JPH09104880A - Prevention of high-temperature corrosion of fuel oil burning gas turbine - Google Patents

Prevention of high-temperature corrosion of fuel oil burning gas turbine

Info

Publication number
JPH09104880A
JPH09104880A JP26034495A JP26034495A JPH09104880A JP H09104880 A JPH09104880 A JP H09104880A JP 26034495 A JP26034495 A JP 26034495A JP 26034495 A JP26034495 A JP 26034495A JP H09104880 A JPH09104880 A JP H09104880A
Authority
JP
Japan
Prior art keywords
fuel
gas turbine
temperature
corrosion
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26034495A
Other languages
Japanese (ja)
Inventor
Koji Arioka
孝司 有岡
Masaharu Nakamori
正治 中森
Isamu Kayano
勇 榧野
Hideyuki Ota
英之 太田
Yasumasa Koshiro
育昌 小城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26034495A priority Critical patent/JPH09104880A/en
Publication of JPH09104880A publication Critical patent/JPH09104880A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for preventing high-temperature corrosion of a gas turbine for burning a low-quality fuel such as a fuel oil C. SOLUTION: In order to reduce high-temperature corrosion in a gas turbine for burning a low-quality fuel containing a large amount of impurities with high-temperature corrosiveness, an Na compound alone or a mixture of the Na compound and an alkaline earth metal compound is added to a fuel and a fuel ash composition to be stuck to a high-temperature part is made rich in a sulfate so as to make Np/V or [Na+Ca(mg)]/V (weight ratio) to 1-5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】C重油等低質燃料油を燃焼す
るガスタービンの高温腐食防止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing high-temperature corrosion of a gas turbine that burns low-quality fuel oil such as C heavy oil.

【0002】[0002]

【従来の技術】コンバインドサイクルプラントに代表さ
れる高効率化された最近の産業用ガスタービンのタービ
ン入口ガス温度の上昇は著しく1300℃以上となって
いる。このような高温ガスに曝露される動・静翼に使用
される耐熱合金は精力的な研究開発が行なわれ、その許
容使用温度も年々上昇しているが、実用合金では850
〜900℃程度である。このため、実機ガスタービンで
は薄肉化した内部空気冷却翼が用いられているが、高温
ガスと接する翼表面では高温酸化や高温腐食が避けられ
ない為、MCrAlY(M=Ni、Co等を表す)のコ
ーティングやMCrAlYコーティングの上に熱伝導率
の低いZrO2 系セラミックをコーティングした、遮熱
コーティング(TBC)等が用いられている。一方、使
用される燃料はLNG、副生ガスや重油におよび最近で
は石炭を液化又はガス化して利用することも研究されて
いるため、空気冷却翼の高温酸化や高温腐食防止を目的
として低圧プラズマで溶射法(以下、VPSという)に
よりNiCoCrAlYやCoCrAlYなどの耐食合
金のコーティングが行なわれている。
2. Description of the Related Art The temperature of a gas at the inlet of a recent industrial gas turbine of high efficiency represented by a combined cycle plant has risen significantly to 1300 ° C. or more. Heat-resistant alloys used for moving and stationary blades exposed to such high-temperature gas have undergone vigorous research and development, and their allowable operating temperatures are increasing year by year.
About 900 ° C. For this reason, a thin-walled internal air cooling blade is used in the actual gas turbine, but since high-temperature oxidation and high-temperature corrosion cannot be avoided on the blade surface in contact with the high-temperature gas, MCrAlY (M = Ni, Co, etc.) , A thermal barrier coating (TBC) in which a ZrO 2 -based ceramic having a low thermal conductivity is coated on the MCrAl coating or the MCrAlY coating is used. On the other hand, the fuel used is LNG, by-product gas or heavy oil, and recently, it has been researched to utilize coal by liquefying or gasifying it. In this case, coating of a corrosion resistant alloy such as NiCoCrAlY or CoCrAlY is performed by a thermal spraying method (hereinafter referred to as VPS).

