JPH09102623A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH09102623A
JPH09102623A JP7256243A JP25624395A JPH09102623A JP H09102623 A JPH09102623 A JP H09102623A JP 7256243 A JP7256243 A JP 7256243A JP 25624395 A JP25624395 A JP 25624395A JP H09102623 A JPH09102623 A JP H09102623A
Authority
JP
Japan
Prior art keywords
layer
photovoltaic element
film
buffer layer
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7256243A
Other languages
Japanese (ja)
Other versions
JP3342257B2 (en
Inventor
Masaki Shima
正樹 島
Koji Endo
浩二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP25624395A priority Critical patent/JP3342257B2/en
Publication of JPH09102623A publication Critical patent/JPH09102623A/en
Application granted granted Critical
Publication of JP3342257B2 publication Critical patent/JP3342257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve characteristics of a photovoltaic device by interposing an optically transparent buffer layer constituted of group IV elements of a periodic low table or alloy of them between a semiconductor layer and a back electrode, and improving matching of them and interfacial characteristics. SOLUTION: A transparent electrode 2 is formed on a glass substrate 1. A p-type amorphous silicon carbide layer 3, an i-type amorphous silicon layer 4, an n-type amorphous silicon layer 5, a nondoped diamond like carbon film 6 as an optically transparent buffer layer, and a back electrode 7 are formed in order and formed on the transparent electrode 2. Light is made to enter from the glass substrate 1 side. The optically transparent buffer layer very perfectly matches with a semiconductor layer whose main component is silicon, and interfacial characteristics between them becomes excellent, so that characteristics of a photovoltaic element can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池等の光
起電力素子に関する。
TECHNICAL FIELD The present invention relates to a photovoltaic element such as a solar cell.

【0002】[0002]

【従来の技術】クリーンなエネルギーとして、太陽光発
電が注目されている。その中でも特に非晶質シリコン半
導体薄膜を用いた光起電力素子は、大面積化、低コスト
化が図れることから注目されている。
2. Description of the Related Art Photovoltaic power generation is drawing attention as clean energy. Among them, a photovoltaic element using an amorphous silicon semiconductor thin film has been attracting attention because it can achieve a large area and a low cost.

【0003】一般に、この種の光起電力素子は、受光面
となるガラス基板上に、透明電極、内部にpinの半導
体接合を有する非晶質シリコン半導体薄膜、及び背面電
極を積層して形成されている。
Generally, this type of photovoltaic element is formed by laminating a transparent electrode, an amorphous silicon semiconductor thin film having a pin semiconductor junction inside, and a back electrode on a glass substrate serving as a light receiving surface. ing.

【0004】ところで、上記の光起電力素子は、比較的
薄い非晶質シリコン半導体薄膜で形成されるために、受
光面と相対する背面電極に銀、アルミニウム等の反射率
の高い材料を使うことで、半導体薄膜との屈折率の差に
よって生じる両者の界面での反射を用いて、実質的に光
の入射強度を強めることにより光電変換効率を向上させ
ている。
By the way, since the above photovoltaic element is formed of a relatively thin amorphous silicon semiconductor thin film, a material having a high reflectance such as silver or aluminum is used for the back electrode facing the light receiving surface. Therefore, the photoelectric conversion efficiency is improved by substantially increasing the incident intensity of light by using the reflection at the interface between the semiconductor thin film and the semiconductor thin film.

【0005】しかしながら、銀、アルミニウム等の反射
率の高い金属材料は、シリコン半導体薄膜と界面で合金
層を形成し、金属材料が持つ反射特性が悪くなるという
問題があった。
However, there is a problem that a metal material having a high reflectance such as silver or aluminum forms an alloy layer at the interface with the silicon semiconductor thin film, and the reflection characteristic of the metal material is deteriorated.

【0006】そこで、上記問題を解決するために、シリ
コン半導体薄膜と背面電極との間に透明導電膜を介在さ
せることで、両者の合金化を防止する方法が提案されて
いる(例えば、特公昭60−41878号 IPC:H
01L 31/04参照。)。
Therefore, in order to solve the above problems, a method has been proposed in which a transparent conductive film is interposed between the silicon semiconductor thin film and the back electrode to prevent alloying of the two (for example, Japanese Patent Publication No. No. 60-41878 IPC: H
See 01L 31/04. ).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た方法では、シリコン半導体薄膜と透明導電膜とで、そ
の構造が大きく異なる。このため、両者の整合性が悪
く、良好な界面特性を得ることが困難であり、太陽電池
特性を低下させる要因になるなどの問題があった。
However, in the method described above, the structures of the silicon semiconductor thin film and the transparent conductive film are greatly different. For this reason, there is a problem in that the compatibility between the two is poor, it is difficult to obtain good interface characteristics, and this becomes a factor that deteriorates solar cell characteristics.

