JPH09101270A - Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope - Google Patents

Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope

Info

Publication number
JPH09101270A
JPH09101270A JP7278248A JP27824895A JPH09101270A JP H09101270 A JPH09101270 A JP H09101270A JP 7278248 A JP7278248 A JP 7278248A JP 27824895 A JP27824895 A JP 27824895A JP H09101270 A JPH09101270 A JP H09101270A
Authority
JP
Japan
Prior art keywords
sample
ray
foil
rays
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7278248A
Other languages
Japanese (ja)
Inventor
Yoshiki Matsuura
良樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP7278248A priority Critical patent/JPH09101270A/en
Publication of JPH09101270A publication Critical patent/JPH09101270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To confirm the positional relation between a sample housed in a sample container and the route of X rays even when the sample is not visually confirmable by confirming the position of the sample using secondary X rays generated by foil interposed between a collimator and the sample. SOLUTION: X rays 11 radiated from an X-ray source 10 are made incident to foil 14 after being converged into a narrow beam through a pin-hole collimator 12. Secondary X rays (fluorescent X rays) 20 generated from the area of the foil 14 irradiated with the X rays reach a two-dimensional X-ray detector 22 after passing through a sample 18 in a sample container 16 and its peripheral space. Therefore, the outline of the sample 18 can be recognized as an enlarged picture 24. When this X-ray microscope is utilized as a sample position confirming means for X-ray diffractometer, beryllium which makes the sample contained in the container invisible can be used as the material of the sample container.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、2次X線を利用
したX線顕微鏡に関し、また、このX線顕微鏡の原理を
利用してX線回折装置の試料位置を確認する方法に関
し、さらに、この試料位置確認方法に利用できる試料容
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray microscope using secondary X-rays, and a method for confirming the sample position of an X-ray diffraction apparatus using the principle of this X-ray microscope. The present invention relates to a sample container that can be used for this sample position confirmation method.

【0002】[0002]

【従来の技術】蛋白質結晶のX線回折測定を行うとき
は、蛋白質結晶の変質を防ぐために、蛋白質結晶をガラ
スキャピラリーの内部に入れて、母液と共に封入してい
る。このような試料に対して、入射X線と試料との位置
関係を調節するには、試料観察用顕微鏡を用いてガラス
キャピラリーの内部の試料を観察して、顕微鏡の視野中
心に試料(あるいはX線を照射したい試料部分)が来る
ように、ガラスキャピラリーを支持する試料ホルダーの
位置を調節している。なお、顕微鏡の視野中心はX線照
射位置に一致するようにあらかじめ調節しておく。
2. Description of the Related Art When X-ray diffraction measurement of a protein crystal is performed, the protein crystal is put inside a glass capillary and sealed together with a mother liquor in order to prevent the protein crystal from being altered. In order to adjust the positional relationship between the incident X-ray and the sample for such a sample, the sample inside the glass capillary is observed using a sample observation microscope, and the sample (or X The position of the sample holder that supports the glass capillary is adjusted so that the sample portion to which the line is to be irradiated) comes. The center of the visual field of the microscope is adjusted in advance so that it coincides with the X-ray irradiation position.

【0003】[0003]

【発明が解決しようとする課題】上述のようなガラスキ
ャピラリーを用いると、ガラスからの散乱X線が比較的
多いので、X線回折測定のバックグラウンドのレベルを
上げることになり、検出する回折X線のS/N比が悪化
するという欠点がある。ガラスは、X線散乱能が大き
く、また、X線の吸収も大きく、さらに、あまり薄くで
きない、といった理由から、X線回折装置の試料を封入
する材質としては必ずしも適していないが、可視光が透
過するので内部の試料を目視できる、という利点のため
に、これまで試料容器として利用されている。しかし、
変質しやすい試料のX線回折測定を高精度で実施するた
めには、試料容器の材質であるガラスからの散乱X線が
障害になっている。
When the glass capillary as described above is used, the amount of scattered X-rays from the glass is relatively large, so that the background level of the X-ray diffraction measurement is raised, and the diffraction X to be detected is detected. There is a drawback that the S / N ratio of the line deteriorates. Glass is not necessarily suitable as a material for enclosing a sample in an X-ray diffractometer because it has a large X-ray scattering ability, a large X-ray absorption, and cannot be made very thin. It has been used as a sample container so far because of its advantage that the sample inside can be viewed because it is transparent. But,
In order to carry out the X-ray diffraction measurement of a sample which is easily deteriorated with high accuracy, scattered X-rays from glass, which is the material of the sample container, is an obstacle.