【0003】[0003]

【発明が解決しようとする課題】高温化されたガスター
ビンにおいて、直接燃焼ガスと接触する動・静翼はガス
温度の上昇にともなって酸化速度や腐食速度が増加し、
前記のような耐食耐酸化、コーティングを行った場合で
も、S,Na,V等を多量に含むC重油等低質燃料を燃
焼させる場合Na2 SO4 やV化合物が燃料灰として動
・静翼等の高温部品に付着しはげしい高温腐食を生じ、
その減耗を著しく加速することが知られている。この種
燃料油使用時の腐食性低減方法として、Na分を水洗等
により除去する方法が知られているが、V分については
実用的な除去手法は未だ確立していない。このためV分
による腐食作用(バナジウムアタック又は加速酸化腐
食)を抑制する手法として、Mg化合物〔多くはMg
(OH)2 又はMgO〕を燃料油中へ添加し、高融点で
腐食性の低いxMgO・V2 5 化合物を形成させる方
法があるが、このxMgO・V2 5 化合物が燃焼器や
タービン動・静翼に付着し、ガス流路を閉塞し、ガスタ
ービン効率を大きく低下させる欠点がある。このように
Na2 SO4 とV化合物混合灰による高温腐食対策とし
ては決め手がないのが実状であるが、特に灰分組成がV
分リッチとなる場合、その腐食速度が著しく増加する問
題がある。本発明は上記の問題点を解消することのでき
る、C重油等低質燃料を燃焼するガスタービンの高温腐
食防止方法を提供することを目的とする。
In a high temperature gas turbine, the moving and stationary blades that come into direct contact with the combustion gas increase in oxidation rate and corrosion rate as the gas temperature increases.
Even when the above corrosion resistance, oxidation resistance, and coating are applied, when burning low-quality fuel such as C heavy oil containing a large amount of S, Na, V, etc., Na 2 SO 4 and V compounds are used as fuel ash for moving and stationary vanes, etc. Adheres to the high temperature parts of the
It is known to significantly accelerate its wear. As a method of reducing corrosiveness when using this type of fuel oil, a method of removing Na content by washing with water is known, but a practical removal method for V content has not been established yet. Therefore, as a method of suppressing the corrosive action (vanadium attack or accelerated oxidation corrosion) due to V content, Mg compounds [mostly Mg compounds
(OH) 2 or MgO] is added to fuel oil to form an xMgO · V 2 O 5 compound having a high melting point and low corrosiveness. This xMgO · V 2 O 5 compound is a combustor or a turbine. It has the drawback that it adheres to the moving and stationary blades and blocks the gas flow path, greatly reducing gas turbine efficiency. As described above, the fact that there is no deciding measure against high temperature corrosion by the mixed ash of Na 2 SO 4 and V compound, especially the ash composition is V
When it becomes minutely rich, there is a problem that the corrosion rate is remarkably increased. An object of the present invention is to provide a method for preventing high-temperature corrosion of a gas turbine that burns low-quality fuel such as C heavy oil, which can solve the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、高温腐食性を