【0008】また、シリコン半導体薄膜と背面電極との
間に介在させる膜としては、できるだけ屈折率が小さい
方がよく、透明導電膜に代わる材料が切望されていた。
As a film to be interposed between the silicon semiconductor thin film and the back electrode, it is preferable that the refractive index is as small as possible, and a material replacing the transparent conductive film has been earnestly desired.

【0009】この発明は、上述した従来の問題点を解決
するためになされたものにして、シリコン半導体薄膜と
の整合性がよく且つ屈折率の小さい材料を背面電極とシ
リコン半導体薄膜との間に介在させて、光電変換効率の
向上を図るものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and a material having good matching with a silicon semiconductor thin film and a small refractive index is provided between the back electrode and the silicon semiconductor thin film. By interposing it, the photoelectric conversion efficiency is improved.

【0010】[0010]

【課題を解決するための手段】この発明は、光照射によ
り光起電力を発生する半導体層を備え、受光面に相対す
る背面に背面電極が設けられた光起電力素子であって、
前記半導体層と背面電極との間に、周期律表の4族元素
またはその合金で構成される透光性緩衝層を介在させた
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention is a photovoltaic element comprising a semiconductor layer for generating a photoelectromotive force by light irradiation, and a back electrode provided on a back surface facing a light receiving surface,
A light-transmitting buffer layer made of a Group 4 element of the periodic table or an alloy thereof is interposed between the semiconductor layer and the back electrode.

【0011】前記透光性緩衝層は、光波長500nmに
おける屈折率が2以下にすると良い。
The translucent buffer layer preferably has a refractive index of 2 or less at a light wavelength of 500 nm.

【0012】介在させる透光性緩衝層が光波長500n
mにおける屈折率が2以下であれば、従来の背面電極よ
りも更に高い反射率を得ることができるので、光起電力
素子の短絡電流ひいては光電変換効率を向上させること
ができる。
The translucent buffer layer to be interposed has a light wavelength of 500 n
If the refractive index at m is 2 or less, a higher reflectance than that of the conventional back electrode can be obtained, so that the short-circuit current of the photovoltaic element and thus the photoelectric conversion efficiency can be improved.

【0013】また、この発明は、前記半導体層を、シリ
コンを主成分とする半導体膜で形成することができる。
Further, according to the present invention, the semiconductor layer can be formed of a semiconductor film containing silicon as a main component.

【0014】透光性緩衝層を、シリコンと同じ周期律表
4族元素である元素またはその合金で構成することによ
り、透光性緩衝層がシリコンを主成分とする半導体層と
非常に類似した構造を有することになる。そのため、従
来用いられているITOやSnO2等の金属酸化物から
なる透明導電膜に比べて、シリコンを主成分とする半導
体層との整合性が非常によく、両者間の界面特性が良好
になり、光起電力素子の特性が改善される。
The transparent buffer layer is made very similar to the semiconductor layer containing silicon as a main component by constituting the transparent buffer layer with an element which is the same as Group 4 element of the periodic table or its alloy. Will have a structure. Therefore, as compared with the conventionally used transparent conductive film made of a metal oxide such as ITO or SnO 2 , the matching property with the semiconductor layer containing silicon as a main component is very good, and the interfacial characteristics between them are excellent. Therefore, the characteristics of the photovoltaic element are improved.

【0015】前記透光性緩衝層として、ノンドープのダ
イヤモンド様炭素膜を用いると良い。
A non-doped diamond-like carbon film may be used as the translucent buffer layer.

【0016】そして、前記ダイヤモンド様炭素膜の膜中
水素の割合が10%以上70%以下に制御すると良い。
The proportion of hydrogen in the diamond-like carbon film is preferably controlled to be 10% or more and 70% or less.