【0004】この発明は上述の問題点を解決するために
なされたものであり、その目的は、X線回折装置におい
て内部を目視できない試料容器を用いた場合にも試料の
位置確認が可能な試料位置確認方法を提供することにあ
る。また、この発明の別の目的は、上述の試料位置確認
に利用できるX線顕微鏡を提供することにある。この発
明のさらに別の目的は、X線回折装置において散乱X線
の影響が少ない試料容器を提供することにある。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to make it possible to confirm the position of a sample even when a sample container whose inside cannot be visually observed in an X-ray diffraction apparatus is used. It is to provide a position confirmation method. Another object of the present invention is to provide an X-ray microscope that can be used for the above-mentioned sample position confirmation. Still another object of the present invention is to provide a sample container which is less affected by scattered X-rays in an X-ray diffractometer.

【0005】[0005]

【課題を解決するための手段】この発明の試料位置確認
方法は、コリメータを通過させたX線を試料に照射し
て、この試料からの回折X線を2次元X線検出器で測定
するX線回折装置において、前記コリメータと前記試料
との間のX線経路に箔を挿入して、前記箔にX線を照射
し、前記箔の裏面から出てくる2次X線を前記試料に照
射して、前記試料及びその周囲空間を透過した前記2次
X線を前記2次元X線検出器で検出することにより、前
記試料と前記X線経路との位置関係を確認することを特
徴としている。これにより、試料容器の内部の試料を目
視できなくても、試料とX線経路との位置関係を確認で
きる。したがって、可視光の透過という制約を受けずに
散乱X線の少ない最適な材質を選択して試料容器を作る
ことができる。試料容器の材質としてはベリリウムが最
適であり、炭素も使用できる。
According to the sample position confirmation method of the present invention, an X-ray that has passed through a collimator is applied to the sample, and the diffracted X-ray from this sample is measured by a two-dimensional X-ray detector. In a line diffractometer, a foil is inserted in the X-ray path between the collimator and the sample, the foil is irradiated with X-rays, and the sample is irradiated with secondary X-rays emerging from the back surface of the foil. Then, the secondary X-rays that have passed through the sample and its surrounding space are detected by the two-dimensional X-ray detector to confirm the positional relationship between the sample and the X-ray path. . As a result, the positional relationship between the sample and the X-ray path can be confirmed without visually observing the sample inside the sample container. Therefore, the sample container can be manufactured by selecting an optimum material with a small amount of scattered X-rays without being restricted by visible light transmission. Beryllium is the most suitable material for the sample container, and carbon can also be used.

【0006】また、この発明のX線顕微鏡は、コリメー
タを通過させたX線を箔に照射し、前記箔の裏面から出
てくる2次X線を、前記箔の近傍に配置した試料に照射
して、この試料及びその周囲空間を透過した前記2次X
線を、前記試料から離れた2次元X線検出器で検出する
ことにより、前記試料の拡大画像を得ることを特徴とし
ている。このようなX線顕微鏡はX線回折装置に組み込
むことが可能であり、試料の位置確認作業に利用でき
る。
Further, the X-ray microscope of the present invention irradiates the foil with X-rays that have passed through the collimator, and irradiates the sample arranged near the foil with secondary X-rays emerging from the back surface of the foil. Then, the secondary X transmitted through this sample and its surrounding space.
It is characterized in that a magnified image of the sample is obtained by detecting the line with a two-dimensional X-ray detector separated from the sample. Such an X-ray microscope can be incorporated in an X-ray diffractometer and can be used for work for confirming the position of a sample.

