JPH0899812A - Metallic antibacterial agent and antibacterial material - Google Patents

Metallic antibacterial agent and antibacterial material

Info

Publication number
JPH0899812A
JPH0899812A JP21529795A JP21529795A JPH0899812A JP H0899812 A JPH0899812 A JP H0899812A JP 21529795 A JP21529795 A JP 21529795A JP 21529795 A JP21529795 A JP 21529795A JP H0899812 A JPH0899812 A JP H0899812A
Authority
JP
Japan
Prior art keywords
silver
antibacterial
particles
antibacterial agent
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21529795A
Other languages
Japanese (ja)
Inventor
Shinroku Kawakado
眞六 川角
Michio Yamada
迪夫 山田
Masatoshi Honma
昌利 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAZUMI GIJUTSU KENKYUSHO KK
Original Assignee
KAWAZUMI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAZUMI GIJUTSU KENKYUSHO KK filed Critical KAWAZUMI GIJUTSU KENKYUSHO KK
Priority to JP21529795A priority Critical patent/JPH0899812A/en
Publication of JPH0899812A publication Critical patent/JPH0899812A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide an inexpensive metallic antibacterial agent having high safety and high and long-acting bactericidal effect. CONSTITUTION: This powdery metallic antibacterial agent is composed of ceramic particles or base metal particles having an average particle diameter of 0.01-0.5μm and antibacterial metal particles having an average particle diameter of 0.0001-0.1μm and attached to the surface of the ceramic particles, etc., in dispersed state in an amount corresponding to 0.1-60wt.% based on the weight of the ceramic particles or the base metal particles. This antibacterial material contains the metallic antibacterial agent embedded in a matrix in a partly exposed state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗菌性金属の表面の抗
菌性を利用する微粉末状の抗菌剤、およびその抗菌剤を
表面に保持する抗菌性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial agent in the form of fine powder which utilizes the antibacterial property of the surface of an antibacterial metal, and an antibacterial material which holds the antibacterial agent on the surface.

【0002】[0002]

【従来の技術】近年、多くの病院において、殆どの抗生
物質に耐性を有するMRSA(メチシリン耐性黄色ブド
ウ球菌)による院内感染が問題となり、このため非抗生
物質系の殺菌剤である無機金属系殺菌剤が改めて注目を
浴びている。すなわち、はるか昔より、水銀、銀、銅、
亜鉛などの金属、およびそれらのイオンが殺菌作用を示
すことが知られており、これらの抗菌性金属の殺菌作用
の機序は、抗生物質による殺菌作用の機序と異なるた
め、抗生物質に耐性を有する菌類であっても、抗菌性金
属の殺菌作用に対しては耐性を示さないことが期待でき
るからである。そして事実、特に銀を中心とするそれら
の抗菌性金属による各種の菌類への殺菌作用と耐性不獲
得が確認されている(「化繊月報」1993年4月
号)。
2. Description of the Related Art In recent years, nosocomial infection due to MRSA (methicillin-resistant Staphylococcus aureus), which is resistant to most antibiotics, has become a problem in many hospitals. The drug is once again in the spotlight. In other words, mercury, silver, copper,
It is known that metals such as zinc and their ions have bactericidal action, and the mechanism of bactericidal action of these antibacterial metals is different from that of antibiotics. This is because it is expected that even a fungus having a resistance does not show resistance to the bactericidal action of the antibacterial metal. In fact, it has been confirmed that these antibacterial metals, especially silver, have bactericidal action against various fungi and non-acquisition of resistance (“April Bulletin” April 1993 issue).

【0003】抗菌性金属は、これまでに金属粉末(銀粉
末など)、金属ゼオライト(銀ゼオライト:ゼオライト
の金属イオンの一部を銀イオンで置換したもの)、銀メ
ッキした不織布、銀錯体などの形態もしくは状態でその
利用が検討されており、その内の一部は既に商品化され
ている。すなわち、それらの抗菌性金属や金属化合物
を、繊維(例、医療従事者用衣服あるいは患者用衣服な
どの構成材料としての繊維)、プラスチック成形物
(例、冷蔵庫の内壁、洗濯機の洗濯槽、ボールペンのグ
リップ部分、自転車のハンドル)、浄水器用浄水材料な
どに各種の製品に、その表面の一部を露出した状態で埋
めこんだり、あるいは砂場の砂などに添加混合する手段
を利用して、殺菌作用を発現させるようにされている。
[0003] Antibacterial metals such as metal powders (silver powders, etc.), metal zeolites (silver zeolite: some of the zeolite's metal ions replaced with silver ions), silver-plated nonwoven fabrics, silver complexes, etc. Its use in form or state is being considered, and some of them have already been commercialized. That is, the antibacterial metal or metal compound is used as a fiber (eg, a fiber as a constituent material of clothes for medical workers or clothes for patients), a plastic molded product (eg, an inner wall of a refrigerator, a washing tub of a washing machine, In various products such as ballpoint pen grip part, bicycle handle), water purifying material for water purifier, etc., by embedding a part of the surface in an exposed state, or by adding and mixing with sand in the sandbox, etc., It is designed to exert a bactericidal action.

【0004】銀に代表される抗菌性金属の抗菌剤は一般
に、溶出する銀イオンの抗菌性を利用する抗菌剤、そし
て金属状態にある抗菌性金属の表面で発生する活性酸素
による抗菌作用を利用する抗菌剤に分けられており、前
者の例としては銀イオンを取り込ませた銀ゼオライトや
銀錯体があり、後者の例としては銀粉末および銀メッキ
した繊維などがある。これらの内で、銀ゼオライトや銀
錯体などのような銀イオンの溶出による殺菌作用を利用
するものは短期的には抗菌効果が高いが、長期間使用し
た後、すなわち銀イオンの大部分が溶出した後には、抗
菌効果が顕著に低下するという問題がある。一方、銀粉
末を用いるものは抗菌効果の持続性は高いが、使用した
銀量当りの抗菌効果が余り高くないという欠点を持つ。
また、銀メッキした繊維では、メッキした銀が繊維から
容易に離脱するため、その銀メッキした繊維で織った病
院用衣類などは数回の洗濯で抗菌効果が顕著に低下する
という欠点を示す。従って、これまでに利用され、ある
いは利用が検討されている銀粉末、銀ゼオライト、銀錯
体、銀メッキ不織布などの金属性の抗菌剤は、高価であ
るか、殺菌効果が充分高くないか、あるいは抗菌効果の
持続性が低いなどという問題があった。
An antibacterial agent of an antibacterial metal typified by silver generally utilizes an antibacterial agent utilizing the antibacterial property of eluted silver ions and an antibacterial action by active oxygen generated on the surface of the antibacterial metal in a metallic state. Examples of the former include silver zeolite and silver complex having silver ions incorporated therein, and examples of the latter include silver powder and silver-plated fibers. Among these, those that utilize the bactericidal action by elution of silver ions, such as silver zeolite and silver complex, have a high antibacterial effect in the short term, but after long-term use, that is, most of the silver ions are eluted. After that, there is a problem that the antibacterial effect is significantly reduced. On the other hand, the one using silver powder has a high durability of antibacterial effect, but has a drawback that the antibacterial effect per silver amount used is not so high.
Further, with silver-plated fibers, the plated silver easily separates from the fibers, so that a hospital garment or the like woven with the silver-plated fibers has a drawback that the antibacterial effect is significantly reduced after several washings. Therefore, a metallic antibacterial agent such as a silver powder, a silver zeolite, a silver complex, a silver-plated non-woven fabric, etc., which has been or has been considered to be used, is expensive or does not have a sufficiently high bactericidal effect, or There was a problem that the antibacterial effect was not persistent.

【0005】[0005]

【発明が解決しようとする課題】抗菌性製品の開発が広
がるにつれて、安全性がより高く、殺菌効果あるいは抗
菌効果がより高く、そしてより安価な抗菌性金属材料
(金属性抗菌剤)への要求が高くなっている。
As the development of antibacterial products spreads, the demand for antibacterial metallic materials (metallic antibacterial agents) with higher safety, higher bactericidal effect or antibacterial effect, and cheaper Is high.

【0006】本発明は、高い安全性を持ち、高い殺菌効
果を長期間持続することができ、そして、より安価に製
造できる微粉末状の抗菌性金属材料(すなわち、金属性
抗菌剤)を提供することを目的とする。
The present invention provides a finely powdered antibacterial metal material (that is, a metallic antibacterial agent) which has high safety, can maintain a high bactericidal effect for a long period of time, and can be manufactured at a lower cost. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明は、平均粒径0.
01〜0.5μmのセラミック粒子もしくは卑金属粒子
の表面に、そのセラミック粒子もしくは卑金属粒子の重
量に対して0.1〜60重量%の量に相当する平均粒径
0.0001〜0.1μmの抗菌性金属粒子が分散付着
してなる微粉末状の金属性抗菌剤にある。
According to the present invention, an average particle size of 0.
Antibacterial agent having an average particle size of 0.0001 to 0.1 μm on the surface of the ceramic particles or base metal particles of 01 to 0.5 μm and corresponding to the amount of 0.1 to 60% by weight based on the weight of the ceramic particles or base metal particles. It is a finely powdered metallic antibacterial agent obtained by dispersing and adhering conductive metal particles.

【0008】また、本発明は、上記の微粉末状の金属性
抗菌剤が、その表面の一部を露出した状態で埋め込まれ
てなる抗菌性材料にもある。
The present invention also resides in an antibacterial material obtained by embedding the above-mentioned finely powdered metallic antibacterial agent with a part of the surface thereof being exposed.

【0009】本発明の好ましい態様は、下記の通りであ
る。 1)セラミック粒子もしくは卑金属粒子の比表面積が5
〜100m2/gである上記の金属性抗菌剤。 2)セラミック粒子もしくは卑金属粒子の比表面積が1
0〜100m2/gである上記の金属性抗菌剤。 3)抗菌性金属が銀である上記の金属性抗菌剤。 4)セラミック粒子もしくは卑金属粒子の平均粒径が
0.01〜0.1μmである上記の金属性抗菌剤。 5)セラミック粒子もしくは卑金属粒子の量に対する抗
菌性金属粒子の量の割合が1〜25重量%の範囲にある
上記の金属性抗菌剤。 6)抗菌性金属粒子の平均粒径がセラミック粒子または
卑金属粒子の平均粒径の1〜20%の範囲にある上記の
金属性抗菌剤。
Preferred embodiments of the present invention are as follows. 1) The specific surface area of ceramic particles or base metal particles is 5
The above-mentioned metallic antibacterial agent which is -100 m 2 / g. 2) The specific surface area of ceramic particles or base metal particles is 1
The above metallic antibacterial agent is 0 to 100 m 2 / g. 3) The above-mentioned metallic antibacterial agent in which the antibacterial metal is silver. 4) The above metal antibacterial agent, wherein the average particle diameter of the ceramic particles or base metal particles is 0.01 to 0.1 μm. 5) The above metallic antibacterial agent in which the ratio of the amount of antibacterial metal particles to the amount of ceramic particles or base metal particles is in the range of 1 to 25% by weight. 6) The above metallic antibacterial agent in which the average particle size of the antibacterial metal particles is in the range of 1 to 20% of the average particle size of the ceramic particles or the base metal particles.

【0010】本発明者の研究によると、セラミック微粒
子(あるいは卑金属微粒子)、特にチタン酸バリウム、
二酸化チタン、そしてシリカなどのセラミック微粒子
が、凝集性が少なく安定な微粒子として入手でき、しか
もそれらの粒子表面に銀などの抗菌性金属の微細粒子を
分散付着させた場合、その銀微細粒子分散付着セラミッ
ク微粒子は余り凝集することなく、樹脂材料などのよう
な様々な成形材料中に均一に分散されること、そしてセ
ラミック微粒子に分散付着された(担持された)銀微細
粒子は、通常単独で利用されている銀粒子に比べて粒径
が顕著に小さくなり、このため非常に比表面積が高い銀
微細粒子となることなどが判明した。そして、これらの
知見に基づく本発明者の研究により、樹脂材料などの各
種材料の成形体に、銀微細粒子分散付着セラミック微粒
子などのような抗菌性金属微細粒子が分散付着したセラ
ミック微粒子(または卑金属微粒子)を、その粒子の一
部分が成形体の表面に露出するように練り込むと、その
成形体に、効果が高く、かつ長期持続性の抗菌効果を付
与することができるという新たな事実を見出した。
According to the research conducted by the present inventor, ceramic fine particles (or base metal fine particles), particularly barium titanate,
Ceramic fine particles such as titanium dioxide and silica are available as stable fine particles with little cohesiveness, and when fine particles of antibacterial metal such as silver are dispersed and adhered to the surface of the particles, the silver fine particles are dispersed and adhered. The ceramic fine particles are not agglomerated so much and are uniformly dispersed in various molding materials such as resin materials. The silver fine particles dispersed and adhered to the ceramic fine particles are usually used alone. It has been found that the particle size is significantly smaller than that of the existing silver particles, and thus the silver fine particles have a very high specific surface area. Based on these findings, the inventors of the present invention have conducted research on the ceramic fine particles (or base metal) in which antibacterial metal fine particles such as fine silver particle-dispersed ceramic fine particles are dispersed and adhered to a molded body of various materials such as a resin material. We found a new fact that by kneading fine particles) so that a part of the particles is exposed on the surface of the molded product, the molded product can be given a highly effective and long-lasting antibacterial effect. It was

【0011】すなわち、銀粒子などは微細なものであっ
ても、通常は、平均粒径が数ミクロン程度(例えば、1
〜10μm)の粒子として商品化されており、それ以上
小さな粒子とすると、凝集力が強いため、すぐに二次凝
集体、三次凝集体を形成する傾向があり、またこれらの
凝集体は凝集力が強固であるため、簡単な分散操作によ
っては一次粒子に戻しにくい。これに対して、前記のよ
うなセラミック微粒子や卑金属微粒子に担持された銀微
細粒子は、その粒径が0.1μm以下であっても、その
担体に担持された状態では、凝集性が弱く、従って、樹
脂材料中などに均一に分散され易いという特徴がある。
That is, even if the silver particles are fine, the average particle size is usually about several microns (for example, 1
It is commercialized as particles of 10 to 10 μm), and if the particles are smaller than that, they tend to form secondary aggregates and tertiary aggregates immediately because of their strong cohesive force. Is strong, it is difficult to restore primary particles by a simple dispersion operation. On the other hand, the fine silver particles supported on the ceramic fine particles or base metal fine particles as described above have a weak cohesive property when they are carried on the carrier even if the particle size is 0.1 μm or less, Therefore, there is a feature that it is easily dispersed uniformly in the resin material.

【0012】また、本発明の微粉末状の金属性抗菌剤
は、樹脂材料に練り込んだ場合には、樹脂材料との相溶
性が高く、二次凝集が少ないため、その樹脂材料中で極
めて均一性の高い分散が可能となり、更に樹脂の劣化や
流動性の変動などのような樹脂特性の好ましくない変動
が発生しにくいという利点がある。さらにまた、本発明
の金属性抗菌剤は、例えば耐熱性が350℃以上(銀を
二酸化チタン粒子の表面に分散付着させた場合)といっ
たように非常に高いため、熱可塑性樹脂に加熱下に練り
込む際に、その抗菌性の低下が発生せず、非常に有利と
なる。そして、本発明の金属性抗菌剤を練り込んだ樹脂
成形物(例、フィルム、立体的成形品、フィラメント)
は、その樹脂材料の耐光性、耐候性、耐薬品性、表面光
沢、物理的耐久性を殆ど変化させないため、その使用に
際しての自由度が高いという利点もある。
Further, the finely powdered metallic antibacterial agent of the present invention, when kneaded into a resin material, has a high compatibility with the resin material and little secondary aggregation, so that it is extremely effective in the resin material. There is an advantage that highly uniform dispersion is possible, and further, undesired fluctuations of resin characteristics such as deterioration of resin and fluctuations of fluidity are less likely to occur. Furthermore, since the metallic antibacterial agent of the present invention has a very high heat resistance such as 350 ° C. or higher (when silver is dispersed and adhered to the surface of titanium dioxide particles), it is kneaded with a thermoplastic resin under heating. When it is put in, the antibacterial property does not decrease, which is very advantageous. And a resin molded product (eg, film, three-dimensional molded product, filament) in which the metallic antibacterial agent of the present invention is kneaded
Has an advantage that it has a high degree of freedom in its use because it hardly changes the light resistance, weather resistance, chemical resistance, surface gloss, and physical durability of the resin material.

【0013】本発明の微粉末状の金属性抗菌剤の核(担
体)となる材料であるセラミック微粒子あるいは卑金属
微粒子の例としては、前記のチタン酸バリウム、二酸化
チタン、シリカ(二酸化ケイ素)、アルミナ(酸化アル
ミニウム)の微粒子、そして酸化ジルコニウム、ニッケ
ル、銅(被覆用抗菌性金属として銀を用いる場合)の微
粒子を挙げることができる。これらの内で特に好ましい
のは、チタン酸バリウム、二酸化チタン、シリカなどの
セラミックの微粒子である。これらの核となるセラミッ
ク微粒子あるいは卑金属微粒子は、平均粒径が0.01
〜0.5μm(好ましくは0.1μm以下、特に好まし
くは0.08μm以下)のものである。また、、セラミ
ック微粒子もしくは卑金属微粒子の比表面積は5〜10
0m2/gの範囲にあること、特に10〜100m2/gの
範囲にあることが好ましい。
Examples of the ceramic fine particles or base metal fine particles that are the material (core) of the fine powdery metallic antibacterial agent of the present invention include barium titanate, titanium dioxide, silica (silicon dioxide) and alumina. Examples thereof include fine particles of (aluminum oxide) and fine particles of zirconium oxide, nickel, and copper (when silver is used as the antibacterial metal for coating). Particularly preferred among these are fine particles of ceramics such as barium titanate, titanium dioxide and silica. The ceramic fine particles or the base metal fine particles serving as the cores of these have an average particle diameter of 0.01
To 0.5 μm (preferably 0.1 μm or less, particularly preferably 0.08 μm or less). The specific surface area of the ceramic fine particles or base metal fine particles is 5 to 10
In the range of 0 m 2 / g, it is particularly preferably from 10 to 100 m 2 / g.

【0014】上記のようなセラミック微粒子あるいは卑
金属微粒子の表面に抗菌性金属の微細粒子を分散付着さ
せる手段としては、公知の化学メッキ法を利用すること
ができる。すなわち、核材料微粒子を水性溶媒中に分散
させ、これを銀塩水溶液などのような抗菌性金属化合物
の水溶液と混合し、そののち、還元剤を添加し、分散さ
れている核材料微粒子の表面に銀などの抗菌性金属の微
細粒子を析出させる方法である。
As means for dispersing and adhering fine particles of antibacterial metal on the surface of the above ceramic fine particles or base metal fine particles, a known chemical plating method can be used. That is, the nuclear material fine particles are dispersed in an aqueous solvent, mixed with an aqueous solution of an antibacterial metal compound such as an aqueous silver salt solution, and then a reducing agent is added to the surface of the dispersed nuclear material fine particles. It is a method of depositing fine particles of antibacterial metal such as silver.

【0015】抗菌性金属としては、銀が抗菌性が高く、
また安全性も高いため、利用しやすいが、用途によって
は銅、亜鉛などの抗菌性金属を用いることも可能であ
る。
As the antibacterial metal, silver has a high antibacterial property,
Further, since it is highly safe, it is easy to use, but it is also possible to use an antibacterial metal such as copper or zinc depending on the application.

【0016】本発明の抗菌性金属微細粒子が形成される
際に担体(核、あるいはコア)となるセラミック部ある
いは卑金属部と、その表面に分散付着する抗菌性金属部
との比率は通常、前者を100重量部とした場合に、
0.1〜60重量部(好ましくは1〜25重量部)とす
る。あるいは、前者:後者の比を70:20〜99:1
(重量比)とする。特に、前者:後者が、66:34〜
95:5(重量比)のものが好ましい。
The ratio of the ceramic part or base metal part which becomes a carrier (nucleus or core) when the antibacterial metal fine particles of the present invention are formed and the antibacterial metal part dispersed and adhered to the surface thereof is usually the former. Is 100 parts by weight,
The amount is 0.1 to 60 parts by weight (preferably 1 to 25 parts by weight). Alternatively, the ratio of the former to the latter is 70:20 to 99: 1.
(Weight ratio). In particular, the former: the latter is 66: 34-
Those of 95: 5 (weight ratio) are preferable.

【0017】本発明の微粉末状の金属性抗菌剤は、各種
の材料の成形体に、その少なくとも一部の表面を露出さ
せた状態で埋め込むことによって、半永久的な抗菌剤と
して各種の用途に利用することができる。たとえば、ポ
リエステルなどの樹脂材料と混合して、繊維とすること
により抗菌性繊維を得ることができる。この抗菌性繊維
は、それ単独、あるいは他の繊維と一緒に織るか、編む
かして布としたのち、医療担当者用衣服、患者用衣服、
医療用シーツ、病室のカーテン、包帯などとして、ある
いは通常人の下着、靴下などとして利用することができ
る。また、同じく樹脂材料と混合したのち種々の形状に
成形することにより、冷蔵庫の内壁、冷蔵庫の内部部
品、洗濯機の洗濯槽、掃除機のフィルタ、ボールペンの
グリップ、自動車の内装部品、電話機の送受話器、食
器、抗菌性ペイント、パーソナルコンピュータのキーボ
ード、壁紙、浄水器用浄水材料、プラスチック製まな
板、コーキング材、漁網、肉、魚、野菜、果物などの食
品の包装用フィルム、花瓶などとして利用することがで
きる。あるいは、砂場の砂に混ぜ込むことによって砂場
の殺菌にも利用することができる。また、花瓶の水の中
に本発明の微粉末状の金属性抗菌剤を投入することによ
って、その花瓶に行けた生花の寿命を伸ばすこともでき
る。さらに、消臭パウダやベビーパウダに本発明の微粉
末状の金属性抗菌剤を混合して、そのパウダを散布した
皮膚表面での雑菌の繁殖を抑制させることも可能であ
る。
The finely powdered metallic antibacterial agent of the present invention is used in various applications as a semi-permanent antibacterial agent by embedding it in a molded body of various materials with at least a part of its surface exposed. Can be used. For example, the antibacterial fiber can be obtained by mixing with a resin material such as polyester to form a fiber. This antibacterial fiber is woven or knitted with other fibers alone or with other fibers to form a cloth, which is then used for medical staff clothes, patient clothes,
It can be used as medical sheets, curtains in hospital rooms, bandages, etc., or as underwear and socks for ordinary people. Similarly, by mixing with resin material and then molding it into various shapes, the inner wall of the refrigerator, the internal parts of the refrigerator, the washing tank of the washing machine, the filter of the vacuum cleaner, the grip of the ballpoint pen, the interior parts of the automobile, the transmission of the telephone. Use as a handset, tableware, antibacterial paint, personal computer keyboard, wallpaper, water purification material for water purifier, plastic cutting board, caulking material, fishing net, film for packaging food such as meat, fish, vegetables and fruits, vase, etc. You can Alternatively, it can be used to sterilize the sandbox by mixing it with the sand in the sandbox. Further, by adding the finely powdered metallic antibacterial agent of the present invention to the water in the vase, it is possible to extend the life of the fresh flower that has been able to go to the vase. Furthermore, it is also possible to mix the deodorant powder and baby powder with the finely powdered metallic antibacterial agent of the present invention to suppress the growth of various bacteria on the skin surface on which the powder is sprayed.

【0018】[0018]

【実施例】【Example】

[実施例1]銀付着二酸化チタン微粉末の製造 1)硝酸ジアミン銀溶液の調製 硝酸銀8.0g(Agとして5.0g含む)を200m
Lの純水に溶解した。これにアンモニア水50mLを加
え、硝酸銀のアンミン錯体(硝酸ジアミン銀)溶液を得
た。 2)銀(10重量%)付着二酸化チタン微粉末の製造 二酸化チタン粉末(平均粒子径:0.02μm、比表面
積:40.8m2/g)45gに、純水1000mL、及
び上記1)で得た硝酸ジアミン銀溶液を加え、超音波に
より分散させた。この分散液に、ブドウ糖10gを含む
ブドウ糖水溶液200mLを添加し、40〜60℃にて
1時間撹拌し、二酸化チタン粉末の表面に金属銀を析出
させた。得られた銀付着粉末をデカンテーションにより
分離し、洗浄、乾燥して50gの銀(10重量%)付着
二酸化チタン微粉末(平均粒子径:0.02μm、比表
面積:40.6m2/g)を得た。
[Example 1] Preparation of silver-titanium dioxide fine powder 1) Preparation of diamine silver nitrate solution 200 g of silver nitrate 8.0 g (including 5.0 g as Ag)
It was dissolved in L of pure water. To this, 50 mL of aqueous ammonia was added to obtain a solution of silver nitrate ammine complex (silver diamine nitrate). 2) Manufacture of fine titanium dioxide powder adhering to silver (10% by weight) To 45 g of titanium dioxide powder (average particle size: 0.02 μm, specific surface area: 40.8 m 2 / g), obtain 1000 mL of pure water, and 1) above. The diamine silver nitrate solution was added and dispersed by ultrasonic waves. 200 mL of an aqueous glucose solution containing 10 g of glucose was added to this dispersion, and the mixture was stirred at 40 to 60 ° C. for 1 hour to deposit metallic silver on the surface of the titanium dioxide powder. The obtained silver-adhered powder is separated by decantation, washed and dried, and 50 g of silver (10% by weight) -adhered titanium dioxide fine powder (average particle diameter: 0.02 μm, specific surface area: 40.6 m 2 / g) Got

【0019】[実施例2]銀付着二酸化チタン微粉末の
製造 1)硝酸ジアミン銀溶液の調製 硝酸銀40g(Agとして25g含む)を1000mL
の純水に溶解した。これにアンモニア水250mLを加
え、硝酸銀のアンミン錯体(硝酸ジアミン銀)溶液を得
た。 2)銀(50重量%)付着二酸化チタン微粉末の製造 二酸化チタン粉末(平均粒子径:0.02μm、比表面
積:40.8m2/g)25gを上記1)で得た硝酸ジア
ミン銀溶液に加え、超音波により分散させた。この分散
液に、ブドウ糖50gを含むブドウ糖水溶液500mL
を添加し、40〜60℃にて1時間撹拌し、二酸化チタ
ン粉末の表面に金属銀を析出させた。得られた銀付着粉
末をデカンテーションにより分離し、洗浄、乾燥して5
0gの銀(50重量%)付着二酸化チタン微粉末(平均
粒子径:0.04μm、比表面積:24.6m2/g)を
得た。
[Example 2] Production of fine titanium dioxide powder adhering to silver 1) Preparation of diamine silver nitrate solution 1000 mL of 40 g of silver nitrate (including 25 g as Ag)
In pure water. To this, 250 mL of aqueous ammonia was added to obtain a solution of silver nitrate ammine complex (silver diamine nitrate). 2) Manufacture of fine titanium dioxide powder adhering to silver (50% by weight) 25 g of titanium dioxide powder (average particle size: 0.02 μm, specific surface area: 40.8 m 2 / g) was added to the diamine silver nitrate solution obtained in 1) above. In addition, it was dispersed by ultrasonic waves. 500 mL of an aqueous glucose solution containing 50 g of glucose in this dispersion.
Was added and stirred at 40 to 60 ° C. for 1 hour to deposit metallic silver on the surface of the titanium dioxide powder. The silver-adhered powder obtained is separated by decantation, washed and dried.
0 g of silver (50% by weight) -adhered titanium dioxide fine powder (average particle diameter: 0.04 μm, specific surface area: 24.6 m 2 / g) was obtained.

【0020】[実施例3]銀付着二酸化チタン微粉末の
製造 1)硝酸ジアミン銀溶液の調製 硝酸銀4.0g(Agとして2.5g含む)を90mL
の純水に溶解した。これにアンモニア水10mLを加
え、硝酸銀のアンミン錯体(硝酸ジアミン銀)溶液を得
た。 2)銀(5重量%)付着二酸化チタン微粉末の製造 二酸化チタン粉末(平均粒子径:0.2μm、比表面
積:11.43m2/g)47.5gに純水250mL、
及び上記1)で得た硝酸ジアミン銀溶液を加え、超音波
により分散させた。この分散液にブドウ糖5gを含むブ
ドウ糖水溶液50mLを添加し、40〜60℃にて1時
間撹拌し、二酸化チタン粉末の表面に金属銀を析出させ
た。得られた銀付着粉末をデカンテーションにより分離
し、洗浄、乾燥して50gの銀(5重量%)付着二酸化
チタン微粉末(平均粒子径:0.2μm、比表面積:1
0.06m2/g)を得た。上記の銀付着二酸化チタン微
粉末の電子顕微鏡写真(倍率:60000倍)を図1に
示す。二酸化チタン微粉末の表面に微細な銀粒子が分散
付着している状態が良く分る。
[Example 3] Preparation of silver-titanium dioxide fine powder 1) Preparation of diamine silver nitrate solution 90 mL of silver nitrate 4.0 g (containing 2.5 g as Ag)
In pure water. To this, 10 mL of aqueous ammonia was added to obtain a solution of silver nitrate ammine complex (silver diamine silver nitrate). 2) Manufacture of fine titanium dioxide powder adhering to silver (5% by weight) 47.5 g of titanium dioxide powder (average particle size: 0.2 μm, specific surface area: 11.43 m 2 / g) and 250 mL of pure water,
And the silver diamine nitrate solution obtained in 1) above was added and dispersed by ultrasonic waves. 50 mL of an aqueous glucose solution containing 5 g of glucose was added to this dispersion and stirred at 40 to 60 ° C. for 1 hour to deposit metallic silver on the surface of the titanium dioxide powder. The obtained silver-adhered powder is separated by decantation, washed and dried to obtain 50 g of silver (5% by weight) -adhered titanium dioxide fine powder (average particle diameter: 0.2 μm, specific surface area: 1
0.06 m 2 / g) was obtained. An electron micrograph (magnification: 60,000 times) of the above-mentioned silver-adhered titanium dioxide fine powder is shown in FIG. The state in which fine silver particles are dispersed and adhered to the surface of the titanium dioxide fine powder can be clearly seen.

【0021】[実施例4]銀付着二酸化チタン微粉末の
製造 1)硝酸ジアミン銀溶液の調製 硝酸銀8.0g(Agとして5g含む)を80mLの純
水に溶解した。これにアンモニア水20mLを加え、硝
酸銀のアンミン錯体(硝酸ジアミン銀)溶液を得た。 2)銀(10重量%)付着二酸化チタン微粉末の製造 二酸化チタン粉末(平均粒子径:0.2μm、比表面
積:11.43m2/g)45gを上記1)で得た硝酸ジ
アミン銀溶液に加え、超音波により分散させた。この分
散液に、ブドウ糖10gを含むブドウ糖水溶液100m
Lを添加し、40〜60℃にて1時間撹拌し、二酸化チ
タン粉末の表面に金属銀を析出させた。得られた銀付着
粉末をデカンテーションにより分離し、洗浄、乾燥して
50gの銀(10重量%)付着二酸化チタン微粉末(平
均粒子径:0.2μm、比表面積:9.85m2/g)を
得た。
[Example 4] Production of silver dioxide fine titanium dioxide powder 1) Preparation of silver nitrate diamine solution 8.0 g of silver nitrate (containing 5 g as Ag) was dissolved in 80 mL of pure water. 20 mL of ammonia water was added to this to obtain an ammine complex (silver diamine silver nitrate) solution of silver nitrate. 2) Manufacture of fine titanium dioxide powder adhering to silver (10% by weight) 45 g of titanium dioxide powder (average particle size: 0.2 μm, specific surface area: 11.43 m 2 / g) was added to the diamine silver nitrate solution obtained in 1) above. In addition, it was dispersed by ultrasonic waves. This dispersion contains 100 g of glucose aqueous solution containing 10 g of glucose.
L was added and the mixture was stirred at 40 to 60 ° C. for 1 hour to deposit metallic silver on the surface of the titanium dioxide powder. The obtained silver-adhered powder is separated by decantation, washed and dried to give 50 g of silver (10 wt%)-adhered titanium dioxide fine powder (average particle size: 0.2 μm, specific surface area: 9.85 m 2 / g). Got

【0022】[実施例5]銀付着二酸化チタン微粉末の
製造 1)硝酸ジアミン銀溶液の調製 硝酸銀0.8g(Agとして0.5g含む)を48mL
の純水に溶解した。これにアンモニア水2mLを加え、
硝酸銀のアンミン錯体(硝酸ジアミン銀)溶液を得た。 2)銀(1重量%)付着二酸化チタン微粉末の製造 二酸化チタン粉末(平均粒子径:0.2μm、比表面
積:11.43m2/g)49.5gを上記1)で得た硝
酸ジアミン銀溶液に加え、超音波により分散させた。こ
の分散液に、ブドウ糖1gを含むブドウ糖水溶液10m
Lを添加し、40〜60℃にて1時間撹拌し、二酸化チ
タン粉末の表面に金属銀を析出させた。得られた銀付着
粉末をデカンテーションにより分離し、洗浄、乾燥し
て、50gの銀(1重量%)付着二酸化チタン微粉末
(平均粒子径:0.2μm、比表面積:10.42m2/
g)を得た。
[Example 5] Production of fine powder of titanium dioxide deposited on silver 1) Preparation of diamine silver nitrate solution 48 mL of 0.8 g of silver nitrate (containing 0.5 g as Ag)
In pure water. Add 2 mL of ammonia water to this,
An ammine complex (silver diamine nitrate) solution of silver nitrate was obtained. 2) Production of titanium dioxide fine powder adhering to silver (1% by weight) Titanium dioxide powder (average particle size: 0.2 μm, specific surface area: 11.43 m 2 / g) 49.5 g of diamine diamine silver nitrate obtained in 1) above It was added to the solution and dispersed ultrasonically. This dispersion contains 10 g of an aqueous glucose solution containing 1 g of glucose.
L was added and the mixture was stirred at 40 to 60 ° C. for 1 hour to deposit metallic silver on the surface of the titanium dioxide powder. The obtained silver-adhered powder was separated by decantation, washed, and dried to obtain 50 g of silver (1% by weight) -adhered titanium dioxide fine powder (average particle size: 0.2 μm, specific surface area: 10.42 m 2 /
g) was obtained.

【0023】[実施例6]抗菌剤としての評価 コントロールとして銀粉末(平均粒子径:1μm、比表
面積:0.4m2/g)を用い、実施例1と2において得
た銀付着二酸化チタン微粉末のそれぞれの抗菌性を大腸
菌を対象にして培地を利用し、公知の方法により調べ
た。その結果、実施例2で得た銀付着二酸化チタン微粉
末は、純銀粉末に対して明らかに高い抗菌性を示すこと
が観察された。また、実施例1の銀付着二酸化チタン微
粉末は更に高い抗菌性を示すことが確認された。
Example 6 Evaluation as Antibacterial Agent As a control, silver powder (average particle diameter: 1 μm, specific surface area: 0.4 m 2 / g) was used, and the silver-adhered titanium dioxide fine particles obtained in Examples 1 and 2 were used. The antibacterial properties of each of the powders were examined by a known method using Escherichia coli as a target and using a medium. As a result, it was observed that the silver-adhered titanium dioxide fine powder obtained in Example 2 exhibited a clearly high antibacterial property against pure silver powder. In addition, it was confirmed that the silver-adhered titanium dioxide fine powder of Example 1 exhibited a higher antibacterial property.

【0024】[実施例7]抗菌剤としての評価 実施例3と5で製造した銀付着量5%と1%の銀付着二
酸化チタン微粉末のそれぞれについて、MRSA(耐性
黄色ブドウ球菌)、大腸菌、そして緑膿菌に対する抗菌
作用を、銀付着二酸化チタン微粉末の濃度を段階的に変
えた50mMリン酸バッファ分散液(100μg/mL
〜0.20μg/mL)を用い、培地として感受性測定
用ブイヨン(株式会社ニッスイ製)を用いて35℃18
時間培養して増殖あるいは減少した各菌の数を測定し
た。その測定結果を表1に示す。なお、銀付着二酸化チ
タン微粉末を無添加のリン酸バッファをコントロールと
して、そのコントロールでの菌増殖量(接種菌数:10
000、培養後の菌数:100000)を考慮し、同じ
接種菌数で培養後の菌数が50以下になった場合を抗菌
剤有効濃度とした。
[Example 7] Evaluation as an antibacterial agent MRSA (resistant Staphylococcus aureus), Escherichia coli, and E. coli were prepared for each of the silver-adhered titanium dioxide fine powders prepared in Examples 3 and 5 having a silver-adhesion amount of 5% and 1%, respectively. And the antibacterial action against Pseudomonas aeruginosa, 50 mM phosphate buffer dispersion liquid (100 μg / mL
˜0.20 μg / mL) and a broth for sensitivity measurement (manufactured by Nissui Co., Ltd.) as a medium at 35 ° C.
The number of each bacterium that grew or decreased after culturing for a period of time was measured. The measurement results are shown in Table 1. In addition, a phosphate buffer containing no silver-titanium dioxide fine powder was used as a control, and the bacterial growth amount (the number of inoculated bacteria: 10
000, the number of bacteria after culturing: 100,000), the effective concentration of the antibacterial agent was determined when the number of bacteria after culturing was 50 or less with the same number of inoculated bacteria.

【0025】[0025]

【表1】 表1(抗菌剤有効濃度:単位μg/mL) ──────────────────────────────────── 銀付着二酸化チタン微粉末 MRSA 大腸菌 緑膿菌 ──────────────────────────────────── 実施例3 (Ag:5%) 0.78 0.20 3.13 実施例5 (Ag:1%) 1.56 0.20 6.25 ────────────────────────────────────[Table 1] Table 1 (effective concentration of antibacterial agent: unit: μg / mL) ────────────────────────────────── ───Silver-attached titanium dioxide fine powder MRSA E. coli Pseudomonas aeruginosa ───────────────────────────────────── Example 3 (Ag: 5%) 0.78 0.20 3.13 Example 5 (Ag: 1%) 1.56 0.20 6.25 ─────────────── ──────────────────────

【0026】[実施例8]抗菌性材料の製造 実施例1の銀付着二酸化チタン微粉末をABS樹脂に対
して1重量%加え、混合したのち、公知の方法により成
形し、ABS樹脂シートを得た。得られたABS樹脂シ
ートの表面を電子顕微鏡により調べたところ、多数の銀
付着二酸化チタン微粉末の露出表面が観察された。
Example 8 Production of Antibacterial Material The silver-adhered titanium dioxide fine powder of Example 1 was added to 1% by weight of ABS resin, mixed and molded by a known method to obtain an ABS resin sheet. It was When the surface of the obtained ABS resin sheet was examined by an electron microscope, many exposed surfaces of silver-deposited titanium dioxide fine powder were observed.

【0027】[実施例9]抗菌性材料(銀付着二酸化チ
タン微粉末練り込み樹脂フィルム)の製造および抗菌性
の評価 実施例3の銀付着二酸化チタン微粉末をポリエチレン樹
脂に対して1重量%加え、混合したのち、公知の方法に
より成形し、厚さ20μmの銀付着二酸化チタン微粉末
練り込み樹脂フィルムを得た。得られた銀付着二酸化チ
タン微粉末練り込み樹脂フィルムの表面を電子顕微鏡に
より調べたところ、多数の銀付着二酸化チタン微粉末の
露出表面が観察された。上記で得た銀付着二酸化チタン
微粉末練り込み樹脂フィルムで金目鯛の切り身を包み、
室温で放置した。また、同時にコントロールとして、銀
付着二酸化チタン微粉末を練り込まなかった樹脂フィル
ムを用意し、同様に金目鯛の切り身を包み、室温で放置
した。双方におけるで金目鯛の切り身の変色状況を観察
したところ、16日後には、コントロールので金目鯛の
切り身は明らかな変色(暗色に変化)を示したが、銀付
着二酸化チタン微粉末練り込み樹脂フィルムで包んだ金
目鯛の切り身には変色が見られなかった。
[Example 9] Production of antibacterial material (silver-adhered titanium dioxide fine powder kneaded resin film) and evaluation of antibacterial property The silver-adhered titanium dioxide fine powder of Example 3 was added to the polyethylene resin in an amount of 1% by weight. After mixing, the mixture was molded by a known method to obtain a 20 μm thick silver-adhered titanium dioxide fine powder kneaded resin film. When the surface of the resin film obtained by kneading the obtained silver-adhered titanium dioxide fine powder was examined by an electron microscope, many exposed surfaces of silver-adhered titanium dioxide fine powder were observed. Wrap the fillet of goldfish in the silver-adhered titanium dioxide fine powder kneaded resin film obtained above,
It was left at room temperature. At the same time, as a control, a resin film in which the silver-titanium dioxide fine powder was not kneaded was prepared. Similarly, a fillet of goldfish was wrapped and left at room temperature. When the discolored state of the fillet of Kinme sea bream was observed on both sides, after 16 days, the control of the Kinme sea bream fillet showed a clear discoloration (changed to dark color) after 16 days, but the silver-adhered titanium dioxide fine powder kneaded resin film No discoloration was seen in the fillet of Kimame sea bream wrapped in.

【0028】[実施例10]抗菌性材料(銀付着二酸化
チタン微粉末練り込み樹脂フィラメント)の製造および
抗菌性の評価 実施例3の銀付着二酸化チタン微粉末をポリエチレン樹
脂に対して1重量%加え、混合したのち、公知の方法に
より成形し、太さ300μmの銀付着二酸化チタン微粉
末練り込み樹脂フィラメントを得た。得られた銀付着二
酸化チタン微粉末練り込み樹脂フィラメントの表面を電
子顕微鏡により調べたところ、無数の銀付着二酸化チタ
ン微粉末の露出表面が観察された。上記銀付着二酸化チ
タン微粉末練り込み樹脂フィラメント30cm(0.0
2g)そして水300mLを花瓶に入れ、この花瓶にチ
ューリップを差して、室温で放置した。また、同時にコ
ントロールとして、同量の水のみを花瓶に入れ、この花
瓶にチューリップを差して、室温で放置した。10日後
に花の状態を観察したところ、コントロールでは花のし
おれと、変色(暗色化)が確認されたが、銀付着二酸化
チタン微粉末練り込み樹脂フィラメントを加えた水に差
した花には殆ど変化は見られなかった。
[Example 10] Production of antibacterial material (silver-adhered titanium dioxide fine powder kneaded resin filament) and evaluation of antibacterial property [0028] 1% by weight of the silver-adhered titanium dioxide fine powder of Example 3 was added to the polyethylene resin. After mixing, the mixture was molded by a known method to obtain a resin filament having a thickness of 300 μm and a fine powder of silver-attached titanium dioxide kneaded therein. When the surface of the resin filament kneaded with the fine silver-titanium dioxide fine powder thus obtained was examined with an electron microscope, an innumerable exposed surface of the fine silver-titanium dioxide fine powder was observed. Resin filament 30 cm (0.0
2 g) and 300 mL of water was placed in a vase, tulips were placed in the vase, and the mixture was left at room temperature. At the same time, as a control, only the same amount of water was put in a vase, tulips were placed in the vase, and the mixture was left at room temperature. When the condition of the flowers was observed after 10 days, wilting and discoloration (darkening) of the flowers were confirmed in the control, but almost no flowers were immersed in water containing the resin filaments kneaded with the silver-adhered titanium dioxide fine powder. No change was seen.

【0029】[0029]

【発明の効果】本発明の微粉末状の金属性抗菌剤は、セ
ラミック微粒子または卑金属微粒子の表面に抗菌性金属
の微細粒子が分散付着された形態にあって、その抗菌性
金属の微細粒子は高い比表面積を有するため、抗菌性金
属として銀を例にとると、純銀粒子などのに比較して、
安価で、かつ高い抗菌性を確保することができる。さら
に、付着表面はイオンではなく、銀などの金属自体であ
るため、その安全性は高く、また抗菌活性の持続性が高
い。従って、本発明の微粉末状の金属性抗菌剤は、各種
の医療材料、成形体、化粧品、食品包装フィルムなどに
混入させる抗菌剤として特に有用である。
The finely powdered metallic antibacterial agent of the present invention has a form in which fine particles of antibacterial metal are dispersed and adhered to the surface of ceramic fine particles or base metal fine particles, and the fine particles of antibacterial metal are Since it has a high specific surface area, if silver is taken as an example of the antibacterial metal, compared to pure silver particles,
It is inexpensive and can ensure high antibacterial properties. Furthermore, since the adhered surface is not an ion but a metal such as silver itself, its safety is high and its antibacterial activity is highly durable. Therefore, the finely powdered metallic antibacterial agent of the present invention is particularly useful as an antibacterial agent to be mixed into various medical materials, molded products, cosmetics, food packaging films and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う銀付着二酸化チタン微粉末の電子
顕微鏡写真(倍率:60000倍)である。
1 is an electron micrograph (magnification: 60,000 times) of a silver-adhered titanium dioxide fine powder according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 1/10 6/46 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location D01F 1/10 6/46 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径0.01〜0.5μmのセラミ
ック粒子もしくは卑金属粒子の表面に、そのセラミック
粒子もしくは卑金属粒子の重量に対して0.1〜60重
量%の量に相当する平均粒径0.0001〜0.1μm
の抗菌性金属粒子が分散付着してなる微粉末状の金属性
抗菌剤。
1. An average particle corresponding to an amount of 0.1 to 60% by weight based on the weight of the ceramic particle or base metal particle on the surface of the ceramic particle or base metal particle having an average particle diameter of 0.01 to 0.5 μm. Diameter 0.0001-0.1 μm
A fine powder metal antibacterial agent obtained by dispersing and adhering antibacterial metal particles.
【請求項2】 セラミック粒子もしくは卑金属粒子の比
表面積が5〜100m2/gである請求項1に記載の金属
性抗菌剤。
2. The metallic antibacterial agent according to claim 1, wherein the specific surface area of the ceramic particles or base metal particles is 5 to 100 m 2 / g.
【請求項3】 セラミック粒子もしくは卑金属粒子の比
表面積が10〜100m2/gである請求項1に記載の金
属性抗菌剤。
3. The metallic antibacterial agent according to claim 1, wherein the ceramic particles or the base metal particles have a specific surface area of 10 to 100 m 2 / g.
【請求項4】 抗菌性金属が銀である請求項1に記載の
金属性抗菌剤。
4. The metallic antibacterial agent according to claim 1, wherein the antibacterial metal is silver.
【請求項5】 セラミック粒子もしくは卑金属粒子の平
均粒径が0.01〜0.1μmである請求項1に記載の
金属性抗菌剤。
5. The metallic antibacterial agent according to claim 1, wherein the average particle diameter of the ceramic particles or base metal particles is 0.01 to 0.1 μm.
【請求項6】 セラミック粒子もしくは卑金属粒子の量
に対する抗菌性金属粒子の量の割合が1〜25重量%の
範囲にある請求項1に記載の金属性抗菌剤。
6. The metallic antibacterial agent according to claim 1, wherein the ratio of the amount of antibacterial metal particles to the amount of ceramic particles or base metal particles is in the range of 1 to 25% by weight.
【請求項7】 抗菌性金属粒子の平均粒径がセラミック
粒子または卑金属粒子の平均粒径の1〜20%の範囲に
ある請求項1に記載の金属性抗菌剤。
7. The metallic antibacterial agent according to claim 1, wherein the average particle diameter of the antibacterial metal particles is in the range of 1 to 20% of the average particle diameter of the ceramic particles or the base metal particles.
【請求項8】 請求項1ないし7の内のいずれかの項に
記載の金属性抗菌剤が、その表面の一部を露出した状態
で樹脂製品もしくは繊維製品に埋め込まれてなる抗菌性
材料。
8. An antibacterial material obtained by embedding the metallic antibacterial agent according to any one of claims 1 to 7 in a resin product or a textile product with a part of its surface exposed.
JP21529795A 1994-08-01 1995-08-01 Metallic antibacterial agent and antibacterial material Withdrawn JPH0899812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21529795A JPH0899812A (en) 1994-08-01 1995-08-01 Metallic antibacterial agent and antibacterial material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-200085 1994-08-01
JP20008594 1994-08-01
JP21529795A JPH0899812A (en) 1994-08-01 1995-08-01 Metallic antibacterial agent and antibacterial material

Publications (1)

Publication Number Publication Date
JPH0899812A true JPH0899812A (en) 1996-04-16

Family

ID=26511958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21529795A Withdrawn JPH0899812A (en) 1994-08-01 1995-08-01 Metallic antibacterial agent and antibacterial material

Country Status (1)

Country Link
JP (1) JPH0899812A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259531A (en) * 1997-03-21 1998-09-29 Mitsubishi Rayon Co Ltd Antimicrobial cellulose acetate yarn and its production
JPH11349423A (en) * 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
JP2006257070A (en) 2005-02-16 2006-09-28 Nippon Soda Co Ltd Liquid antimicrobial agent composition
JP2012153607A (en) * 2011-01-21 2012-08-16 Toyama Prefecture Cut flower life-extending agent
JP2014040416A (en) * 2012-08-10 2014-03-06 Tsukasa Sakurada Sterilization and deodorization agent, production method of the same, and application method of the agent
WO2016157155A1 (en) * 2015-04-02 2016-10-06 Granitifiandre S.P.A. Photocatalytic particles and process for the production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259531A (en) * 1997-03-21 1998-09-29 Mitsubishi Rayon Co Ltd Antimicrobial cellulose acetate yarn and its production
JPH11349423A (en) * 1998-02-19 1999-12-21 Daido Steel Co Ltd Antibacterial and deodorant material and its production
JP2006257070A (en) 2005-02-16 2006-09-28 Nippon Soda Co Ltd Liquid antimicrobial agent composition
JP2012153607A (en) * 2011-01-21 2012-08-16 Toyama Prefecture Cut flower life-extending agent
JP2014040416A (en) * 2012-08-10 2014-03-06 Tsukasa Sakurada Sterilization and deodorization agent, production method of the same, and application method of the agent
WO2016157155A1 (en) * 2015-04-02 2016-10-06 Granitifiandre S.P.A. Photocatalytic particles and process for the production thereof

Similar Documents

Publication Publication Date Title
US5824267A (en) Metallic bactericidal agent
JP5285199B2 (en) Antibacterial and antiviral polymer materials
JPH08104605A (en) Antibacterial agent
EP1133327A1 (en) Antibiotic hydrophilic polymer coating
JPS6354013B2 (en)
WO2005072712A2 (en) Antimicrobial composition
JP4357166B2 (en) Antibacterial / antifungal / algae-proof composition
KR20040069181A (en) Antimicrobial solid surface materials containing chitosan-metal complexes
WO2004101014A2 (en) Deposition products, composite materials and processes for the production thereof
JPH0610126B2 (en) Antibacterial agent
JPH0899812A (en) Metallic antibacterial agent and antibacterial material
WO2002018699A1 (en) A nanometre-silver, long-acting, broad spectrum, antimicrobial, mouldproof granule and its producing methods
Olgun et al. Preparation and antibacterial properties of nano biocomposite poly (ε-caprolactone)-SiO 2 films with nanosilver
CN115216957A (en) Washable bioactive cellulose fibers having antibacterial and antiviral properties
CN202062729U (en) Biological antibacterial non-woven fabric
JPH05195438A (en) Antibacterial deodorizing fiber
JPH02268104A (en) Antimicrobial composition
JP3460008B2 (en) Sustained release antimicrobial material, antimicrobial solution and antimicrobial spray
JP2907194B2 (en) Antibacterial and antifungal solution comprising inorganic silver complex salt and method for producing the same
CN106063491A (en) A kind of Graphene antibiosis agent and preparation method thereof
JP3476896B2 (en) Antibacterial resin molded product and method for producing the same
JP3585059B2 (en) Antimicrobial composition and method for producing antimicrobial resin composition
JPH07316009A (en) Antibacterial, antiviral and antifungal agent and its complex
WO2001037670A2 (en) Antimicrobial hook and loop fastener
JP3085682B2 (en) Antimicrobial composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001