltration membrane material to be treated with the crosslinked polymer can be applied to many membrane materials as described above without particular limitation, but when it is applied to the microfiltration membrane using polysulfone as a material, it shows a particularly remarkable effect. . Next, preferable pore characteristics of the original microfiltration membrane treated with the crosslinked polymer will be described. The average pore size of the original microfiltration membrane can be applied to a membrane having a value of 0.1 micron or more and 5 micron or less when measured by the method of ASTM F-316. Further, in the case of a membrane having a densest pore layer inside the membrane as disclosed in JP-A-2-151636 and having a relatively large pore size on the front and back sides of the membrane, water permeability associated with the formation of a crosslinked polymer. Is preferable because there is almost no decrease. After immersing the membrane in this solution, the excess solution is scraped off, and then immediately heated to polymerize. The polymerization temperature is 80 ° C or higher, preferably 100 ° C to 170 ° C, and most preferably 120 ° C to 140 ° C. The polymerization time is 1 to 30 minutes, but the lower the polymerization temperature, the longer the time is required. After completion of the polymerization, a washing treatment is performed to remove unreacted monomers and a solvent, and then the membrane is dried. A more detailed description will be given below with reference to examples.

【0007】[0007]

【実施例】【Example】

実施例1 次の組成の製膜溶液をつくり、この溶液をポリエステル
フイルム上に流延し、露点14℃、風速3m/sの精密
に調湿した風を8秒間当て、すぐに25℃の水浴中に2
0秒間浸して孔を形成する。その後ポリエステルフィル
ムから膜を剥離し、更に洗浄処理した後乾燥する。でき
た膜の厚さは180ミクロン、空隙率は71%、平均孔
径は0.7ミクロンであった。 溶液組成 ポリスルホン樹脂 14 部 ポリビニルピロリドン 16 部 N−メチル−2−ピロリドン 67 部 塩化リチウム 0.5部 水 2.5部
Example 1 A film-forming solution having the following composition was prepared, the solution was cast on a polyester film, and precisely controlled humidity wind with a dew point of 14 ° C. and a wind speed of 3 m / s was applied for 8 seconds, and immediately a water bath at 25 ° C. 2 in
Soak for 0 seconds to form holes. After that, the film is peeled from the polyester film, further washed, and then dried. The resulting membrane had a thickness of 180 microns, a porosity of 71% and an average pore size of 0.7 micron. Solution composition Polysulfone resin 14 parts Polyvinylpyrrolidone 16 parts N-methyl-2-pyrrolidone 67 parts Lithium chloride 0.5 parts Water 2.5 parts

【0008】実施例2 表1に示す溶液1から溶液4までを調合した。表1中の
PEGDAはポリエチレングリコールジアクリレートを
指し、化学式(1) におけるn値は12のものを用いた。
実施例1で製膜したポリスルホン膜を各溶液に浸漬し、
膜表面に付着した余分の溶液をかき落とした後、120
度Cのオーブンに20分間入れ、その後80度Cの熱水
中で30分間洗浄して乾燥した。できた膜の透水流束(m
/h) を差圧50 kPaで測定し、 又処理による膜重量増加(g
/m2)を測定し、表2に示した。
Example 2 Solutions 1 to 4 shown in Table 1 were prepared. PEGDA in Table 1 refers to polyethylene glycol diacrylate, and n value of 12 in the chemical formula (1) was used.
The polysulfone membrane formed in Example 1 was dipped in each solution,
After scraping off the excess solution adhering to the membrane surface, 120
It was placed in a C oven for 20 minutes, then washed in hot water of 80 C for 30 minutes and dried. Permeation flux of the formed membrane (m
/ h) at a differential pressure of 50 kPa and the increase in membrane weight (g
/ m 2 ) was measured and is shown in Table 2.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】実施例3 実施例2で用いた溶液2と、実施例1でつくった膜を使
い、120度C加熱時間以外は実施例2と同じ方法で処
理を行い、処理した膜の重量増加を測定した。測定した
重量増加量と加熱時間との対比を表3に示す。表3から
分かるように、架橋ポリマー形成量は加熱時間と共に増
加するが、加熱時間10分強で架橋ポリマー形成量はほ
ぼ飽和する。
Example 3 Solution 2 used in Example 2 and the membrane prepared in Example 1 were treated in the same manner as in Example 2 except that the heating time was 120 ° C, and the weight of the treated membrane was increased. Was measured. Table 3 shows the comparison between the measured amount of weight increase and the heating time. As can be seen from Table 3, the amount of crosslinked polymer formed increases with the heating time, but the amount of crosslinked polymer formed is almost saturated when the heating time is more than 10 minutes.