【0017】ダイヤモンド様炭素膜は、シリコンと同じ
周期律表4族元素である炭素を主成分とするため、シリ
コンを主成分とする半導体層とは非常に類似した構造を
持っており、シリコンを主成分とする半導体層との整合
性が非常によく、両者間の界面特性が良好になり、光起
電力素子の特性が改善される。
Since the diamond-like carbon film contains carbon, which is an element belonging to Group 4 of the Periodic Table, which is the same as silicon, it has a structure very similar to that of a semiconductor layer containing silicon as a main component. The compatibility with the semiconductor layer as the main component is very good, the interface characteristics between the two are improved, and the characteristics of the photovoltaic element are improved.

【0018】また、この発明は、前記半導体層が化合物
半導体膜のものでも適用できる。
The present invention can also be applied when the semiconductor layer is a compound semiconductor film.

【0019】[0019]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。図1は、この発明の第1の
実施の形態の光起電力素子を示す断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a photovoltaic element according to the first embodiment of the present invention.

【0020】図1に示すように、この発明における光起
電力素子は、ガラス基板1上に膜厚6000オングスト
ロームのSnO2からなる透明電極2が設けられてい
る。この透明電極2は半導体薄膜の側に微小な凹凸が形
成されている。この透明電極2上に膜厚100オングス
トロームのp型非晶質シリコンカーバイト(a−Si
C)層3、膜厚2500オングストロームのi型非晶質
シリコン(a−Si)層4、膜厚300オングストロー
ムのn型非晶質シリコン層5、膜厚700オングストロ
ームの透光性緩衝層としてのノンドープのダイヤモンド
様炭素膜6、銀(Ag)等の高反射材料からなる背面電
極7とが順次積層形成されている。そして、光はガラス
基板1側から入射する。
As shown in FIG. 1, in the photovoltaic element according to the present invention, a transparent electrode 2 made of SnO 2 having a film thickness of 6000 Å is provided on a glass substrate 1. The transparent electrode 2 has minute irregularities formed on the semiconductor thin film side. On this transparent electrode 2, p-type amorphous silicon carbide (a-Si) having a film thickness of 100 angstrom is formed.
C) a layer 3, an i-type amorphous silicon (a-Si) layer 4 having a thickness of 2500 Å, an n-type amorphous silicon layer 5 having a thickness of 300 Å, and a translucent buffer layer having a thickness of 700 Å. A non-doped diamond-like carbon film 6 and a back electrode 7 made of a highly reflective material such as silver (Ag) are sequentially laminated. Then, the light enters from the glass substrate 1 side.

【0021】上記したp型a−SiC層3、i型a−S
i層4、n型a−Si層5、ノンドープのダイヤモンド
様炭素膜6はそれぞれグロー放電プラズマCVD法で形
成した。p型a−SiC層3、i型a−Si層4、n型
a−Si層5の形成条件を表1に示し、透光性緩衝層と
してのノンドープのダイヤモンド様炭素膜6の形成条件
を表2に示す。
The above-mentioned p-type a-SiC layer 3 and i-type a-S
The i layer 4, the n-type a-Si layer 5, and the non-doped diamond-like carbon film 6 were formed by the glow discharge plasma CVD method. The formation conditions of the p-type a-SiC layer 3, the i-type a-Si layer 4, and the n-type a-Si layer 5 are shown in Table 1, and the formation conditions of the non-doped diamond-like carbon film 6 as the translucent buffer layer are shown. It shows in Table 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】ノンドープのダイヤモンド様炭素膜6の屈
折率は、表2のすべてのパラメータに依存するが、この
実施の形態においては、特にRFパワーに強く依存し、
RFパワーが大きくなるほど膜の屈折率は増加した。表
3に波長500nmにおけるノンドープのダイヤモンド
様炭素膜6の屈折率と導電率との関係を示す。また、光
電変換効率は、ノンドープのダイヤモンド様炭素膜6の
屈折率によって、表4のように変化した。尚、屈折率は
自記分光器を用いて測定した。
The index of refraction of the non-doped diamond-like carbon film 6 depends on all the parameters in Table 2, but in this embodiment, it particularly depends on the RF power,
The refractive index of the film increased as the RF power increased. Table 3 shows the relationship between the refractive index and the conductivity of the non-doped diamond-like carbon film 6 at a wavelength of 500 nm. Further, the photoelectric conversion efficiency changed as shown in Table 4 depending on the refractive index of the non-doped diamond-like carbon film 6. The refractive index was measured using a self-recording spectroscope.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】表3よりノンドープのダイヤモンド様炭素
膜6は、屈折率が小さくなるほど導電率も小さくなって
いるが、導電率の減少は1桁程度である。また、ノンド
ープのダイヤモンド様炭素膜6の膜厚は700オングス
トローム程度の膜厚であり、屈折率が小さいノンドープ
のダイヤモンド様炭素膜を用いても光起電力素子の電流
取り出しの損失の影響は少ない。
From Table 3, the non-doped diamond-like carbon film 6 has a smaller conductivity as the refractive index becomes smaller, but the decrease in conductivity is about one digit. Further, the thickness of the non-doped diamond-like carbon film 6 is about 700 angstrom, and even if the non-doped diamond-like carbon film having a small refractive index is used, the influence of the current extraction loss of the photovoltaic element is small.