【0007】さらに、この発明の試料容器は、ベリリウ
ムまたは炭素でできた容器の内部に試料を気密封止した
ものである。この試料容器は、例えば蛋白質結晶のX線
回折測定に利用するのに適している。この試料容器を利
用すると、蛋白質結晶を母液雰囲気中に維持して、試料
容器からの散乱X線の影響を少なくした状態で、バック
グラウンドの少ないX線回折測定を実施できる。
Further, the sample container according to the present invention is a container made of beryllium or carbon in which the sample is hermetically sealed. This sample container is suitable for use in X-ray diffraction measurement of protein crystals, for example. By using this sample container, X-ray diffraction measurement with less background can be carried out in a state where the protein crystals are maintained in the mother liquor atmosphere and the influence of scattered X-rays from the sample container is reduced.

【0008】[0008]

【発明の実施の形態】図1は、この発明のX線顕微鏡の
一実施形態を示す斜視図である。X線源10を出たX線
(1次X線)11は、ピンホールコリメータ12で細い
ビームに絞られて、箔14に入射する。箔14にX線1
1が当たると、この箔14のX線照射領域から2次X線
(蛍光X線)が四方に発散する。これらの2次X線のう
ち、箔14の裏側から出てきた2次X線20は、試料容
器16内の試料18及びその周囲空間を透過してから、
2次元X線検出器22に到達する。試料18を透過して
きた2次X線と、試料18の外側を通り抜けてきた2次
X線とでは、X線強度が異なるので、2次元X線検出器
22において、試料18の外形が拡大画像24として認
識できる。さらに、試料18の透過場所に応じてX線透
過率が異なれば、試料内のX線透過率分布も拡大画像と
して認識できる。
FIG. 1 is a perspective view showing an embodiment of the X-ray microscope of the present invention. The X-ray (primary X-ray) 11 emitted from the X-ray source 10 is focused into a thin beam by the pinhole collimator 12 and is incident on the foil 14. X-ray 1 on foil 14
When 1 hits, secondary X-rays (fluorescent X-rays) diverge from the X-ray irradiation area of the foil 14 in all directions. Of these secondary X-rays, the secondary X-rays 20 coming out from the back side of the foil 14 pass through the sample 18 in the sample container 16 and the surrounding space thereof,
It reaches the two-dimensional X-ray detector 22. Since the X-ray intensities of the secondary X-rays that have passed through the sample 18 and the secondary X-rays that have passed through the outside of the sample 18 are different, the outer shape of the sample 18 is enlarged in the two-dimensional X-ray detector 22. It can be recognized as 24. Furthermore, if the X-ray transmittance differs depending on the transmission place of the sample 18, the X-ray transmittance distribution in the sample can be recognized as an enlarged image.

【0009】図2は図1に示すX線顕微鏡の側面図であ
る。コリメータ12の出口の孔の近傍には箔14が配置
され、この箔14の裏側の近傍に試料容器16が配置さ
れる。そして、この試料容器16から離れた位置に2次
元X線検出器22が配置される。箔14から試料18ま
での距離をa、試料18から2次元X線検出器22まで
の距離をbとすると、このX線顕微鏡の拡大倍率は(a
+b)/aとなる。例えば、a=1mm、b=100〜
200mmにすると、拡大倍率は100〜200倍とな
る。
FIG. 2 is a side view of the X-ray microscope shown in FIG. A foil 14 is arranged near the exit hole of the collimator 12, and a sample container 16 is arranged near the back side of the foil 14. Then, the two-dimensional X-ray detector 22 is arranged at a position apart from the sample container 16. When the distance from the foil 14 to the sample 18 is a and the distance from the sample 18 to the two-dimensional X-ray detector 22 is b, the magnification of this X-ray microscope is (a
+ B) / a. For example, a = 1 mm, b = 100-
When it is set to 200 mm, the magnification is 100 to 200 times.