【0012】[0012]

【表3】 [Table 3]

【0013】実施例4 実施例1と同じ方法でつくった膜を、表4に示す溶液5
から溶液9の各液を用いて実施例2と同じ条件で処理し
た。できた膜の透水流束と膜重量増加を実施例2と同じ
ように測定し、表5に示した。また市販ビールを使って
ろ過寿命の比較を行い、その結果も表5に示した。ビー
ルろ過は、5ml/cm2/min. の流束で60分間ろ過した。
60分間のビールろ過後80度Cの水に20分間浸漬し
て膜を洗浄した。このビールろ過と膜洗浄とを交互に繰
り返し、ろ過差圧が100 kPa に達するまでの累積ろ過時
間を測定し、同時測定した各膜間の累積ろ過時間比を算
出してろ過寿命を比較した。塩基性モノマーのMAPA
Hや酸性モノマーのAMPSHを含む溶液で処理した膜
は、未処理膜と比べてろ過寿命増効果は認められない
が、ノニオンモノマーのみを用いた溶液5、6及び7の
液で処理した膜はろ過寿命増が認められた。表5中のH
EMAはヒドロキシエチルメタクリレートを指し、HE
Aはヒドロキシエチルアクリレートを指す。またMAP
AHは化学式(2) で示す塩基性モノマーを指し、AMP
SHは化学式(3) で示す酸性モノマーを指す。
Example 4 A membrane prepared by the same method as in Example 1 was used as solution 5 shown in Table 4.
Was treated under the same conditions as in Example 2. The water permeation flux and the membrane weight increase of the resulting membrane were measured in the same manner as in Example 2 and are shown in Table 5. Further, comparison of filtration life was performed using commercially available beer, and the results are also shown in Table 5. The beer filtration was carried out at a flux of 5 ml / cm 2 / min. For 60 minutes.
After beer filtration for 60 minutes, the membrane was washed by immersing it in water at 80 ° C. for 20 minutes. This beer filtration and membrane washing were repeated alternately, the cumulative filtration time until the filtration pressure difference reached 100 kPa was measured, and the cumulative filtration time ratio between the simultaneously measured membranes was calculated to compare the filtration lives. Basic monomer MAPA
The membrane treated with the solution containing H or acidic monomer AMPSH does not show the effect of increasing the filtration life as compared with the untreated membrane, but the membrane treated with the solutions 5, 6 and 7 using only the nonionic monomer An increase in filtration life was observed. H in Table 5
EMA refers to hydroxyethyl methacrylate, HE
A refers to hydroxyethyl acrylate. Also MAP
AH is a basic monomer represented by the chemical formula (2), and AMP
SH indicates an acidic monomer represented by the chemical formula (3).

【0014】[0014]

【表4】 [Table 4]

【0015】 化学式(2) CH2=CH-CONH-C3H6-N(-CH3)2 化学式(3) CH2=CH-CONH-C(-CH3)2CH2SO3HChemical formula (2) CH 2 = CH-CONH-C 3 H 6 -N (-CH 3 ) 2 Chemical formula (3) CH 2 = CH-CONH-C (-CH 3 ) 2 CH 2 SO 3 H

【0016】[0016]

【表5】 [Table 5]

【0017】実施例5 ポリエチレングリコールジアクリレートの一般式(1) 中
のn値を4、8、12に変更して実施例4の溶液5と同
じ組成の処理液を作成し、実施例2と同じ条件でポリス
ルホン膜を処理した。n値が4の液で処理したものだけ
は、加熱中にポリスルホン膜が溶解変形してしまった。
Example 5 A treatment liquid having the same composition as that of the solution 5 of Example 4 was prepared by changing the n value in the general formula (1) of polyethylene glycol diacrylate to 4, 8, and 12. The polysulfone membrane was treated under the same conditions. Only for those treated with a liquid having an n value of 4, the polysulfone membrane was dissolved and deformed during heating.

【0018】実施例6 ポリエチレングリコールジアクリレートの一般式(1) 中
のn値を4、8、12に変更して実施例4の溶液6と同
じ組成の処理液を作成し、実施例2と同じ条件でポリス
ルホン膜を処理した。n値が4の液で処理したものも含
めてすべての液で問題なく処理ができた。n値が4のポ
リエチレングリコールジアクリレートは、他のノニオン
モノマーと併用すればポリスルホン膜を溶解することな
く使用可能である。
Example 6 A treatment liquid having the same composition as that of the solution 6 of Example 4 was prepared by changing the n value in the general formula (1) of polyethylene glycol diacrylate to 4, 8, and 12, and The polysulfone membrane was treated under the same conditions. All the solutions, including those treated with the solution having an n value of 4, could be treated without any problem. Polyethylene glycol diacrylate having an n value of 4 can be used without dissolving the polysulfone film if used in combination with another nonionic monomer.