【0028】上記した表4より、屈折率の小さいダイヤ
モンド様炭素膜を用いるほど、光電変換効率が向上する
ことが分かり、屈折率が2以下の場合には10%以上の
光電変換効率が得られた。すなわち、介在させるダイヤ
モンド様炭素膜が光波長500nmにおける屈折率が2
以下であれば、従来の背面電極よりも更に高い反射率を
得ることができるので、光起電力素子の短絡電流ひいて
は光電変換効率を向上させることができる。
It can be seen from Table 4 above that the photoelectric conversion efficiency is improved as the diamond-like carbon film having a smaller refractive index is used, and the photoelectric conversion efficiency of 10% or more is obtained when the refractive index is 2 or less. It was That is, the intervening diamond-like carbon film has a refractive index of 2 at a light wavelength of 500 nm.
If it is below, a higher reflectance than that of the conventional back electrode can be obtained, so that the short-circuit current of the photovoltaic element and thus the photoelectric conversion efficiency can be improved.

【0029】また、この実施の形態において、主に基板
温度変化により、ノンドープのダイヤモンド様炭素膜6
中の水素量も変化させて、光電変換効率との関係を調べ
た。表5にその関係を示す。尚、膜中水素量はSIMS
により測定した。
Further, in this embodiment, the non-doped diamond-like carbon film 6 is mainly caused by the change in the substrate temperature.
The amount of hydrogen inside was also changed and the relationship with the photoelectric conversion efficiency was investigated. Table 5 shows the relationship. The amount of hydrogen in the film is SIMS.
Was measured by

【0030】[0030]

【表5】 [Table 5]

【0031】表5から明らかなように、ノンドープのダ
イヤモンド様炭素膜6の膜中水素量が10at%以上7
0at%以下の場合には、良好な変換効率が得られた。
As is clear from Table 5, the amount of hydrogen in the non-doped diamond-like carbon film 6 is 10 at% or more 7
When it was 0 at% or less, good conversion efficiency was obtained.

【0032】上記した実施の形態においては、半導体層
として、非晶質シリコン系半導体膜を用いた光起電力素
子について説明したが、半導体層として、微結晶シリコ
ンまたは結晶系シリコン半導体膜を用いた光起電力素子
にもこの発明を適用することができる。
In the above-mentioned embodiments, the photovoltaic element using the amorphous silicon semiconductor film as the semiconductor layer has been described. However, microcrystalline silicon or crystalline silicon semiconductor film is used as the semiconductor layer. The present invention can also be applied to a photovoltaic element.

【0033】また、シリコンを主成分とする半導体層5
と背面電極7との間に介在させる透光性緩衝層として、
ここでは、ノンドープのダイヤモンド様炭素膜を用いた
が、炭素以外の他の4族元素、また例えば、炭素量の多
い非晶質カーボンゲルマニウムなどそれらの合金で構成
される層であっても良い。
The semiconductor layer 5 containing silicon as a main component
As a translucent buffer layer to be interposed between the back electrode 7 and
Although a non-doped diamond-like carbon film is used here, a layer composed of a Group 4 element other than carbon or an alloy thereof such as amorphous carbon germanium having a large amount of carbon may be used.

【0034】次に、この発明の第2の実施の形態につき
説明する。図2は、この発明の第2の実施の形態の光起
電力素子を示す断面図である。この第2の実施の形態は
図1に示した実施の形態とはその形成順序が逆であるい
わゆる逆タイプ構造である。
Next, a second embodiment of the present invention will be described. FIG. 2 is a sectional view showing a photovoltaic element according to the second embodiment of the present invention. The second embodiment is a so-called reverse type structure in which the order of formation is the reverse of that of the embodiment shown in FIG.