【0010】箔14の材質としては、2次X線を発生し
やすい材質、例えば、Fe(鉄)、Au(金)、Ni
(ニッケル)、Cu(銅)、Al(アルミニウム)等を
利用できる。箔の材質を変更すると2次X線(箔の材質
の特性X線である)の波長が変わるので、波長を変更し
たい場合には箔の材質を変更すればよい。箔14の厚さ
は10〜100μmが適当である。箔14は非晶質とす
るのが好ましい。箔14を結晶質にすると、結晶からの
回折X線が試料の透過画像に対するノイズになる恐れが
あるが、箔14を非晶質にすると、このような回折X線
の影響がなくなる。
The material of the foil 14 is a material that easily generates secondary X-rays, such as Fe (iron), Au (gold), and Ni.
(Nickel), Cu (copper), Al (aluminum), etc. can be used. When the material of the foil is changed, the wavelength of the secondary X-ray (which is the characteristic X-ray of the material of the foil) is changed. Therefore, if the wavelength is desired to be changed, the material of the foil may be changed. A suitable thickness of the foil 14 is 10 to 100 μm. The foil 14 is preferably amorphous. When the foil 14 is made crystalline, the diffracted X-rays from the crystals may become noise to the transmission image of the sample, but when the foil 14 is made amorphous, the influence of such diffracted X-rays disappears.

【0011】コリメータ12の出口の孔の内径はできる
だけ小さい方がよい。すなわち、箔14に当たるX線ビ
ームの照射領域はできるだけ小さい方がよい。照射領域
が小さければ、2次X線の発生領域が小さくなり、2次
元X線検出器上での拡大画像のボケが少なくなる。コリ
メータ12の出口の孔の内径は、好ましくは10μm程
度とする。
The inner diameter of the exit hole of the collimator 12 should be as small as possible. That is, the irradiation area of the X-ray beam that strikes the foil 14 should be as small as possible. When the irradiation area is small, the area where the secondary X-rays are generated is small, and the blur of the enlarged image on the two-dimensional X-ray detector is small. The inner diameter of the exit hole of the collimator 12 is preferably about 10 μm.

【0012】X線顕微鏡においては、試料18は必ずし
も試料容器16の内部に収納する必要はなく、試料ホル
ダーの上に試料を載せておいてもよいし、X線が透過し
やすい試料保持板に試料を張り付けてもよい。
In the X-ray microscope, the sample 18 does not necessarily have to be stored inside the sample container 16, but the sample may be placed on the sample holder, or the sample holding plate through which X-rays easily pass is used. The sample may be attached.

【0013】2次元X線検出器22としては、イメージ
ングプレート(蓄積性蛍光体あるいは輝尽性蛍光体とも
いう。)や、蛍光板とCCDカメラの組み合わせ、X線
フィルムなどの公知の2次元X線検出器を利用できる。
The two-dimensional X-ray detector 22 is a known two-dimensional X-ray such as an imaging plate (also called a stimulable phosphor or a stimulable phosphor), a combination of a fluorescent plate and a CCD camera, and an X-ray film. A detector is available.

【0014】ところで、X線顕微鏡として1次X線を用
いたもの(ターゲットの裏側に電子ビームを照射して、
ターゲットの表面からX線を取り出し、ターゲットの近
傍に置いた試料の透過画像を得るもの)が知られてい
る。これに対して、本発明のような2次X線を用いたX
線顕微鏡は、1次X線を用いたものと比較して、拡大画
像を得るためのX線源(この発明では箔)に試料をより
近づけることができるので、拡大倍率を大きくとること
ができる。また、箔の材質を変更するだけで2次X線の
波長の変更をできるので、波長変更が容易になる。さら
に、後述するように、X線回折装置に組み込める利点が
ある。
By the way, an X-ray microscope using primary X-rays (irradiating an electron beam on the back side of the target,
It is known that X-rays are extracted from the surface of a target to obtain a transmission image of a sample placed near the target. On the other hand, X using the secondary X-ray as in the present invention
The line microscope can bring the sample closer to the X-ray source (foil in the present invention) for obtaining a magnified image, as compared with the one using the primary X-ray, and thus the magnifying power can be increased. . In addition, since the wavelength of the secondary X-ray can be changed simply by changing the material of the foil, the wavelength can be changed easily. Further, as described later, there is an advantage that it can be incorporated in an X-ray diffractometer.