有する不純物を多量に含む重油等低質燃料を燃焼するガ
スタービンにおける高温腐食損傷の低減を目的として燃
料中のNa/V又は〔Na+Ca(Mg)〕/Vがいず
れも重量比で1〜5、好ましくは3〜5となるようにN
a化合物、例えば、Na2 SO4 、Na2 CO3 、Na
HCO3 、NaHSO4 、NaOH、Na系界面活性剤
(Na−石鹸やNa系合成洗剤)等を単独又はアルカリ
土類金属化合物、例えば、CaSO4 、CaCO3 、C
a(HCO3 2 、Ca(HSO4 2 、Ca(OH)
2 、MgCO3 、Mg(HCO32 、Mg(HS
4 2 、Mg(OH)2 MgSO4 、Ca−石
鹸、Mg−石鹸等との混合物として燃料中に添加し高温
部品、例えば、燃焼器や動・静翼等に付着する燃料灰組
成をNa2 SO4 、CaSO4 、MgSO4 等の硫酸塩
リッチとすることを特徴とする重油等低質燃料油焚きガ
スタービンの高温腐食低減方法を提供する。すなわち、
S,Na,V等高温腐食性を有する不純物を多量に含む
重油等低質燃料を使用するガスタービンにおいて、その
燃料灰組成がVリッチとなることが予想される場合、積
極的にNa2 SO4 やNa系界面活性剤等Na化合物を
単独、又はCaSO4 (MgSO4 )、Ca(Mg)セ
ッケン等アルカリ土類金属化合物との混合物としてNa
/V又は〔Na+Ca(Mg)〕/Vが、いずれも重量
比で1〜5となるように燃料中等へ添加し、燃料灰組成
をNa 2 SO4 やCaSO4 、MgSO4 等の硫酸塩で
富化するものである。
The present invention provides high temperature corrosion resistance.
Gas that burns low-quality fuel such as heavy oil containing a large amount of impurities
Combustion for the purpose of reducing hot corrosion damage in the turbine
No Na / V or [Na + Ca (Mg)] / V in the ingredients
These are also N in a weight ratio of 1 to 5, preferably 3 to 5.
a compound, for example NaTwoSOFour, NaTwoCOThree, Na
HCOThree, NaHSOFour, NaOH, Na-based surfactant
(Na-soap or Na-based synthetic detergent) etc. alone or in alkali
Earth metal compounds such as CaSOFour, CaCOThree, C
a (HCOThree)Two, Ca (HSOFour)Two, Ca (OH)
Two, MgCOThree, Mg (HCOThree)Two, Mg (HS
OFour)Two, Mg (OH)Two, MgSOFour, Ca-stone
High temperature when added to fuel as a mixture with saponifier, Mg-soap, etc.
Fuel ash assembly attached to parts such as combustors, moving and stationary vanes, etc.
Na for growthTwoSOFour, CaSOFour, MgSOFourSulfate of etc.
Gas fueled by low-quality fuel oil such as heavy oil characterized by being rich
A method for reducing high temperature corrosion of a sturbine is provided. That is,
Contains a large amount of impurities with high temperature corrosivity such as S, Na and V
In gas turbines that use low-quality fuels such as heavy oil,
If the fuel ash composition is expected to become V rich, the product
Extremely NaTwoSOFourAnd Na compounds such as Na-based surfactants
Alone or CaSOFour(MgSOFour), Ca (Mg)
Na as a mixture with an alkaline earth metal compound such as sodium bicarbonate
/ V or [Na + Ca (Mg)] / V is the weight
Fuel ash composition by adding to fuel etc. in a ratio of 1 to 5
To Na TwoSOFourAnd CaSOFour, MgSOFourWith sulphate etc.
It will be enriched.