【0035】図2に示すように、Ag等の背面電極基板
10上に膜厚700オングストロームの透光性緩衝層と
してのノンドープのダイヤモンド様炭素膜11が設けら
れ、このダイヤモンド様炭素膜11上に、膜厚400オ
ングストロームのn型a−Si層12、膜厚2500オ
ングストロームのi型a−Si層膜13、膜厚100オ
ングストロームのp型a−SiC層14、膜厚700オ
ングストロームのITOからなる透明電極15が、順次
積層形成されている。さらに、透明電極15上には金属
集電極16が設けられている。そして、光は透明電極1
5側から入射する。
As shown in FIG. 2, a non-doped diamond-like carbon film 11 as a light-transmitting buffer layer having a film thickness of 700 angstrom is provided on the back electrode substrate 10 made of Ag or the like, and on the diamond-like carbon film 11. A transparent 400 angstrom n-type a-Si layer 12, a 2500 angstrom i-type a-Si layer film 13, a 100 angstrom p-type a-SiC layer 14, and a 700 angstrom ITO film. The electrodes 15 are sequentially laminated. Further, a metal collector electrode 16 is provided on the transparent electrode 15. And the light is transparent electrode 1
It is incident from the 5 side.

【0036】この実施の形態においても、ノンドープの
ダイヤモンド様炭素膜11は図1の実施例と同様の方法
で形成した。
Also in this embodiment, the non-doped diamond-like carbon film 11 is formed by the same method as that of the embodiment shown in FIG.

【0037】この実施の形態における光電変換効率とノ
ンドープのダイヤモンド様炭素膜11の光波長500n
mにおける屈折率の関係を表6に示す。
The photoelectric conversion efficiency in this embodiment and the light wavelength of the non-doped diamond-like carbon film 11 are 500 n.
Table 6 shows the relationship of the refractive index at m.

【0038】[0038]

【表6】 [Table 6]

【0039】図2に示す逆タイプ構造においては、ノン
ドープ様炭素膜挿入による背面側界面特性の向上の効果
のみならず、ダイヤモンド様炭素膜がプラズマ耐性、耐
化学性等に優れているため、光起電力素子形成方法の自
由度が大幅に改善されるので、光電変換効率がより一層
改善される。
In the inverted type structure shown in FIG. 2, not only the effect of improving the backside interface characteristics by inserting the non-doped-like carbon film but also the diamond-like carbon film is excellent in plasma resistance, chemical resistance, etc. Since the degree of freedom of the method for forming the electromotive force element is greatly improved, the photoelectric conversion efficiency is further improved.

【0040】次に、この発明の第3の実施の形態につき
説明する。図3は、この発明の第3の実施の形態の光起
電力素子を示す断面図である。この第3の実施の形態
は、半導体層として化合物半導体を用いたものである。
Next, a third embodiment of the present invention will be described. FIG. 3 is a sectional view showing a photovoltaic element according to the third embodiment of the present invention. The third embodiment uses a compound semiconductor as a semiconductor layer.

【0041】図3に示すように、ガラス基板20上に膜
厚8000オングストロームのMoからなる背面電極2
1が設けられ、この背面電極21上に、透光性緩衝層と
して膜厚900オングストロームのノンドープのダイヤ
モンド様炭素膜22、膜厚〜3μmのCIS(CuIn
Se2)層23、膜厚200オングストロームのCdS
層24、膜厚3000オングストロームのZnOからな
る透明電極25が、順次積層形成されている。そして、
光は透明電極25側から入射する。
As shown in FIG. 3, a back electrode 2 made of Mo and having a film thickness of 8000 angstroms is formed on a glass substrate 20.
1, a non-doped diamond-like carbon film 22 having a film thickness of 900 angstrom and a CIS (CuInCu film having a film thickness of 3 μm) are formed on the back electrode 21 as a translucent buffer layer.
Se 2 ) layer 23, 200 Å thick CdS
A layer 24 and a transparent electrode 25 made of ZnO having a film thickness of 3000 angstrom are sequentially laminated. And
Light enters from the transparent electrode 25 side.

【0042】この実施の形態においても、ノンドープの
ダイヤモンド様炭素膜22は図1の実施例と同様の方法
で形成した。
Also in this embodiment, the non-doped diamond-like carbon film 22 is formed by the same method as that of the embodiment shown in FIG.

