JPH02268104A - Antimicrobial composition - Google Patents

Antimicrobial composition

Info

Publication number
JPH02268104A
JPH02268104A JP8700289A JP8700289A JPH02268104A JP H02268104 A JPH02268104 A JP H02268104A JP 8700289 A JP8700289 A JP 8700289A JP 8700289 A JP8700289 A JP 8700289A JP H02268104 A JPH02268104 A JP H02268104A
Authority
JP
Japan
Prior art keywords
antibacterial
metal
inorganic oxide
water
insoluble inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8700289A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mizukami
義勝 水上
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Kanebo Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP8700289A priority Critical patent/JPH02268104A/en
Priority to PCT/JP1990/000243 priority patent/WO1990009736A1/en
Priority to EP19900903399 priority patent/EP0427858A4/en
Publication of JPH02268104A publication Critical patent/JPH02268104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain the subject composition having improved processability in production of antimicrobial product and antimicrobial property with small specific gravity as a whole and large surface area of metal having antimicrobial action by adhering the metal onto the surface of fine particle of water insoluble inorganic oxide. CONSTITUTION:Fine particles of water-insoluble inorganic oxide preferably having <=1mum averaged particle diameter, e.g. zeolite, diatom earth, mica, kaolin, alumina, talc, silica gel simple substance or mixture of same substances are used as carriers. Metal having antimicrobial properties, preferably silver and/or copper is adhered on the surface of said carrier having small specific gravity in an amount of >=1wt.% to said carrier, and respectively >=0.5wt.% in a case of using the both of silver and copper as the metal to reduce specific gravity. Said substance is added to fiber product, etc., in production of same product to suppress or inhibit deviated dispersing by sedimentation in producing antimicrobial product and to make easy to handle, and simultaneously make ionization easy by enlarging the surface area of said metal to afford antimicrobial composition having exceedingly improved antimicrobial properties in lower cost than conventional product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は抗菌性組成物に係り、繊維製品、フィルム、プ
ラスチックス成型品、ペイント等の製造に際して添加さ
れ、これらの製品に抗菌性をもたらすために利用される
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an antibacterial composition, which is added during the production of textile products, films, plastic molded products, paints, etc., and provides antibacterial properties to these products. used for.

(従来の技術) 上記のような抗菌性製品を製造するために添加される従
来の抗菌性組成物としては有機系のものと、無機系のも
のとがあり、これらの内で有機系組成物はトリクロロカ
ルバニド、ポリへキサメチレンバイグアニドハイドロク
ロリド、オ゛クタデシルジメチル−3−トリメトキシシ
リルブロピルアンモニウムクロリド等を主成分とするも
のであり、又無機系組成物の使用例としてはアクリル綿
又は糸に染色工程で硫化銅又は銅を含有せしめたり、銀
粉や銅粉を添加するものであった。
(Prior Art) Conventional antibacterial compositions added to produce the above-mentioned antibacterial products include organic and inorganic compositions. The main components are trichlorocarbanide, polyhexamethylene biguanide hydrochloride, octadecyldimethyl-3-trimethoxysilylbropylammonium chloride, etc. Examples of the use of inorganic compositions include Acrylic cotton or thread was made to contain copper sulfide or copper during the dyeing process, or silver powder or copper powder was added.

(発明が解決しようとする課題及び発明の目的)従来用
いられて来た抗菌性組成物の内で有機系組成物は揮発性
を有しており、従って抗菌性製品の製造過程で逸散し易
いために製品としての抗菌性の発現が不安定である点及
び抗菌性製品の製造工程で高温下に曝される場合に、マ
トリクスとなるべきポリマーと反応して該ポリマー本来
の性質を著しく阻害することが多い点に課題がある。
(Problems to be Solved by the Invention and Objectives of the Invention) Among the antibacterial compositions that have been used conventionally, organic compositions are volatile and therefore do not escape during the manufacturing process of antibacterial products. Because of its easy-to-use properties, the antibacterial properties of the product are unstable, and when exposed to high temperatures during the manufacturing process of antibacterial products, it reacts with the polymer that is to become the matrix, significantly inhibiting the original properties of the polymer. The problem is that there are many things to do.

一方、抗菌性金属化合物を主成分としている無機系組成
物は繊維、フィルム等の製造に際して配合され、最終製
品中においては分散gれた状態を呈しており、この場合
に分散状態にある金属化合物から抗菌作用を有する金属
がイオン化して製品表面に移行して抗菌性を発現する作
用機構となっている。
On the other hand, inorganic compositions containing antibacterial metal compounds as a main component are blended during the production of fibers, films, etc., and are in a dispersed state in the final product. The mechanism of action is that metals with antibacterial properties are ionized and transferred to the surface of the product, thereby exhibiting antibacterial properties.