【0015】次に、蛋白質結晶のX線回折測定を実施す
る場合を例にとって、試料の位置確認手段として図1の
X線顕微鏡を利用する例を説明する。
Next, an example in which the X-ray microscope of FIG. 1 is used as means for confirming the position of a sample will be described by taking the case of carrying out the X-ray diffraction measurement of a protein crystal as an example.

【0016】図3は、X線回折装置の試料容器16aの
拡大側面断面図である。この試料容器16aは、円筒部
30と底32と蓋34からなり、これらの部品はすべ
て、厚さ10μmのベリリウム製である。ベリリウム
は、X線が透過しやすく、しかも、薄くできるので、ガ
ラスキャピラリーと比較して散乱X線が小さく、X線回
折測定の際のバックグラウンドが小さくなる。しかし、
可視光が透過しないので、試料容器16aの内部を目視
できない欠点がある。そこで、図1に示すX線顕微鏡を
利用して、試料容器16aの内部の蛋白質結晶18aの
位置を確認できるようにした。
FIG. 3 is an enlarged side sectional view of the sample container 16a of the X-ray diffraction apparatus. The sample container 16a includes a cylindrical portion 30, a bottom 32, and a lid 34, and all of these parts are made of beryllium having a thickness of 10 μm. Since beryllium easily transmits X-rays and can be made thin, the scattered X-rays are smaller than those of glass capillaries, and the background during X-ray diffraction measurement is small. But,
Since visible light is not transmitted, there is a drawback that the inside of the sample container 16a cannot be visually observed. Therefore, the position of the protein crystal 18a inside the sample container 16a can be confirmed using the X-ray microscope shown in FIG.

【0017】円筒部30と底32の間、円筒部30と蓋
34の間は、接着剤で気密封止してある。この試料容器
16aの内壁には、蛋白質結晶18aが母液に濡れた状
態で張り付いている。試料容器16aの内部には母液3
6が入っている。これで、蛋白質結晶18aは母液雰囲
気に満たされることになり、変質することがない。蛋白
質結晶18aの大きさは、0.1mm〜数mm程度であ
る。
The space between the cylindrical portion 30 and the bottom 32 and the space between the cylindrical portion 30 and the lid 34 are hermetically sealed with an adhesive. The protein crystal 18a is attached to the inner wall of the sample container 16a in a wet state with the mother liquor. The mother liquor 3 is placed inside the sample container 16a.
Contains 6 As a result, the protein crystal 18a is filled with the mother liquor atmosphere and is not altered. The size of the protein crystal 18a is about 0.1 mm to several mm.

【0018】蛋白質結晶18aと照射X線との位置合わ
せをするには、まず、箔14をコリメータと試料容器1
6aとの間のX線経路に挿入する。そして、図1で説明
したように、この箔14で発生する2次X線を用いて蛋
白質結晶18aの拡大画像を2次元X線検出器で検出す
る。この2次元X線検出器としては、X線回折装置の備
えている回折X線測定用の検出器をそのまま流用でき
る。蛋白質結晶の拡大画像が得られたら、この拡大画像
の中心が2次元X線検出器の中心に来るように試料容器
16aを移動する。なお、2次元X線検出器の中心は、
コリメータから出てくるX線ビームの延長上に来るよう
にあらかじめ調整しておく。これにより、蛋白質結晶1
8aが正しくX線経路上に位置することになる。このよ
うにして、試料容器16aの内部が見えなくても、試料
18の位置確認が可能となる。以上の試料位置調整が完
了したら、箔14をX線経路から退避させて、蛋白質結
晶のX線回折測定を実行する。
In order to align the protein crystals 18a with the irradiated X-rays, first, the foil 14 is placed in the collimator and the sample container 1.
6a to the X-ray path. Then, as described with reference to FIG. 1, the enlarged image of the protein crystal 18a is detected by the two-dimensional X-ray detector using the secondary X-rays generated on the foil 14. As this two-dimensional X-ray detector, the detector for diffracted X-ray measurement provided in the X-ray diffractometer can be used as it is. When the enlarged image of the protein crystal is obtained, the sample container 16a is moved so that the center of the enlarged image comes to the center of the two-dimensional X-ray detector. The center of the two-dimensional X-ray detector is
Adjust beforehand so that it is on the extension of the X-ray beam emerging from the collimator. As a result, protein crystal 1
8a is correctly positioned on the X-ray path. In this way, the position of the sample 18 can be confirmed without seeing the inside of the sample container 16a. After the above sample position adjustment is completed, the foil 14 is retracted from the X-ray path, and the X-ray diffraction measurement of the protein crystal is performed.

【0019】試料容器16aの材質としては、上述のベ
リリウムの代わりに炭素を使うこともできる。炭素を使
う場合には、無定形カーボンと呼ばれている材質を使う
のが好ましい。
As the material of the sample container 16a, carbon can be used instead of beryllium described above. When carbon is used, it is preferable to use a material called amorphous carbon.

【0020】X線回折測定装置の試料位置確認用として
図1のX線顕微鏡を利用する場合には、拡大倍率をそれ
ほど大きくしなくてもよく、また、画像のボケにもそれ
ほど気を使う必要がない。したがって、このような試料
位置確認用としては、図1のコリメータ12の出口の孔
の内径は0.2〜0.5mm程度でもよく、また、箔1
4と試料16との距離aも、例えば5mm程度でよい。
この場合、試料16と2次元X線検出器22との距離b
が100〜200mmならば、拡大倍率は20〜40倍
である。
When the X-ray microscope shown in FIG. 1 is used for confirming the sample position of the X-ray diffraction measuring device, it is not necessary to increase the enlargement magnification so much and it is necessary to pay attention to the blurring of the image. There is no. Therefore, for such sample position confirmation, the inner diameter of the exit hole of the collimator 12 in FIG. 1 may be about 0.2 to 0.5 mm, and the foil 1
The distance a between the sample 4 and the sample 16 may be about 5 mm, for example.
In this case, the distance b between the sample 16 and the two-dimensional X-ray detector 22
Is 100 to 200 mm, the magnification is 20 to 40 times.

【0021】X線顕微鏡を組み込むことのできるX線回
折装置としては、コリメータと2次元X線検出器とを備
えたものが最適である。コリメータと2次元X線検出器
をX線顕微鏡の構成要素としてそのまま流用できるから
である。なお、比例計数管などの検出系を備えたX線回
折装置に、試料位置確認用のX線顕微鏡を組み込む場合
には、試料位置確認用の2次元X線検出器を別個に設け
る必要がある。
As an X-ray diffractometer in which an X-ray microscope can be incorporated, a device equipped with a collimator and a two-dimensional X-ray detector is most suitable. This is because the collimator and the two-dimensional X-ray detector can be used as they are as the components of the X-ray microscope. If an X-ray microscope for confirming the sample position is incorporated in an X-ray diffraction device equipped with a detection system such as a proportional counter, it is necessary to separately provide a two-dimensional X-ray detector for confirming the sample position. .

【0022】[0022]

【発明の効果】この発明の試料位置確認方法を用いる
と、箔で発生した2次X線を利用して試料の位置を確認
しているので、試料容器の内部の試料を目視できなくて
も、試料とX線経路との位置関係を確認できる。したが
って、可視光の透過という制約を受けずに散乱X線の少
ない最適な材質を選択して試料容器を作ることができ
る。試料容器の材質としてはベリリウムが最適であり、
炭素も使用できる。
According to the sample position confirmation method of the present invention, the position of the sample is confirmed by utilizing the secondary X-rays generated on the foil, so that the sample inside the sample container cannot be visually observed. , The positional relationship between the sample and the X-ray path can be confirmed. Therefore, the sample container can be manufactured by selecting an optimum material with a small amount of scattered X-rays without being restricted by visible light transmission. Beryllium is the most suitable material for the sample container,
Carbon can also be used.