【0043】この実施の形態においても、ノンドープの
ダイヤモンド様炭素膜を半導体層と背面電極との間に介
在させたことによる背面側の界面特性の向上の効果が見
られ、且つ、ダイヤモンド様炭素膜の優れた耐化学性等
により、光起電力素子形成方法の自由度が大幅に改善さ
れるので、光電変換効率が改善される。また、この実施
の形態においても、介在させるダイヤモンド様炭素膜が
光波長500nmにおける屈折率が2以下であれば、従
来の背面電極よりも更に高い反射率を得ることができる
ので、光起電力素子の短絡電流ひいては光電変換効率を
向上させることができる。
Also in this embodiment, the effect of improving the interface characteristics on the back surface side by arranging the non-doped diamond-like carbon film between the semiconductor layer and the back electrode is seen, and the diamond-like carbon film is also present. The excellent chemical resistance and the like greatly improve the degree of freedom in the method for forming a photovoltaic element, and thus improve the photoelectric conversion efficiency. Also in this embodiment, if the interposing diamond-like carbon film has a refractive index of 2 or less at a light wavelength of 500 nm, a higher reflectance than that of the conventional back electrode can be obtained. It is possible to improve the short-circuit current and thus the photoelectric conversion efficiency.

【0044】[0044]

【発明の効果】以上説明したように、この発明は、透光
性緩衝層を、シリコンと同じ周期律表4族元素である元
素またはその合金で構成することにより、透光性緩衝層
がシリコンを主成分とする半導体層と非常に類似した構
造を有することになる。そのため、従来用いられている
ITOやSnO2等の金属酸化物からなる透明導電膜に
比べて、シリコンを主成分とする半導体層との整合性が
非常によく、両者間の界面特性が良好になり、光起電力
素子の特性が改善される。
As described above, according to the present invention, the translucent buffer layer is made of the element which is the same Group 4 element of the periodic table as silicon or its alloy, so that the translucent buffer layer is made of silicon. It has a structure very similar to that of the semiconductor layer containing as a main component. Therefore, as compared with the conventionally used transparent conductive film made of a metal oxide such as ITO or SnO 2 , the matching property with the semiconductor layer containing silicon as a main component is very good, and the interfacial characteristics between them are excellent. Therefore, the characteristics of the photovoltaic element are improved.

【0045】また、介在させる透光性緩衝層が光波長5
00nmにおける屈折率が2以下であれば、従来の背面
電極よりも更に高い反射率を得ることができるので、光
起電力素子の短絡電流ひいては光電変換効率を向上させ
ることができる。
Further, the translucent buffer layer to be interposed has an optical wavelength of 5
If the refractive index at 00 nm is 2 or less, a higher reflectance than that of the conventional back electrode can be obtained, so that the short-circuit current of the photovoltaic element and thus the photoelectric conversion efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態の光起電力素子を
示す断面図である。
FIG. 1 is a cross-sectional view showing a photovoltaic element according to a first embodiment of the present invention.

【図2】この発明の第2の実施の形態の光起電力素子を
示す断面図である。
FIG. 2 is a sectional view showing a photovoltaic element according to a second embodiment of the present invention.