【0019】[0019]

【発明の効果】ポリエチレングリコールジアクリレート
モノマーの溶液に精密ろ過膜を浸漬した後、熱重合で架
橋ポリマーを形成し、未反応モノマーを洗浄抽出した
後、乾燥することによって作られた精密ろ過膜を用いる
ことにより、発酵液、果汁、食品や医薬品など、高分子
糖、たんぱく質およびまたはこれら成分からなる凝集粒
子を含有する液体のろ過寿命を増加できる。
EFFECT OF THE INVENTION A microfiltration membrane made by immersing a microfiltration membrane in a solution of a polyethylene glycol diacrylate monomer, forming a crosslinked polymer by thermal polymerization, washing and extracting unreacted monomer, and then drying the microfiltration membrane. By using it, it is possible to increase the filtration life of a liquid containing a high-molecular sugar, a protein, and / or agglomerated particles composed of these components, such as a fermented liquid, fruit juice, foods and pharmaceuticals.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレングリコールジアクリレート
を含む架橋ポリマーにより孔内部および膜表面が覆われ
たことを特徴とする精密ろ過膜。
1. A microfiltration membrane in which the inside of the pores and the surface of the membrane are covered with a cross-linked polymer containing polyethylene glycol diacrylate.
【請求項2】 該架橋ポリマーが重合により得られるこ
とを特徴とする請求項1に記載の精密ろ過膜。
2. The microfiltration membrane according to claim 1, wherein the crosslinked polymer is obtained by polymerization.
【請求項3】 ポリエチレングリコールジアクリレート
モノマーの溶液に精密ろ過膜を浸漬した後、該膜内部の
孔壁全表面にわたって熱重合で架橋ポリマーを形成して
被覆したことを特徴とする、請求項1に記載の精密ろ過
膜の製法。
3. The microfiltration membrane is dipped in a solution of a polyethylene glycol diacrylate monomer, and then a crosslinked polymer is formed by thermal polymerization over the entire surface of the pore walls inside the membrane to coat the microfiltration membrane. Manufacturing method of microfiltration membrane.
【請求項4】 ポリエチレングリコールジアクリレート
モノマーの溶液に精密ろ過膜を浸漬した後、該膜内部の
孔壁全表面にわたって熱重合で架橋ポリマーを形成して
被覆し、未反応モノマーを洗浄抽出した後、乾燥するこ
とを特徴とする、親水性精密ろ過膜の製法。
4. A microfiltration membrane is dipped in a solution of a polyethylene glycol diacrylate monomer, and then a cross-linked polymer is formed by thermal polymerization over the entire surface of the pore walls inside the membrane to coat it, the unreacted monomer is washed and extracted, and then dried. A method for producing a hydrophilic microfiltration membrane, which comprises:
JP16728795A 1995-07-03 1995-07-03 Micro-filtration film and its production Pending JPH0910564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16728795A JPH0910564A (en) 1995-07-03 1995-07-03 Micro-filtration film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16728795A JPH0910564A (en) 1995-07-03 1995-07-03 Micro-filtration film and its production

Publications (1)

Publication Number Publication Date
JPH0910564A true JPH0910564A (en) 1997-01-14

Family

ID=15846964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16728795A Pending JPH0910564A (en) 1995-07-03 1995-07-03 Micro-filtration film and its production

Country Status (1)

Country Link
JP (1) JPH0910564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217477B1 (en) * 2010-02-23 2013-01-02 웅진케미칼 주식회사 Manufacturing method of polymer membrane for inhibition of microorganism-propagation and polymer membrane thereby
WO2015046250A1 (en) * 2013-09-25 2015-04-02 住友電気工業株式会社 Filter membrane, filter unit, filter system, and filtration method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101217477B1 (en) * 2010-02-23 2013-01-02 웅진케미칼 주식회사 Manufacturing method of polymer membrane for inhibition of microorganism-propagation and polymer membrane thereby
WO2015046250A1 (en) * 2013-09-25 2015-04-02 住友電気工業株式会社 Filter membrane, filter unit, filter system, and filtration method
JP2015062870A (en) * 2013-09-25 2015-04-09 住友電気工業株式会社 Filtration membrane, filtration unit, filtration system and filtration method

Similar Documents

Publication Publication Date Title
JP2677360B2 (en) Permeable porous membrane having hydrophilic property and method for producing the same
KR0173995B1 (en) Membrane for isolating virus from solution
JP4908208B2 (en) Membrane post-treatment
EP0352199B1 (en) Hydrophilic material and method of manufacturing the same
EP0250337B1 (en) Semi-permeable hydrophilic polyvinylidene fluoride membranes suited for drying
US4147745A (en) Process for producing semipermeable membranes
US4943373A (en) Hydrophilic porous membrane of polyvinylidene fluoride and method for production thereof
JPH0570493B2 (en)
JPH0825539A (en) Production of composite semipermeable membrane
JPH0910564A (en) Micro-filtration film and its production
JPH05317664A (en) Porous hollow fiber membrane
JP3681219B2 (en) Polysulfone porous separation membrane
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
Lai et al. Plasma deposition modified nylon 4 membranes for hemodialysis
JPH0135681B2 (en)
JPH03109930A (en) Filter membrane for ultrafiltration
JP2019130481A (en) Hydrophilic porous membrane manufacturing method
JPS62160109A (en) Manufacture of microporous filter membrane
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JP3218101B2 (en) Semipermeable membrane for separating organic matter and method for producing the same
WO2000045943A1 (en) Porous medium having a plasma polymerized surface
JP2003144128A (en) Laminated filter for filtering beer
JPS6219207A (en) Process for affording hydrophilic property to hydrophobic porous film
JPS61118106A (en) Production of anisotropic filtering membrane
AU2004253197B2 (en) Membrane post treatment