【0005】[0005]

【発明の実施の形態】C重油等使用燃料中へ上記のよう
なNa化合物を単独又はCaやMg等のアルカリ土類金
属化合物との混合物でNa/V又は〔Na+Ca(M
g)〕/V=1〜5(重量比)となるように添加するこ
とにより、ガスタービン動翼又は静翼上に付着する灰分
組成(V2 5 /Na2 SO4 )を1.0以下(重量)
とすることができる。この結果、灰分の高温腐食作用は
(V2 5 /Na2 SO4 )が1.0以上(重量比)の
ものに比較し大幅に低減する。本発明はMg化合物やC
a化合物のみを注入する方法に比べ、Na化合物を主成
分として添加するため、MgやCaとV分との高融点化
合物(例えば3MgO・V2 5 、mp.1191℃、
3CaO・V2 5 、mp.1019℃)は形成され
ず、灰の大部分は850〜900℃にコントロールされ
ている翼面上で融液となり、ガス流路の閉塞を生じな
い。ここで、Ca(Mg)化合物のNa化合物に対する
添加割合Ca(Mg)化合物/Na化合物(モル比)は
0〜1.0とするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The above Na compound alone or in a mixture with an alkaline earth metal compound such as Ca or Mg into a fuel used such as C heavy oil is used as Na / V or [Na + Ca (M
g)] / V = 1 to 5 (weight ratio) is added so that the ash composition (V 2 O 5 / Na 2 SO 4 ) adhering to the gas turbine moving blade or the stationary blade is 1.0. Below (weight)
It can be. As a result, the high temperature corrosive effect of the ash content is significantly reduced as compared with the case where (V 2 O 5 / Na 2 SO 4 ) is 1.0 or more (weight ratio). The present invention is based on Mg compounds and C
Compared to the method of injecting only the a compound, since a Na compound is added as a main component, a high melting point compound of Mg or Ca and V (for example, 3MgO.V 2 O 5 , mp. 1191 ° C.,
3CaO · V 2 O 5 , mp. (1019 ° C.) is not formed, and most of the ash becomes a melt on the blade surface controlled at 850 to 900 ° C., and the gas flow passage is not blocked. Here, the addition ratio of the Ca (Mg) compound to the Na compound, Ca (Mg) compound / Na compound (molar ratio), is preferably 0 to 1.0.

【0006】[0006]

【実施例】本発明の効果を確認するため、高V重油を燃
焼するガスタービンの燃焼ガス環境を模擬し、表1のよ
うな条件で空冷試験片を用い、ガスおよび試験片をそれ
ぞれ所定の温度にコントロールし、途中2度の起動・停
止を含む300時間の試験を実施した。S,Na,V,
Ca,Mg等の添加成分は模擬試験(1ata)と実プ
ラント(12ata)との圧力差を考慮し、実機条件の
12倍相当量を添加した。 *高V重油模擬例:Naに比べV含有量の大きい重油を
模擬 (従来例)本例では実機における燃料条件をS=0.5
%、Na=1ppm、V=10ppm相当量とし、それ
ぞれ12倍相当量をSO2 ガス、0.5%NaVO3
0.5%VOSO4 としてバーナ先端部より注入した。
即ちS=6%、V=120ppm、Na=12ppmと
した。
EXAMPLES In order to confirm the effects of the present invention, a combustion gas environment of a gas turbine that burns high V heavy oil was simulated, air-cooled test pieces were used under the conditions shown in Table 1, and the gas and the test piece were each set to a predetermined value. The temperature was controlled, and a 300-hour test including starting and stopping twice was performed. S, Na, V,
Considering the pressure difference between the simulated test (1ata) and the actual plant (12ata), the additive components such as Ca and Mg were added in an amount equivalent to 12 times the actual machine conditions. * High V heavy oil simulation example: Simulates heavy oil with a higher V content than Na (conventional example) In this example, the fuel condition in the actual machine is S = 0.5
%, Na = 1 ppm, V = 10 ppm equivalent amount, 12 times equivalent amount of SO 2 gas, 0.5% NaVO 3 ,
It was injected as 0.5% VOSO 4 from the tip of the burner.
That is, S = 6%, V = 120 ppm, and Na = 12 ppm.

【0007】(実施例1)従来例(Na=1ppm)に
加えてNa2 SO4 を用いて、Na=19ppm相当量
を添加して、20ppmとした。表1のデータは、これ
を12倍して240ppmとしたものである。Na/V
=2(重量比)となった。 (実施例2)従来例(Na=1ppm)に加えて、アル
キルベンゼンスルフォン酸ソーダ(R−C6 4 −SO
3 Na)を用いてNa=29ppm相当量及び、Mg
(OH)2 によりMg=10ppm相当量を添加した。
表1には、これらを12倍した値が示してある。(Na
+Mg)/V=4(重量比)となった。 (実施例3)実施例2のMgに替えて、ステアリン酸カ
ルシウム〔2(CH3 (CH2 16COO)Ca〕を用
いCa=10ppm相当量を添加した。表1では、これ
を12倍して120ppmとした。(Na+Ca)/V
=4(重量比)となった。
Example 1 In addition to the conventional example (Na = 1 ppm), Na 2 SO 4 was used, and an amount equivalent to Na = 19 ppm was added to obtain 20 ppm. The data in Table 1 is obtained by multiplying this by 12 to 240 ppm. Na / V
= 2 (weight ratio). Example 2 In addition to the conventional example (Na = 1 ppm), sodium alkylbenzene sulfonate (R—C 6 H 4 —SO)
3 Na) and Na = 29 ppm equivalent amount, and Mg
Mg (10 ppm) equivalent amount was added using (OH) 2 .
Table 1 shows the values obtained by multiplying these values by 12. (Na
+ Mg) / V = 4 (weight ratio). Instead of Mg (Example 3) Example 2, was added Ca = 10 ppm equivalent amount with calcium stearate [2 (CH 3 (CH 2) 16 COO) Ca]. In Table 1, this was multiplied by 12 to 120 ppm. (Na + Ca) / V
= 4 (weight ratio).

【0008】[0008]

【表1】 *1 燃料灯油に対する添加量(重量比)を示す。 *2 ECY 768:静翼等に用いられるCo基超合金 *3 実施例3は実施例2の添加成分MgをCaに替えたものである。 [Table 1] * 1 Indicates the amount added (weight ratio) to fuel kerosene. * 2 ECY 768: Co-based superalloy used for stator blades, etc. * 3 In Example 3, the additive component Mg of Example 2 was replaced with Ca.

【0009】実施例1〜3と高V重油模擬例による試験
片(ECY763)の腐食状況調査結果を表2にとりま
とめて示した。
Table 2 shows the results of investigations on the corrosion conditions of the test pieces (ECY763) obtained in Examples 1 to 3 and the high V heavy oil simulation example.

【0010】[0010]

【表2】 *1 それぞれ高V重油模擬例の値を100とした。[Table 2] * 1 The value of each high V heavy oil simulated example was set to 100.

【0011】この結果、NaやNa+Ca(又はMg)
等を添加しなかった高V重油模擬例に比較し、実施例1
の腐食減量(最大腐食深さ)は25%(30%)又は実
施例2,3では腐食減量は10%程度、最大腐食深さは
15%程度にとどまっており、いずれも顕著な腐食低減
効果が認められた。(表2の腐食減量及び最大腐食深さ
は高V重油模擬例の値を100として表示した。)
As a result, Na or Na + Ca (or Mg)
Example 1 in comparison with a high V heavy oil simulation example in which
The corrosion weight loss (maximum corrosion depth) is 25% (30%), or in Examples 2 and 3, the corrosion weight loss is about 10% and the maximum corrosion depth is about 15%. Was recognized. (The corrosion weight loss and maximum corrosion depth in Table 2 are shown with the value of the high V heavy oil simulated example being 100.)

【0012】[0012]

【発明の効果】C重油等の低質燃料油を燃焼するガスタ
ービンの高温下における腐食を効果的に防止することが
できる。
EFFECTS OF THE INVENTION Corrosion at high temperature of a gas turbine that burns low-quality fuel oil such as C heavy oil can be effectively prevented.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 英之 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 小城 育昌 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Ota, 1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture 2-1-1, Takasago Laboratory, Mitsubishi Heavy Industries, Ltd. No. 1 Mitsubishi Heavy Industries Takasago Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温腐食性を有する不純物を多量に含む
重油等低質燃料を燃焼するガスタービンにおける高温腐
食を低減するため、燃料中のNa/V又は〔Na+Ca
(Mg)〕/V(重量比)が1〜5となるようにNa化
合物を単独又はアルカリ土類金属化合物との混合物とし
て燃料中へ添加し、高温部品に付着する燃料灰組成を硫
酸塩リッチとすることを特徴とする重油等低質燃料油焚
きガスタービンの高温腐食低減方法。
1. In order to reduce high-temperature corrosion in a gas turbine that burns low-quality fuel such as heavy oil containing a large amount of impurities having high-temperature corrosiveness, Na / V or [Na + Ca in the fuel is used.
(Mg)] / V (weight ratio) of 1 to 5 is added to the fuel as a Na compound alone or as a mixture with an alkaline earth metal compound, and the fuel ash composition adhering to the high temperature component is sulfate rich. A method for reducing high temperature corrosion of a gas turbine burning low quality fuel oil such as heavy oil.
JP26034495A 1995-10-06 1995-10-06 Prevention of high-temperature corrosion of fuel oil burning gas turbine Withdrawn JPH09104880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26034495A JPH09104880A (en) 1995-10-06 1995-10-06 Prevention of high-temperature corrosion of fuel oil burning gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26034495A JPH09104880A (en) 1995-10-06 1995-10-06 Prevention of high-temperature corrosion of fuel oil burning gas turbine

Publications (1)

Publication Number Publication Date
JPH09104880A true JPH09104880A (en) 1997-04-22

Family

ID=17346674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26034495A Withdrawn JPH09104880A (en) 1995-10-06 1995-10-06 Prevention of high-temperature corrosion of fuel oil burning gas turbine

Country Status (1)

Country Link
JP (1) JPH09104880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066198A1 (en) * 2000-08-10 2003-08-14 Mineral Fine-Chemicals,Inc. Additive for exhaust gas, method of manufacturing the additive, and method for power generation using the additive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066198A1 (en) * 2000-08-10 2003-08-14 Mineral Fine-Chemicals,Inc. Additive for exhaust gas, method of manufacturing the additive, and method for power generation using the additive

Similar Documents

Publication Publication Date Title
Stringer et al. Current limitations of high-temperature alloys in practical applications
Stringer Hot corrosion in gas turbines
Hancock The use of laboratory and rig tests to simulate gas turbine corrosion problems
Gada et al. Investigation of high temperature corrosion resistance of Ni25Cr coated and bare 347H SS in actual husk fired boiler atmosphere
EP1194509B1 (en) Turbine fuel composition
US5561977A (en) Method of operating heavy oil-burning gas turbines
JPH09104880A (en) Prevention of high-temperature corrosion of fuel oil burning gas turbine
USRE36117E (en) Vanadium corrosion inhibitor
JP2007046163A (en) Product including protective means to high temperature corrosion, and reciprocating piston combustion engine, turbine or incineration plant comprising the product
Kamal et al. Thermal spray coatings for hot corrosion resistance
Basendwah et al. Turbine off-line water wash optimization approach for power generation
Marikkar et al. Improving the efficiency of heavy-fuelled gas turbines: The successful experience achieved at the Yugadanavi 300 MW CCGT in Sri Lanka
GB2101910A (en) Improvements in or relating to thermally protected alloys
US20170253821A1 (en) Processes, gas turbine processes, and fuel compositions
Jones et al. ‘Hot Corrosion in Gas Turbines
Gupta et al. A review of factors controlling the gas turbine hot section environment and their influence on hot salt corrosion test methods
Harry Marine applications
JP2772156B2 (en) Fuel additive for high temperature oxidation and high temperature corrosion prevention
Lee et al. Laboratory Procedures for Evaluating High-Temperature Corrosion Resistance of Gas Turbine Alloys
Chaudhuri Hot corrosion of diesel engine exhaust valves
Wong-Moreno et al. Erosion, corrosion and deposits in gas turbines burning heavy, high sulphur fuel oil
VIERLING et al. Iron as a successful ash modifier in stationary gas turbines
Wong-Moreno et al. Relationship Between Erosion and Characteristics of Deposits in Gas Turbines Burning Heavy High Sulfur Fuel Oil
Whitlow et al. Combustion Turbine Deposition Observations From Residual and Simulated Residual Oil Studies
Tukagoshi et al. Latest Technology for Large-Capacity Gas Turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107