【0023】また、この発明のX線顕微鏡は、コリメー
タと試料との間に箔を配置して、この箔から発生する2
次X線を利用しているので、X線回折装置に組み込んで
試料位置確認手段として利用できる。
Further, in the X-ray microscope of the present invention, a foil is placed between the collimator and the sample, and the foil is generated from this foil.
Since the next X-ray is used, it can be used as a sample position confirmation means by incorporating it in an X-ray diffractometer.

【0024】さらに、この発明の試料容器は、ベリリウ
ムまたは炭素でできた容器の内部に試料を気密封止して
いるので、変質しやすい試料を母液雰囲気中に維持し
て、試料容器からの散乱X線の影響を少なくした状態
で、バックグラウンドの少ないX線回折測定を実施でき
る。
Further, in the sample container of the present invention, the sample is hermetically sealed inside the container made of beryllium or carbon, so that the sample which is liable to be deteriorated is kept in the mother liquor atmosphere and scattered from the sample container. With the influence of X-rays reduced, X-ray diffraction measurement with less background can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のX線顕微鏡の一実施形態を示す斜視
図である。
FIG. 1 is a perspective view showing an embodiment of an X-ray microscope of the present invention.

【図2】図1に示すX線顕微鏡の側面図である。FIG. 2 is a side view of the X-ray microscope shown in FIG.

【図3】X線回折装置の試料容器の拡大側面断面図であ
る。
FIG. 3 is an enlarged side sectional view of a sample container of an X-ray diffraction apparatus.

【符号の説明】[Explanation of symbols]

10 X線源 12 コリメータ 14 箔 16 試料容器 18 試料 20 2次X線 22 2次元X線検出器 10 X-ray source 12 Collimator 14 Foil 16 Sample container 18 Sample 20 Secondary X-ray 22 Two-dimensional X-ray detector

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 コリメータを通過させたX線を試料に照
射して、この試料からの回折X線を2次元X線検出器で
測定するX線回折装置において、 前記コリメータと前記試料との間のX線経路に箔を挿入
して、前記箔にX線を照射し、前記箔の裏面から出てく
る2次X線を前記試料に照射して、前記試料及びその周
囲空間を透過した前記2次X線を前記2次元X線検出器
で検出することにより、前記試料と前記X線経路との位
置関係を確認することを特徴とする試料位置確認方法。
1. An X-ray diffractometer for irradiating a sample with X-rays that have passed through a collimator and measuring the diffracted X-rays from this sample with a two-dimensional X-ray detector. A foil is inserted in the X-ray path of the foil, the foil is irradiated with X-rays, the sample is irradiated with secondary X-rays emerging from the back surface of the foil, and the foil is transmitted through the sample and its surrounding space. A sample position confirmation method characterized by confirming a positional relationship between the sample and the X-ray path by detecting a secondary X-ray with the two-dimensional X-ray detector.
【請求項2】 前記箔の材質が非晶質であることを特徴
とする請求項1記載の試料位置確認方法。
2. The sample position confirmation method according to claim 1, wherein the material of said foil is amorphous.
【請求項3】 ベリリウムまたは炭素でできた容器の内
部に前記試料が気密封入されていることを特徴とする請
求項1記載の試料位置確認方法。
3. The sample position confirming method according to claim 1, wherein the sample is hermetically sealed in a container made of beryllium or carbon.
【請求項4】 可視光の透過しない材質でできた容器の
内部に前記試料が気密封入されていることを特徴とする
請求項1記載の試料位置確認方法。
4. The sample position confirming method according to claim 1, wherein the sample is hermetically sealed in a container made of a material that does not transmit visible light.
【請求項5】 前記試料は蛋白質結晶であることを特徴
とする請求項1から4までのいずれか1項に記載の試料
位置確認方法。
5. The sample position confirmation method according to any one of claims 1 to 4, wherein the sample is a protein crystal.
【請求項6】 ベリリウムでできた容器の内部に試料を
気密封入したことを特徴とするX線回折装置の試料容
器。
6. A sample container for an X-ray diffraction apparatus, wherein a sample is hermetically sealed inside a container made of beryllium.
【請求項7】 炭素でできた容器の内部に試料を気密封
入したことを特徴とするX線回折装置の試料容器。
7. A sample container for an X-ray diffraction apparatus, wherein the sample is hermetically sealed in a container made of carbon.
【請求項8】 コリメータを通過させたX線を箔に照射
し、前記箔の裏面から出てくる2次X線を、前記箔の近
傍に配置した試料に照射して、この試料及びその周囲空
間を透過した前記2次X線を、前記試料から離れた2次
元X線検出器で検出することにより、前記試料の拡大画
像を得ることを特徴とするX線顕微鏡。
8. The foil is irradiated with X-rays that have passed through a collimator, and the secondary X-rays emitted from the back surface of the foil are irradiated to a sample arranged in the vicinity of the foil, and the sample and its surroundings. An X-ray microscope characterized in that a magnified image of the sample is obtained by detecting the secondary X-rays that have passed through the space with a two-dimensional X-ray detector apart from the sample.
【請求項9】 前記箔の材質が非晶質であることを特徴
とする請求項8記載のX線顕微鏡。
9. The X-ray microscope according to claim 8, wherein the material of the foil is amorphous.
JP7278248A 1995-10-03 1995-10-03 Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope Pending JPH09101270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278248A JPH09101270A (en) 1995-10-03 1995-10-03 Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278248A JPH09101270A (en) 1995-10-03 1995-10-03 Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope

Publications (1)

Publication Number Publication Date
JPH09101270A true JPH09101270A (en) 1997-04-15

Family

ID=17594691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278248A Pending JPH09101270A (en) 1995-10-03 1995-10-03 Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope

Country Status (1)

Country Link
JP (1) JPH09101270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010682A1 (en) 2012-06-29 2014-01-02 Rigaku Corporation X-ray imaging apparatus and X-ray imaging method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010682A1 (en) 2012-06-29 2014-01-02 Rigaku Corporation X-ray imaging apparatus and X-ray imaging method
JP2014008281A (en) * 2012-06-29 2014-01-20 Rigaku Corp X-ray imaging device and x-ray imaging method
US9250199B2 (en) 2012-06-29 2016-02-02 Rigaku Corporation X-ray imaging apparatus, and X-ray imaging method

Similar Documents

Publication Publication Date Title
US4246607A (en) X-Ray fluoroscopy device
JP4189770B2 (en) X-ray target and apparatus using the same
JP5838109B2 (en) Compound X-ray analyzer
US5832052A (en) X-ray microscope
US5311568A (en) Optical alignment means utilizing inverse projection of a test pattern/target
Hosokawa et al. An x‐ray guide tube and a desk‐top scanning x‐ray analytical microscope
JP2003043200A (en) X-ray microscope device
JP2004144478A (en) X-ray analysis apparatus and method
CN110702718A (en) Optical mirror, X-ray fluorescence analysis device, and X-ray fluorescence analysis method
JP3834652B2 (en) X-ray diffraction microscope apparatus and X-ray diffraction measurement method using X-ray diffraction microscope apparatus
JP5489412B2 (en) High resolution X-ray microscope with X-ray fluorescence analysis function
JPH09101270A (en) Sample position confirming method for x-ray diffractometer, sample container, and x-ray microscope
US20080013683A1 (en) X-ray radiographing apparatus
JP3197104B2 (en) X-ray analyzer
JP3860641B2 (en) X-ray fluorescence analyzer
JP2001085192A (en) Leakage x-ray shield mechanism
Blue et al. Improved pinhole-apertured point-projection backlighter geometry
JP4073276B2 (en) X-ray analyzer
JP4623879B2 (en) Beam evaluation method and apparatus
JP5759257B2 (en) X-ray equipment
JP2004229900A (en) Mammographic apparatus
JP3337184B2 (en) Soft X-ray sample analyzer and its analysis method
JP3222572B2 (en) X-ray analyzer
JP2500423Y2 (en) electronic microscope
JP4073278B2 (en) X-ray analyzer