アクリル綿又は糸に染色工程で硫化銅又は銅を含有せし
める方法は工程数も長く、長時間の反応を要するために
高価となる点に課題があった。
The method of incorporating copper sulfide or copper into acrylic cotton or yarn during the dyeing process has problems in that it is expensive because it requires a long number of steps and a long reaction time.

更に、銀粉や銅粉等を用いる場合には比重が高いために
抗菌性製品を製作する迄に沈降を生じ易く、従って取扱
いが不便であるのみならず、大量配合の必要性をもたら
すと云う実用面からの課題があった。
Furthermore, when silver powder, copper powder, etc. are used, due to their high specific gravity, they tend to settle before producing antibacterial products, which is not only inconvenient to handle, but also requires a large amount of compounding. There were issues from the front.

それ故に、本発明の目的は抗菌作用を有する金属の量割
合が相対的に少なく、従って比重が小さく、しかも充分
な抗菌性を有する抗菌性組成物を提供することにある。
Therefore, an object of the present invention is to provide an antibacterial composition which has a relatively small proportion of metals having an antibacterial effect, has a low specific gravity, and has sufficient antibacterial properties.

(課題を解決し、目的を達成する手段及び作用)本発明
によれば、上記の課題は、抗菌作用を有する金属が、水
不溶性無機酸化物微粒子の表面に付着せしめられている
ことを特徴とする抗菌性組成物により基本的に解決され
ると共に、上記の目的が達成される。
(Means and effects for solving the problem and achieving the object) According to the present invention, the above problem is solved by the fact that a metal having an antibacterial effect is attached to the surface of water-insoluble inorganic oxide fine particles. The antibacterial composition basically solves the problem and achieves the above objectives.

即ち、本発明においては比重の小さな水不溶性無機酸化
物を担体として用いることにより全体としての比重の軽
減を図り、これによって抗菌性製品の製造に際しての取
扱いを便ならしめ、又この担体としての水不溶性無機酸
化物を微粒子として用いることにより付着されるべき抗
菌作用を有する金属の表面積を大になしてイオン化を容
易にさせて抗菌性の向上をもたらすのである。
That is, in the present invention, by using a water-insoluble inorganic oxide with a small specific gravity as a carrier, the overall specific gravity is reduced, thereby facilitating handling during the production of antibacterial products. By using insoluble inorganic oxides as fine particles, the surface area of the antibacterial metal to be adhered to is increased, facilitating ionization and improving antibacterial properties.

担体としての水不溶性無機酸化物としてはゼオライト(
アルミノシリケート)、珪藻土、マイカ、アルミナ、カ
オリン(粘土)、タルク、シリカゲル単体又はこれらの
混合物であっても差支えはないが、混合物である場合に
は適当に粒子のイオン性を勘案し、二次凝集を起さぬよ
う配慮する必要がある。そしてこれら水不溶性無機酸化
物の平均粒径は1μm又はそれ以下であることが好まし
い、蓋し、本発明による抗菌性組成物が配合されて調製
される最終製品が厚手のプラスチックス成型品等の場合
には水不溶性無機酸化物微粒子の平均粒径に上記のよう
な制限は必ずしも存在しないが、最終製品が繊維、フィ
ルム、ペイント等の薄手のものとなされる場合には水不
溶性無機酸化物微粒子の平均粒径が19μm以上である
と最大粒径も大となるので最終製品の表面に凹凸が目立
つようになり外観や品質において低下を来たすからであ
る。殊に、本発明による抗菌性組成物を配合して抗菌性
の合成繊維を製造しようとする場合には水不溶性無機酸
化物微粒子として平均粒径が0.5μ■又はそれ以下の
ものを用いるのが好ましい、lIL、最大粒径10μm
以上の水不溶性無機酸化物粒子が存在すると紡糸ノズル
に口塞りを生じる虞れがある・からである、尚、担体と
しての水不溶性無機酸化物微粒子はその平均粒径が小さ
い程、これに付着した抗菌作用を有する金属の表面積が
増加し、抗菌性が向上することに留意され度い。
Zeolite (
There is no problem with using aluminosilicate), diatomaceous earth, mica, alumina, kaolin (clay), talc, silica gel alone, or a mixture of these, but if it is a mixture, take the ionicity of the particles into consideration and Care must be taken to prevent agglomeration. The average particle size of these water-insoluble inorganic oxides is preferably 1 μm or less. In some cases, the average particle size of water-insoluble inorganic oxide fine particles does not necessarily have the above-mentioned limit, but when the final product is made into a thin product such as fiber, film, or paint, water-insoluble inorganic oxide fine particles If the average particle size is 19 μm or more, the maximum particle size will also be large, causing noticeable unevenness on the surface of the final product, resulting in a deterioration in appearance and quality. In particular, when blending the antibacterial composition of the present invention to produce antibacterial synthetic fibers, it is recommended to use water-insoluble inorganic oxide fine particles with an average particle size of 0.5μ or less. is preferred, IL, maximum particle size 10 μm
This is because if the water-insoluble inorganic oxide particles above exist, there is a risk of clogging the spinning nozzle.The smaller the average particle diameter of the water-insoluble inorganic oxide fine particles as a carrier, the more likely they are to clog the spinning nozzle. It should be noted that the surface area of the attached antibacterial metal increases and the antibacterial properties are improved.