【図3】この発明の第3の実施の形態の光起電力素子を
示す断面図である。
FIG. 3 is a sectional view showing a photovoltaic element according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極 3 p型a−SiC層 4 i型a−Si層 5 n型a−Si層 6 ノンドープのダイヤモンド様炭素膜(透光性緩衝
層) 7 背面電極
1 glass substrate 2 transparent electrode 3 p-type a-SiC layer 4 i-type a-Si layer 5 n-type a-Si layer 6 non-doped diamond-like carbon film (translucent buffer layer) 7 back electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光照射により光起電力を発生する半導体
層を備え、受光面に相対する背面に背面電極が設けられ
た光起電力素子であって、前記半導体層と背面電極との
間に、周期律表の4族元素またはその合金で構成される
透光性緩衝層を介在させたことを特徴とする光起電力素
子。
1. A photovoltaic element comprising a semiconductor layer for generating a photoelectromotive force by light irradiation, and a back electrode provided on a back surface facing a light receiving surface, the photovoltaic element being between the semiconductor layer and the back electrode. A photovoltaic element comprising a translucent buffer layer made of a Group 4 element of the periodic table or an alloy thereof.
【請求項2】 前記半導体層はシリコンを主成分とする
半導体膜で形成されていることを特徴とする請求項1に
記載の光起電力素子。
2. The photovoltaic element according to claim 1, wherein the semiconductor layer is formed of a semiconductor film containing silicon as a main component.
【請求項3】 前記半導体層は化合物半導体膜で形成さ
れていることを特徴とする請求項1に記載の光起電力素
子。
3. The photovoltaic element according to claim 1, wherein the semiconductor layer is formed of a compound semiconductor film.
【請求項4】 前記透光性緩衝層は、光波長500nm
における屈折率が2以下であることを特徴とする請求項
1に記載の光起電力素子。
4. The light-transmitting buffer layer has an optical wavelength of 500 nm.
The photovoltaic element according to claim 1, wherein the refractive index in is less than or equal to 2.
【請求項5】 前記透光性緩衝層は、ダイヤモンド様炭
素膜であることを特徴とする請求項1に記載の光起電力
素子。
5. The photovoltaic element according to claim 1, wherein the translucent buffer layer is a diamond-like carbon film.
【請求項6】 前記ダイヤモンド様炭素膜の膜中水素の
割合が10%以上70%以下であることを特徴とする請
求項5に記載の光起電力素子。
6. The photovoltaic element according to claim 5, wherein the proportion of hydrogen in the diamond-like carbon film is 10% or more and 70% or less.
JP25624395A 1995-10-03 1995-10-03 Photovoltaic element Expired - Fee Related JP3342257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25624395A JP3342257B2 (en) 1995-10-03 1995-10-03 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25624395A JP3342257B2 (en) 1995-10-03 1995-10-03 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPH09102623A true JPH09102623A (en) 1997-04-15
JP3342257B2 JP3342257B2 (en) 2002-11-05

Family

ID=17289932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25624395A Expired - Fee Related JP3342257B2 (en) 1995-10-03 1995-10-03 Photovoltaic element

Country Status (1)

Country Link
JP (1) JP3342257B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
JP2009147172A (en) * 2007-12-14 2009-07-02 Kaneka Corp Multi-junction silicon thin-film photoelectric converter
JP2009193673A (en) * 2008-02-12 2009-08-27 Kaneka Corp Method for manufacturing transparent conductive film
JP2009231781A (en) * 2008-03-25 2009-10-08 Kaneka Corp Multijunction silicon thin film photoelectric converter
JP2010087205A (en) * 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
CN101937949A (en) * 2010-07-28 2011-01-05 河北东旭投资集团有限公司 Method for improving conversion efficiency of amorphous silicon solar cell
US20110073176A1 (en) * 2009-09-29 2011-03-31 Samsung Electronics Co., Ltd. Solar cell and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
JP2009147172A (en) * 2007-12-14 2009-07-02 Kaneka Corp Multi-junction silicon thin-film photoelectric converter
JP2009193673A (en) * 2008-02-12 2009-08-27 Kaneka Corp Method for manufacturing transparent conductive film
JP2009231781A (en) * 2008-03-25 2009-10-08 Kaneka Corp Multijunction silicon thin film photoelectric converter
JP2010087205A (en) * 2008-09-30 2010-04-15 Kaneka Corp Multi-junction thin-film photoelectric converter
US20110073176A1 (en) * 2009-09-29 2011-03-31 Samsung Electronics Co., Ltd. Solar cell and method for manufacturing the same
CN101937949A (en) * 2010-07-28 2011-01-05 河北东旭投资集团有限公司 Method for improving conversion efficiency of amorphous silicon solar cell

Also Published As

Publication number Publication date
JP3342257B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US4166919A (en) Amorphous silicon solar cell allowing infrared transmission
JP4811945B2 (en) Thin film photoelectric converter
JP4901834B2 (en) High performance photoelectric device
JP2814351B2 (en) Photoelectric device
US4644091A (en) Photoelectric transducer
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
US20080236661A1 (en) Solar cell
WO2005011002A1 (en) Silicon based thin film solar cell
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JPS6155268B2 (en)
JP2017520928A (en) Solar cells
JPH0793451B2 (en) Multi-junction amorphous silicon solar cell
US20120006391A1 (en) Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer
WO2012001857A1 (en) Photovoltaic device
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP3342257B2 (en) Photovoltaic element
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
JP3258680B2 (en) Photovoltaic device
JPH0752778B2 (en) Photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
JPS59125669A (en) Solar battery
JPS6321880A (en) Photovoltaic device
JPH05145095A (en) Photovoltaic element
JP2000150935A (en) Photovoltaic element
JPH07131040A (en) Photovoltaic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070823

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees