JPH09101023A - Furnace body cooling structure for plasma melting furnace - Google Patents

Furnace body cooling structure for plasma melting furnace

Info

Publication number
JPH09101023A
JPH09101023A JP28261195A JP28261195A JPH09101023A JP H09101023 A JPH09101023 A JP H09101023A JP 28261195 A JP28261195 A JP 28261195A JP 28261195 A JP28261195 A JP 28261195A JP H09101023 A JPH09101023 A JP H09101023A
Authority
JP
Japan
Prior art keywords
furnace
cooling
cooling water
temperature
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28261195A
Other languages
Japanese (ja)
Inventor
Yasuo Azuma
康夫 東
Takahiro Kuno
貴洋 久野
Tomio Suzuki
富雄 鈴木
Yoshiaki Shimizu
由章 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28261195A priority Critical patent/JPH09101023A/en
Publication of JPH09101023A publication Critical patent/JPH09101023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive the elongation of life of a furnace body and maintain a melting thermal efficiency optimally at the same time by a method wherein a cooling water belt is divided along the peripheral direction of a furnace and the cooling capacity, generated by the cooling water flowing through the divided chambers, is controlled in accordance with an atmospheric temperature in the circumferential direction of the furnace. SOLUTION: A melting furnace 4 is structured so as to have the lining of refractories 5 and the outer periphery of the same is covered by cooling water jacket 6. The water cooled jacket 6 is divided into eight cooling belts A-H by partitioning plates 11a, 11b,...11h so as to be symmetry about the center of a vertical surface connecting a tapping port 8 and an incineration ash supplying port 7. The flow rates of cooling water Q1-Q8 in respective cooling belts A-H are permitted to be increased or reduced independently in accordance with the temperature condition in the furnace respectively. In this case, the cooling water belt is preferably divided into positions having the central angle of at least ±30 deg. in the circumferential direction about the tapping hole 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマ溶融炉
の炉体冷却構造、特に炉体の延命化を図ると同時に溶融
熱効率を最適に維持することも可能にしたプラズマ溶融
炉の炉体冷却構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace body cooling structure for a plasma melting furnace, and more particularly to a furnace body cooling structure for a plasma melting furnace capable of prolonging the life of the furnace body and at the same time maintaining an optimum melting heat efficiency. It is about.

【0002】[0002]

【従来の技術】従来のプラズマ溶融炉の炉体冷却構造と
しては、図5に示すものが知られている。即ち、図5
は、円筒型のプラズマ溶融炉4を示す概略説明図であ
り、プラズマトーチ1は溶融炉4の上部中心から挿入配
置されている。溶融するための熱源となるプラズマアー
ク9は、交流直流変換器を内蔵した電源装置2からの直
流電流が、プラズマトーチ1を陽極として、溶融スラグ
浴10、溶融炉下部に設けられた炉底の陰極3に流れる
よう構成されている。
2. Description of the Related Art As a conventional furnace body cooling structure for a plasma melting furnace, a structure shown in FIG. 5 is known. That is, FIG.
FIG. 4 is a schematic explanatory view showing a cylindrical plasma melting furnace 4, and the plasma torch 1 is inserted and arranged from the center of the upper part of the melting furnace 4. The plasma arc 9 serving as a heat source for melting is supplied with a direct current from the power supply device 2 having a built-in AC / DC converter, using the plasma torch 1 as an anode, the molten slag bath 10 and the bottom of the furnace provided at the bottom of the melting furnace. It is configured to flow to the cathode 3.

【0003】そして、被溶融物である焼却灰は、溶融炉
4の上部に設けられた供給口7より溶融炉4へ投入され
る。投入された焼却灰は、プラズマトーチ1より照射さ
れる高温度のプラズマアーク9により溶融温度にまで加
熱され溶融スラグとなり、スラグ浴10が形成される。
溶融スラグは炉内側方にある出滓口8よりオーバーフロ
ーして炉外へ排出される。
Then, the incineration ash that is the material to be melted is introduced into the melting furnace 4 through the supply port 7 provided in the upper part of the melting furnace 4. The incinerated ash charged is heated to the melting temperature by the high-temperature plasma arc 9 irradiated from the plasma torch 1 to become molten slag, and the slag bath 10 is formed.
The molten slag overflows from the outlet 8 on the inner side of the furnace and is discharged to the outside of the furnace.

【0004】また、溶融炉4は、耐火物5で内張りさ
れ、さらにその外周は、冷却水で耐火物5を周囲から冷
却できるような構造とされている。また冷却構造6は、
溶融炉4の外周全体に及んでおり、耐火物5の延命化に
配慮している。
Further, the melting furnace 4 is lined with a refractory material 5, and the outer periphery thereof is structured so that the refractory material 5 can be cooled from the surroundings with cooling water. Further, the cooling structure 6 is
The entire circumference of the melting furnace 4 is covered, and consideration is given to extending the life of the refractory material 5.

【0005】[0005]

【発明を解決しようとする課題】炉内温度は2000°
C以上にもなる環境下で耐火物を保護するために水冷構
造にして、その冷却効果によりスラグのセルフコートを
炉内に施すことは、確かに原則として有効ではある。し
かし、炉内の雰囲気温度は全体にわたって一定の温度で
はないため、一律に同程度の水冷作用を炉体の全周囲に
施すことには問題がある。即ち、焼却灰の供給口7の近
傍が最も低く約1000°C、出滓口8の近傍が最も高
く2000°Cを超える雰囲気となる。従って、耐火物
5の保護を特に考慮しなければならない炉内部位は出滓
口8近傍の耐火物に限定されるはずである。
The temperature inside the furnace is 2000 °.
In principle, it is effective in principle to provide a water-cooled structure in order to protect the refractory material in an environment of C or higher, and to apply self-coating of slag to the inside of the furnace due to its cooling effect. However, since the atmospheric temperature in the furnace is not constant throughout, there is a problem in uniformly applying the same degree of water cooling to the entire circumference of the furnace body. That is, the atmosphere in the vicinity of the incineration ash supply port 7 is the lowest, about 1000 ° C, and the vicinity in the incinerator ash 8 is the highest, over 2000 ° C. Therefore, the in-furnace portion that must be particularly considered for protection of the refractory 5 should be limited to the refractory near the outlet port 8.

【0006】また、溶融炉4の全周にわたって均等に水
冷すれば、本来、耐火物構造のみで十分温度的に耐えう
る場所においても冷却水によって熱が奪われ炉内温度を
低下させることになり、逆に積極的に温度を上昇させた
い場所である焼却灰供給口7近傍等は、焼却灰の溶融に
使用される熱量までが冷却水に奪われてしまい、溶融熱
効率の低下を招く。
Further, if the water is evenly cooled along the entire circumference of the melting furnace 4, heat is taken away by the cooling water and the temperature in the furnace is lowered even in a place where only the refractory structure can withstand the temperature. On the contrary, in the vicinity of the incinerator ash supply port 7 where the temperature is to be positively increased, the amount of heat used for melting the incinerated ash is deprived by the cooling water, and the melting heat efficiency is lowered.

【0007】その一方で、出滓口8近傍の保護に際して
は、特有の留意事項がある。即ち、耐火物の保護を意識
しすぎて冷却しすぎると、出滓口8でのスラグ固化によ
る閉塞という別の問題が生じるおそれがあるため、その
ような閉塞を生じないような条件下での耐火物保護を実
現しなければならない。
On the other hand, there are special precautions for protecting the vicinity of the outlet 8. That is, if the refractory is protected too much and cooled too much, another problem such as clogging due to solidification of slag at the slag spout 8 may occur. Therefore, under conditions that do not cause such clogging. Refractory protection must be realized.

【0008】そこで、本発明のうち請求項1記載の発明
は、プラズマ溶融炉耐火物の延命化を図ると同時に溶融
熱効率を最適に維持することも可能なプラズマ溶融炉の
炉体冷却構造を提供することを目的としたものである。
また、請求項2記載の発明は、請求項1記載の発明の目
的に加えて出滓口での閉塞を防止して安定した連続運転
が可能なプラズマ溶融炉の炉体冷却構造を提供すること
を目的とする。
Therefore, the invention according to claim 1 of the present invention provides a furnace body cooling structure for a plasma melting furnace capable of prolonging the life of the refractory material of the plasma melting furnace and at the same time maintaining the optimum melting heat efficiency. The purpose is to do.
In addition to the object of the invention described in claim 1, the invention described in claim 2 provides a furnace body cooling structure for a plasma melting furnace capable of preventing blockage at a slag opening and performing stable continuous operation. With the goal.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、耐火物構造
のプラズマ溶融炉炉体外周に冷却水帯を設け、該冷却水
帯に冷却水を循環させることによりプラズマ溶融炉の炉
体を冷却する構造であって、前記冷却水帯を炉体の周囲
方向に沿って分割すると共に、各分割室を流れる冷却水
による冷却能を、炉内周囲方向の雰囲気温度に応じて制
御する手段を備えたことを特徴とするものである。
To achieve the above object, the invention according to claim 1 of the present invention provides a cooling water zone on the outer periphery of a furnace body of a plasma melting furnace having a refractory structure, and the cooling water is provided. A structure for cooling the furnace body of the plasma melting furnace by circulating cooling water in the zone, the cooling water zone is divided along the circumferential direction of the furnace body, and the cooling ability by the cooling water flowing through each division chamber Is provided in accordance with the ambient temperature in the peripheral direction of the furnace.

【0010】溶融炉内耐火物は、一般に接触する雰囲気
の温度が上昇するにつれて周囲との反応性も高まる。ま
た、溶融スラグ浴の流動によって、接触している箇所の
耐火物は摩耗する。これも耐火物の温度が大きく影響
し、温度が上昇すると摩耗量も増大する。従って、耐火
物の保護を考えるときは、まず耐火物自体の温度を下げ
ることが第一条件であることは間違いない。
The refractory material in the melting furnace generally becomes more reactive with the surroundings as the temperature of the atmosphere with which it comes into contact increases. Further, the flow of the molten slag bath abrades the refractory material in the contact area. This also has a large effect on the temperature of the refractory, and when the temperature rises, the amount of wear also increases. Therefore, when considering protection of refractories, it is certain that the first condition is to first lower the temperature of the refractory itself.

【0011】さらに、温度を下げることによって、スラ
グのセルフコートによる保護効果も得られる。即ち、ス
ラグのセルフコートによる保護効果とは、耐火物の温度
を下げ、接触している溶融スラグを固化させ、耐火物表
面にスラグ自体のコーティングを行って炉内高温雰囲気
から耐火物を遮断し、上記の反応や磨耗を抑制する効果
である。
Further, by lowering the temperature, the protective effect of self-coating the slag can be obtained. That is, the protective effect of the self-coating of the slag is to lower the temperature of the refractory, solidify the molten slag in contact, and coat the refractory surface with the slag itself to isolate the refractory from the high temperature atmosphere in the furnace. The effect is to suppress the above reaction and wear.

【0012】しかし、通常これらの効果を期待するの
は、溶融炉が雰囲気温度1300°C以上、溶融スラグ
の温度が1100°Cの温度条件で運転されている場合
であり、温度が低い条件下においては耐火物保護など行
う必要はないはずである。溶融炉では、被溶融物である
焼却灰の加熱に際しては、プラズマトーチからの熱エネ
ルギーをできるだけ効率良く吸収させることが好まし
く、上記のような耐火物の水冷は溶融熱効率の面ではか
えってマイナスとなる。ところが、溶融炉内部には20
00°C以上の高温領域と1000°C程度の低温領域
が混在しており、必ずしも冷却水による炉体保護を強力
に作用させる必要のない部分もある。
However, these effects are usually expected when the melting furnace is operated at an ambient temperature of 1300 ° C. or higher and the temperature of the molten slag is 1100 ° C. under low temperature conditions. There should be no need for refractory protection in. In the melting furnace, when heating the incineration ash that is the material to be melted, it is preferable to absorb the heat energy from the plasma torch as efficiently as possible, and the water cooling of the refractory as described above is rather negative in terms of melting heat efficiency. . However, inside the melting furnace, 20
A high temperature region of 00 ° C or higher and a low temperature region of about 1000 ° C coexist, and there is a part where it is not always necessary to strongly protect the furnace body with cooling water.

【0013】そこで、本発明者等は、この高温域と低温
域を炉内で検知し、2000°C以上の高温域について
は水冷効果で炉体保護を図り、低温域については冷却作
用をできるだけ抑制し、プラズマガスの熱エネルギーを
溶融炉内で有効に利用する手段を検討した。具体的に
は、溶融スラグを排出する出滓口近傍の高温域、焼却灰
の供給口近傍の低温領域での冷却能制御を独立にかつ相
互に関連づけて一連の自動制御で行える手段を実現させ
るべく検討を重ねた。
Therefore, the inventors of the present invention detect the high temperature region and the low temperature region in the furnace, protect the furnace body with a water cooling effect in the high temperature region of 2000 ° C. or higher, and cool the low temperature region as much as possible. The means for suppressing and effectively utilizing the thermal energy of the plasma gas in the melting furnace was investigated. Specifically, to realize a means that can perform a series of automatic controls independently and in correlation with each other in the cooling capacity control in the high temperature area near the outlet of the molten slag and the low temperature area near the supply port of the incineration ash. I repeated my studies.

【0014】この場合、考慮しておかねばならない事項
もある。即ち、熱効率だけを考えると、原則として低温
領域ではできるだけ高効率でプラズマガスの熱エネルギ
ーを焼却灰へ伝達することが重要であるといえ、場合に
よっては耐火物を断熱構造そのものにするという手段も
採りうる。しかし、プラズマガスは2000°C以上の
高温であるため、例えば焼却灰が安定して連続供給され
るような定常運転時には、たとえ断熱構造としていて
も、予熱時もしくは無負荷運転時等の際には炉内全体が
2000°C以上に達することもあり、このような場合
は炉体保護のためにやはり耐火物の冷却が必要となる。
In this case, there are some matters to be considered. In other words, considering only thermal efficiency, it is important in principle to transfer the thermal energy of the plasma gas to the incineration ash in the low temperature region as efficiently as possible. Can be taken. However, since the plasma gas has a high temperature of 2000 ° C. or higher, for example, during steady operation such as stable and continuous supply of incinerated ash, even in the case of an adiabatic structure, during preheating or no-load operation, etc. In some cases, the temperature inside the furnace may reach 2000 ° C or higher. In such a case, refractory must be cooled to protect the furnace body.

【0015】そこで、このような点も考慮し、炉体外周
に設けられた冷却水帯を周方向に複数分割すると共に、
炉内雰囲気温度を周方向にわたって監視し、指示温度に
従って各分割室ごとの冷却能をそれぞれ強化又は抑制で
きるよう冷却水量を制御する本発明特有の手段を採用し
えたものである。この手段により、溶融炉耐火物の寿命
を延ばすことができ、同時に溶融熱効率を最適に維持す
ることができる。冷却水による冷却能の具体的な制御手
段としては、一般に炉内雰囲気温度が高温のときは冷却
水量を増加させ、低温時には冷却水量を減少させること
により行うものとする。
Therefore, in consideration of such a point, the cooling water zone provided on the outer periphery of the furnace body is divided into a plurality of pieces in the circumferential direction, and
It is possible to employ means peculiar to the present invention, which monitors the atmosphere temperature in the furnace in the circumferential direction and controls the amount of cooling water so that the cooling capacity of each divided chamber can be strengthened or suppressed in accordance with the indicated temperature. By this means, the life of the refractory material of the melting furnace can be extended, and at the same time, the heat efficiency of melting can be optimally maintained. As a concrete control means of the cooling ability by the cooling water, generally, the cooling water amount is increased when the furnace atmosphere temperature is high, and is decreased when the furnace temperature is low.

【0016】なお、この場合の、冷却水量の増減の指令
は、炉内雰囲気温度の変化量に基準をおくものである
が、各分割室で冷却に供された後それぞれの分割室から
排出された冷却水の温度と流量を常時監視し、その排出
熱量が所定の設定値からずれる程度を検知し、この変化
量を基準として各分割室ごとの冷却能を制御することも
可能である。
In this case, the command to increase / decrease the amount of cooling water is based on the amount of change in the temperature of the atmosphere in the furnace. However, after being cooled in each division chamber, it is discharged from each division chamber. It is also possible to constantly monitor the temperature and flow rate of the cooling water, detect the degree of deviation of the discharged heat amount from a predetermined set value, and control the cooling capacity of each divided chamber on the basis of this change amount.

【0017】また、「各分割室を流れる冷却水による冷
却能を制御する」とは、必ずしもすべての分割室を常に
冷却水量の増減により制御する場合のみをいうものでは
なく、一部の分割室、具体的には焼却灰供給口近傍の低
温領域に位置する分割室について空冷制御する場合も含
む意味である。
The phrase "controlling the cooling capacity of the cooling water flowing through each of the divided chambers" does not necessarily mean that all of the divided chambers are always controlled by increasing or decreasing the amount of cooling water, but some of the dividing chambers. Specifically, it is meant to include the case where the air-cooling control is applied to the divided chambers located in the low temperature region near the incinerator ash supply port.

【0018】また、本発明者等は、特に問題となり易い
出滓口近傍の炉体冷却制御の精度を高めるべく、独立し
て強化冷却するために必要な分割室として最適な位置決
めを求めようとし、まず炉体周囲方向にわたって冷却能
を変化させたときの、耐火物表面温度とスラグのセルフ
コートの形成状況を確認すべく実験運転を行った。即
ち、図5(a)に示すように周方向にA,B,C,Dの
4分割とし、各分割室の冷却能をA=B<C=Dであっ
てC,D側の冷却能がA,B側の冷却能の2倍となるよ
うに制御した。そして、定常運転時に至ったときの、各
分割室A,B,C,Dについて、分割室の周方向位置と
対応する耐火物表面温度との関係を調べた結果を示した
ものが、図5(b)である。図5(a)の斜線部は、ス
ラグのコーティング層が形成された状況を示している。
Further, the present inventors have tried to find the optimum positioning as a division chamber required for independent enhanced cooling in order to improve the accuracy of the furnace body cooling control in the vicinity of the outlet, which is particularly likely to cause a problem. First, an experimental operation was performed to confirm the refractory surface temperature and the state of the self-coating of slag when the cooling capacity was changed in the circumferential direction of the furnace body. That is, as shown in FIG. 5A, the circumferential direction is divided into four, A, B, C, and D, and the cooling capacity of each divided chamber is A = B <C = D and the cooling capacity on the C and D sides. Was controlled to be twice the cooling capacity on the A and B sides. FIG. 5 shows the result of examining the relationship between the circumferential position of the division chambers and the corresponding refractory surface temperature for each of the division chambers A, B, C, and D when the steady operation is reached. It is (b). The shaded area in FIG. 5A shows the situation in which the coating layer of slag is formed.

【0019】これらの実験結果からみると、冷却能を強
化した場合には、図5(a)に示すように出滓口を中心
としてD方向へ約30°進んだ位置からスラグがコーテ
ィングされていることが分かる。これは、Dの部分で冷
却能を上げすぎると、出滓口の閉塞等という別の問題が
生じるおそれがあるため、出滓口から周方向にそれぞれ
少なくとも中心角±30°の範囲は冷却能を上げること
ができないためである。その反面、DからCにかけては
冷却能が高すぎる傾向にある。従って、前記の中心角±
30°の位置で冷却水帯を分割すれば、出滓口の閉塞を
おこすことなく出滓口近傍を適切に冷却制御できる一
方、DからCにかけての冷却能についても独立に適切に
制御して熱効率を低下させないようにすることが可能と
なる。以上の実験結果を踏まえ、請求項2記載の発明と
して、冷却水帯を、少なくとも出滓口を中心として周方
向にそれぞれ中心角±30°の位置で分割するとの特有
の構成を採用し得たものである。
From the results of these experiments, when the cooling capacity is enhanced, the slag is coated from a position advanced by about 30 ° in the D direction around the outlet as shown in FIG. 5 (a). I know that This is because if the cooling capacity is too high in the part D, another problem such as blockage of the outlet can occur, so the cooling capacity is at least ± 30 ° in the circumferential direction from the outlet to the circumferential direction. This is because you cannot raise it. On the other hand, the cooling capacity from D to C tends to be too high. Therefore, the central angle ±
If the cooling water zone is divided at the 30 ° position, the vicinity of the outlet can be appropriately controlled without blocking the outlet, while the cooling capacity from D to C can also be controlled independently. It is possible not to reduce the thermal efficiency. Based on the above experimental results, as the invention according to claim 2, it is possible to adopt a peculiar configuration in which the cooling water zone is divided at positions with a central angle of ± 30 ° in the circumferential direction around at least the outlet. It is a thing.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を、図
を参照しつつ説明する。図1〜図4は、本発明に係るプ
ラズマ溶融炉の炉体冷却構造を示す概略説明図である。
図6に示す従来例と同一構成部分については同一符号を
付けて重複説明は避ける。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are schematic explanatory views showing a furnace body cooling structure of a plasma melting furnace according to the present invention.
The same components as those of the conventional example shown in FIG. 6 are designated by the same reference numerals to avoid redundant description.

【0021】図1(a)において、溶融炉4は耐火物5
を内張りした構造をしており、その外周は耐火物4を冷
却するための水冷ジャケット6によって覆われている。
水冷ジャケット6によって冷却される耐火物は、溶融炉
4の側面及び上部にわたっても良いが、耐火物の損傷が
最も顕著な箇所は溶融スラグ10を含むその上部空間で
あるため、下部側面については必ず冷却を要するという
ものではない。
In FIG. 1A, the melting furnace 4 is a refractory 5
Is lined, and the outer periphery thereof is covered with a water cooling jacket 6 for cooling the refractory 4.
The refractory material cooled by the water cooling jacket 6 may extend to the side surface and the upper portion of the melting furnace 4, but since the location where the refractory material is most damaged is the upper space containing the molten slag 10, the lower side surface must be the same. It does not require cooling.

【0022】水冷ジャケット6は、図1(b)(図1
(a)のX−X矢視概略断面図)に示すように仕切り板
11a,11b,・・・,11hにより出滓口8と焼却
灰供給口7を結ぶ垂直面を中心対称として8つの冷却帯
A〜Hに分割されている。各冷却帯A〜Hの冷却水Q1
〜Q8の流量は、それぞれ炉内の温度条件により個別に
流量を増加又は減少できるように構成されている。な
お、炉内の雰囲気温度の測定は、炉内側の耐火物表面近
傍の温度の測定値で代用することとする。
The water cooling jacket 6 is shown in FIG.
As shown in (a) a schematic cross-sectional view taken along the line X-X), eight coolings are made symmetrical about a vertical plane connecting the slag port 8 and the incineration ash supply port 7 with partition plates 11a, 11b, ..., 11h. It is divided into bands A to H. Cooling water Q1 in each cooling zone A to H
The flow rates of Q8 to Q8 are configured so that the flow rates can be individually increased or decreased depending on the temperature conditions in the furnace. The ambient temperature in the furnace is measured by using the measured temperature of the refractory inside the furnace.

【0023】図2は、冷却帯A,B,C,Dにおける耐
火物内の温度分布を示したものである。この場合、耐火
物厚さ,冷却水流量はそれぞれ同一の条件に設定してい
る。Aは出滓口8近傍の耐火物と接する冷却帯であり、
またB,Cは焼却灰供給口7とスラグ出滓口8の中間に
位置する耐火物と接する冷却帯であり、Dは焼却灰供給
口7近傍の耐火物と接する冷却帯である。即ち、Aは炉
内雰囲気温度が最も高い領域の制御を担当する冷却帯で
あり、耐火物の温度も最高となる。
FIG. 2 shows the temperature distribution in the refractory material in the cooling zones A, B, C and D. In this case, the refractory thickness and the cooling water flow rate are set under the same conditions. A is a cooling zone in contact with the refractory near the outlet port 8,
B and C are cooling zones in contact with the refractory located in the middle of the incineration ash supply port 7 and the slag discharge port 8, and D is a cooling zone in contact with the refractory near the incineration ash supply port 7. That is, A is a cooling zone in charge of controlling the region where the atmospheric temperature in the furnace is the highest, and the temperature of the refractory material is also the highest.

【0024】また、供給口7近傍のDは、焼却灰の加熱
にプラズマガスの熱エネルギーが消費されるため雰囲気
温度は出滓口8近傍より低下し、耐火物の温度も最低と
なる領域の制御を担当する冷却帯である。さらに、B,
Cは、出滓口8近傍と焼却灰供給口7近傍の中間の温度
領域の制御を担当する冷却帯となる。
Further, in the area D near the supply port 7, since the thermal energy of the plasma gas is consumed for heating the incineration ash, the ambient temperature becomes lower than that near the outlet 8 and the temperature of the refractory is also the lowest. This is the cooling zone in charge of control. In addition, B,
C is a cooling zone in charge of controlling an intermediate temperature region near the slag port 8 and the incineration ash supply port 7.

【0025】本発明者等は、これまでの一連のプラズマ
溶融炉運転の結果、耐火物温度と、冷却による効果とし
て現れる耐火物表面へのスラグのセルフコートの形成状
況との間には一定の関係があることを確認した。即ち、
図2は、耐火物温度θ1を境にして上側はセルフコート
が形成されていない領域を、下側は形成されている領域
ことを示す図である。
As a result of a series of plasma melting furnace operations performed so far, the present inventors have found that there is a constant value between the refractory temperature and the state of formation of a self-coat of slag on the refractory surface, which appears as an effect of cooling. I confirmed that there is a relationship. That is,
FIG. 2 is a diagram showing a region where the self-coating is not formed on the upper side and a region where the self-coating is formed on the lower side with respect to the refractory temperature θ1.

【0026】今、横軸の耐火物の厚さaを炉内側表面近
傍の耐火物位置とすると、図2のA,Bでは、耐火物表
面温度がセルフコートの境界温度θ1を越えており、こ
の状態ではセルフコートが形成されてないので、このま
までは耐火物が損傷してしまう。そこで、この対応とし
て、A,Bについては冷却性能をより強化し、耐火物の
温度を下げる必要がある。また、C,Dでは耐火物表面
温度はθ1より低く、セルフコートが形成された状態に
ある。
Now, assuming that the refractory thickness a on the horizontal axis is the refractory position near the inner surface of the furnace, the refractory surface temperature exceeds the self-coating boundary temperature θ1 in FIGS. In this state, the self-coating is not formed, so the refractory will be damaged if it is left as it is. Therefore, in order to deal with this, it is necessary to further strengthen the cooling performance of A and B and lower the temperature of the refractory material. Further, in C and D, the refractory surface temperature is lower than θ1, and the self-coating is formed.

【0027】このような運転状況にある場合、溶融炉を
均一に冷却するのはむしろ非効率的であり、冷却帯Aを
重点的に強く冷却し、Bについては普通程度に冷却し、
さらにC及びDについては、冷却性能は小さくても良い
ことが分かる。但し、溶融炉の運転状況に応じて炉内雰
囲気温度、即ち耐火物の温度も耐えず連続的に変化して
おり、冷却性能を適宜制御する必要がある。
In such an operating condition, it is rather inefficient to uniformly cool the melting furnace, and the cooling zone A is intensively strongly cooled and B is normally cooled.
Further, regarding C and D, it can be seen that the cooling performance may be small. However, the ambient temperature in the furnace, that is, the temperature of the refractory, continuously changes without endurance according to the operating conditions of the melting furnace, and it is necessary to appropriately control the cooling performance.

【0028】このことも一連の溶融炉運転の結果から理
解できる。即ち、図4は、冷却帯Dの耐火物炉内表面近
傍の当該耐火物温度の経時変化とその時の溶融炉の運転
条件との関係を調べた結果を示す図であり、図中の実線
は、溶融炉全周にわたって冷却性能を一定としたときの
当該耐火物温度を示している。
This can also be understood from the results of a series of melting furnace operations. That is, FIG. 4 is a diagram showing the results of examining the relationship between the change over time of the refractory temperature in the vicinity of the refractory furnace inner surface in the cooling zone D and the operating conditions of the melting furnace at that time, and the solid line in the figure is Shows the refractory temperature when the cooling performance is constant over the entire circumference of the melting furnace.

【0029】焼却灰を負荷100%で溶融炉へ投入して
いるときには、耐火物温度はθ1以下へと向かうため冷
却性能はそれほど必要としないが、溶融炉の予熱運転時
や焼却灰が供給されない待機運転中では、耐火物温度は
θ1を越えて上昇を続けるため、耐火物への影響が心配
される領域に至っている。また、焼却灰の溶融炉への供
給負荷を変化させた時(図では50%負荷)においても
耐火物温度を注意して監視する必要があることが分か
る。
When the incinerator ash is charged into the melting furnace with a load of 100%, the refractory temperature goes to θ1 or less, so cooling performance is not so required, but the incinerator ash is not supplied during preheating operation of the melting furnace. During the standby operation, the refractory temperature continues to rise beyond θ1, so that it reaches a region where the refractory may be affected. It is also understood that the refractory temperature needs to be carefully monitored even when the load of supplying the incinerator ash to the melting furnace is changed (50% load in the figure).

【0030】[0030]

【実施例1】炉内雰囲気温度に応じて冷却水量を制御す
る実施例を図3,図4,に基づき説明する。図3の12
a,12b,・・・,12hは測温点を示す。即ち、炉
内雰囲気温度を測定する代わりに耐火物炉内側表面近傍
の温度を測定し、その結果に応じて冷却水Q1〜Q8の
流量を制御することとした。そして、この手法を用いて
冷却帯Dの冷却制御を実施したときの耐火物温度の経時
変化をプロットしたものが図4の破線で示す曲線であ
る。
[Embodiment 1] An embodiment in which the amount of cooling water is controlled according to the temperature of the atmosphere in the furnace will be described with reference to FIGS. 12 of FIG.
, 12h indicate temperature measuring points. That is, instead of measuring the atmosphere temperature in the furnace, the temperature in the vicinity of the inner surface of the refractory furnace was measured, and the flow rates of the cooling waters Q1 to Q8 were controlled according to the results. The curve shown by the broken line in FIG. 4 is obtained by plotting the change over time of the refractory temperature when the cooling control of the cooling zone D is performed using this method.

【0031】この結果から、溶融炉の運転条件が変化し
ても、耐火物温度は概ねセルフコートの境界温度θ1を
越えない程度に良好に制御されており、耐火物の延命化
に対する十分な配慮がなされた運転が行なわれているこ
とがよく分かる。
From this result, even if the operating conditions of the melting furnace are changed, the refractory temperature is well controlled so as not to exceed the boundary temperature θ1 of the self-coating, and sufficient consideration is given to extending the life of the refractory. It is easy to see that the driving is being performed.

【0032】[0032]

【実施例2】実施例1の変形に相当するものであり、炉
内雰囲気温度の高い領域であるA,B,G,Hについて
は常時冷却水で耐火物を保護し、比較的温度の低いC,
D,E,Fについては空気による冷却(空冷方式)制御
を実施した。この場合も実施例1とほぼ同様に有効な制
御が行なえることが確認できた。この変形実施例は、水
冷方式ではいわゆるOn−Off制御ができないが、空
冷方式では可能となる利点に着目したものである。
[Second Embodiment] This is equivalent to a modification of the first embodiment, and in the regions A, B, G, and H in which the atmospheric temperature in the furnace is high, the refractory is always protected by cooling water, and the temperature is relatively low. C,
For D, E, and F, air cooling (air cooling method) control was performed. Also in this case, it was confirmed that effective control can be performed almost in the same manner as in the first embodiment. This modified example focuses on the advantage that the air-cooling method can do so, while the so-called On-Off control cannot be performed by the water-cooling method.

【0033】[0033]

【発明の効果】以上説明したように、本発明のうち請求
項1記載の発明は、プラズマ溶融炉耐火物の延命化を図
ると同時に溶融熱効率を最適に維持することも可能とし
た。
As described above, the invention according to claim 1 of the present invention makes it possible to prolong the life of the refractory material of the plasma melting furnace and at the same time maintain the optimum melting heat efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施形態の全体構成を示す概略説
明図である。
FIG. 1 is a schematic explanatory diagram showing an overall configuration of an embodiment according to the present invention.

【図2】冷却帯A,B,C,Dにおける耐火物内の温度
分布を示した図である。
FIG. 2 is a diagram showing a temperature distribution in a refractory material in cooling zones A, B, C and D.

【図3】炉体外周に形成された分割冷却帯と炉内側の耐
火物表面温度の測温点との位置関係を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a positional relationship between a divided cooling zone formed on the outer periphery of the furnace body and a temperature measurement point of the refractory surface temperature inside the furnace.

【図4】本発明に係る溶融炉の焼却灰供給口近傍の冷却
制御を実施したときの耐火物温度の経時変化を示す図で
ある。
FIG. 4 is a diagram showing a change with time in refractory temperature when cooling control is performed near the incinerator ash supply port of the melting furnace according to the present invention.

【図5】周方向にわたって冷却能を変化させたときの実
験結果を示す図であり、(a)は、そのときの炉内状況
を説明するための溶融炉の概略断面図であり、(b)
は、そのときの冷却帯位置とその位置に対応した耐火物
表面温度との関係を示す図である。
FIG. 5 is a diagram showing an experimental result when the cooling capacity is changed in the circumferential direction, (a) is a schematic cross-sectional view of a melting furnace for explaining the in-reactor situation at that time, and (b) )
FIG. 4 is a diagram showing a relationship between a cooling zone position at that time and a refractory surface temperature corresponding to the position.

【図6】従来のプラズマ溶融炉の炉体冷却構造を示す概
略説明図である。
FIG. 6 is a schematic explanatory view showing a furnace body cooling structure of a conventional plasma melting furnace.

【符号の説明】[Explanation of symbols]

1 プラズマトーチ 2 電源装置 3 炉底陰極 4 溶融炉 5 耐火物 6 水冷ジャッケット 7 焼却灰供給口 8 出滓口 9 プラズマアーク 10 スラグ浴 11 仕切り板 12 測温点 A〜H 冷却帯 Q1〜Q8 冷却水 1 Plasma Torch 2 Power Supply Device 3 Bottom Cathode 4 Melting Furnace 5 Refractory Material 6 Water Cooling Jacket 7 Incinerator Ash Supply Port 8 Outlet Port 9 Plasma Arc 10 Slag Bath 11 Partition Plate 12 Temperature Measuring Point A to H Cooling Zone Q1 to Q8 Cooling water

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F27B 3/24 F27B 3/24 (72)発明者 清水 由章 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location F27B 3/24 F27B 3/24 (72) Inventor Yoshiaki Shimizu 1-3 Wakihama-cho, Chuo-ku, Kobe-shi, Hyogo No. 18 Kobe Steel, Ltd. Kobe Head Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火物構造のプラズマ溶融炉炉体外周に
冷却水帯を設け、該冷却水帯に冷却水を循環させること
によりプラズマ溶融炉の炉体を冷却する構造であって、
前記冷却水帯を炉体の周囲方向に沿って分割すると共
に、各分割室を流れる冷却水による冷却能を、炉内の周
囲方向の雰囲気温度に応じて制御する手段を備えたこと
を特徴とするプラズマ溶融炉の炉体冷却構造。
1. A structure for cooling a furnace body of a plasma melting furnace by providing a cooling water zone on the outer periphery of a furnace body of a plasma melting furnace of refractory structure and circulating cooling water in the cooling water zone,
The cooling water zone is divided along the peripheral direction of the furnace body, and a means for controlling the cooling capacity of the cooling water flowing through each divided chamber according to the ambient temperature in the peripheral direction in the furnace is provided. Cooling structure for plasma melting furnace.
【請求項2】 前記冷却水帯が、少なくとも出滓口を中
心として周囲方向にそれぞれ中心角±30°の位置で分
割されてなる請求項1記載のプラズマ溶融炉の炉体冷却
構造。
2. The furnace body cooling structure for a plasma melting furnace according to claim 1, wherein the cooling water zone is divided at positions having a central angle of ± 30 ° in the circumferential direction around at least the outlet.
JP28261195A 1995-10-03 1995-10-03 Furnace body cooling structure for plasma melting furnace Pending JPH09101023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28261195A JPH09101023A (en) 1995-10-03 1995-10-03 Furnace body cooling structure for plasma melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28261195A JPH09101023A (en) 1995-10-03 1995-10-03 Furnace body cooling structure for plasma melting furnace

Publications (1)

Publication Number Publication Date
JPH09101023A true JPH09101023A (en) 1997-04-15

Family

ID=17654776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28261195A Pending JPH09101023A (en) 1995-10-03 1995-10-03 Furnace body cooling structure for plasma melting furnace

Country Status (1)

Country Link
JP (1) JPH09101023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249477A (en) * 2009-04-20 2010-11-04 Hyuga Seirensho:Kk Three-phase ac electrode type circular electric furnace and method of cooling furnace body of the same
WO2017135134A1 (en) * 2016-02-02 2017-08-10 株式会社クボタ Melting system and method for controlling melting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249477A (en) * 2009-04-20 2010-11-04 Hyuga Seirensho:Kk Three-phase ac electrode type circular electric furnace and method of cooling furnace body of the same
WO2017135134A1 (en) * 2016-02-02 2017-08-10 株式会社クボタ Melting system and method for controlling melting system

Similar Documents

Publication Publication Date Title
EP0335042B1 (en) Improved cooling system and method for molten material handling vessels
US5115184A (en) Cooling system for furnace roof having a removable delta
US6327296B1 (en) Cooled roof for electric arc furnaces and ladle furnaces
US4453253A (en) Electric arc furnace component
CA2599208C (en) Electric arc furnace
US20230296320A1 (en) Dynamic cooling of a metallurgical furnace
JPH09101023A (en) Furnace body cooling structure for plasma melting furnace
JPH11223464A (en) Electric furnace
JPH0835779A (en) Melting furnace for waste
EP0694733B1 (en) Waste melting furnace
EP0805325B1 (en) Cooling device for the roof in electric arc furnaces
EP2960608A1 (en) Method for cooling housing of melting unit and melting unit
US3375317A (en) Water-cooled electric furnace roof
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
AU2006217868B2 (en) Electric arc furnace
JP2613781B2 (en) Cooling method for refractories on the furnace wall of industrial kiln
JP3206956B2 (en) Water-cooled furnace lid of metal melting furnace
SU777378A1 (en) Electric arc furnace with variable geometry of working space
JP2001335818A (en) Method for cooling furnace bottom in blast furnace
JPH0435677B2 (en)
JPH11201438A (en) Body structure of ash treating electric melting furnace
JPS6075510A (en) Method for supplying coolant scrap in continuous steel making furnace