本発明による抗菌性組成物において、抗菌作用を有する
金属としては種々のもの、例えば銀、銅、亜鉛、錫、鉛
、ビスマス、カドミウム、クロム、水銀等が考えられる
が、抗菌力の程度、保健衛生上等の観点から銀、銅又は
これらの両者を用いるのが好ましい、これらの銀又は銅
の金属は酸化物や塩化物等イオンの形であっても良いが
、水に不溶性である方が好ましく、付着せしめられる量
は担体である水不溶性無機酸化物微粒子に対して1wt
X以上である。この場合の下限値は抗菌性能や用途を考
慮に入れたものである。即ち、抗菌性組成物において抗
菌性金属の付着量が1wt、X未満であると、その用途
に依存して、例えば抗菌性繊維製品になす場合に所期の
抗菌性能をもたらすためには紡糸原液への抗菌性組成物
の配合量を相対的に大にする必要性が生じるが、紡糸原
液に抗菌性組成物を6x又はそれ以上添加すると紡糸時
に糸切れが多くなって生産性が低下するからである。尚
、銀と銅の両者を用いる場合に、これらの付着量は水不
溶性無機酸化物微粒子に対してそれぞれ0.5wt1以
上である。この場合における下限値の設定理由は上記と
同様である。
In the antibacterial composition of the present invention, various metals having an antibacterial effect can be considered, such as silver, copper, zinc, tin, lead, bismuth, cadmium, chromium, and mercury. From the viewpoint of hygiene, it is preferable to use silver, copper, or both.These silver or copper metals may be in the form of ions such as oxides or chlorides, but it is preferable that they are insoluble in water. Preferably, the amount deposited is 1 wt relative to the water-insoluble inorganic oxide fine particles serving as the carrier.
It is X or more. In this case, the lower limit value takes into account antibacterial performance and usage. That is, if the amount of antibacterial metal deposited in the antibacterial composition is less than 1 wt. There is a need to relatively increase the amount of antibacterial composition blended into the spinning solution, but if 6x or more of the antibacterial composition is added to the spinning dope, yarn breakage will increase during spinning and productivity will decrease. It is. In addition, when both silver and copper are used, the amount of these deposited is 0.5wt1 or more, respectively, based on the water-insoluble inorganic oxide fine particles. The reason for setting the lower limit value in this case is the same as above.

担体としての水不溶性無機酸化物微粒子に銀又は銅若し
くはこれらの両者を付着させて本発明による抗菌性組成
物を製造するためには、自体周知の真空蒸着法や還元析
出法を用いることができる。
In order to produce the antibacterial composition according to the present invention by attaching silver, copper, or both to water-insoluble inorganic oxide fine particles as a carrier, a well-known vacuum evaporation method or a reduction precipitation method can be used. .

これらの内で、真空蒸着法は水不溶性無機酸化物微粒子
を蒸着装置のチャンバー内にセットし、蒸着源(銀、銅
又は銀−銅合金の切片)をタングステン製バスケットに
乗せて上記のチャンバー内にセットし、該チャンバー内
を減圧し く約2x10−’ Torr程度迄)、次い
で上記の水不溶性無機酸化物微粒子を振動させながら上
記のタングステンバスケットを加熱して上記の蒸着源金
属を蒸発せしめることにより実施することができる。
Among these, in the vacuum evaporation method, water-insoluble inorganic oxide fine particles are set in the chamber of a evaporation device, the evaporation source (silver, copper, or a piece of silver-copper alloy) is placed on a tungsten basket, and the water-insoluble inorganic oxide particles are placed in the chamber. and reduce the pressure in the chamber to about 2 x 10-' Torr), and then heat the tungsten basket while vibrating the water-insoluble inorganic oxide fine particles to evaporate the vapor deposition source metal. It can be implemented by

一方、還元析出法は、水不溶性無機酸化物微粒子を純水
中に分散させ、この分散液とメツキ液とを混合し、次い
で、攪拌しながらこの混合液にメツキ用還元液を添加す
ることにより実施することができる。
On the other hand, the reduction precipitation method involves dispersing water-insoluble inorganic oxide fine particles in pure water, mixing this dispersion with a plating solution, and then adding a plating reducing solution to this mixed solution while stirring. It can be implemented.

これらの両方法の内で真空蒸着法は蒸発金属の照射方向
が限定されるために、抗菌性金属を水不溶性無機酸化物
微粒子に均斉に付着させる目的で水不溶性無機酸化物微
粒子に振動を与えて転動させる必要性があり、この場合
に粗い粒子が上に且つ細かい粒子が下になる傾向があり
、従って水不溶性無機酸化物微粒子の粒径が揃っていな
いと抗菌性金属の付着量に差が生じるが、一方、還元析
出法によれば、分散した状態の水不溶性無機酸化物微粒
子上に抗菌性金属が析出してゆくので均斉な付着が可能
であり、付着量の制御も容易なので、前者よりも後者の
方法が好ましい。
Of these two methods, the vacuum evaporation method is limited in the direction of irradiation of the evaporated metal, so vibrations are applied to the water-insoluble inorganic oxide particles in order to uniformly adhere the antibacterial metal to the water-insoluble inorganic oxide particles. In this case, the coarse particles tend to be on top and the fine particles on the bottom. Therefore, if the water-insoluble inorganic oxide fine particles are not uniform in particle size, the amount of antibacterial metal deposited may be affected. However, according to the reduction precipitation method, the antibacterial metal is deposited on the dispersed water-insoluble inorganic oxide fine particles, so it is possible to adhere uniformly, and the amount of adhesion can be easily controlled. , the latter method is preferable to the former.

(実施例等) 次に、本発明による抗菌性組成物の製造例及び使用例(
抗菌性繊維の製造及び抗菌性評価)により、本発明を更
に詳細に説明する。
(Examples, etc.) Next, production examples and usage examples of the antibacterial composition according to the present invention (
The present invention will be explained in more detail with reference to (Manufacturing of antibacterial fibers and evaluation of antibacterial properties).

尚、下記において言及するX及び部は、別設の定めがな
い限り重量基準によるものである。
Note that X and parts referred to below are based on weight unless otherwise specified.

艮1」Lユ (1)下記の3種類の液を調製した。艮1” Lyu (1) The following three types of liquids were prepared.

A)ゼオライト分散液 ゼオライト粉末(平均粒径0.5μm) 65gを純水
300mjに分散させたもの。
A) Zeolite dispersion 65 g of zeolite powder (average particle size 0.5 μm) was dispersed in 300 mj of pure water.

B)銀メツキ液 硝酸銀20gを純水に溶解して800mjとした後に水
酸化アンモニウムを添加してpHを11に調整したもの
B) Silver plating solution: 20 g of silver nitrate was dissolved in pure water to make 800 mJ, and then ammonium hydroxide was added to adjust the pH to 11.

C)銀メツキ用還元液 酒石酸カリウムナトリウム(4水和物) 100gを純
水により溶解して700mj となし、液温を30℃に
保ったもの。
C) Reducing solution for silver plating 100 g of potassium sodium tartrate (tetrahydrate) was dissolved in pure water to give a concentration of 700 mj, and the temperature of the solution was maintained at 30°C.

(2)操作 上記のゼオライト分散液(A)  に銀メツキ液(B)
を添加して混合し、液温30°Cで攪拌しながら上記の
銀メツキ用還元液を添加して攪拌を続けることにより銀
イオンを完全に還元させ、次いで更に1時間攪拌を継続
した。
(2) Operation The above zeolite dispersion (A) is coated with silver plating solution (B).
was added and mixed, and while stirring at a liquid temperature of 30°C, the above-mentioned reducing solution for silver plating was added and stirring was continued to completely reduce the silver ions, and then stirring was continued for an additional hour.

その後に攪拌を中止し、No、5C濾紙を用いて吸引濾
過し、純水で充分に洗浄し、80℃の空気乾燥機内で1
2時間乾燥することにより所望の抗菌性組成物を得た。
After that, stirring was stopped, filtered by suction using No. 5C filter paper, thoroughly washed with pure water, and dried in an air dryer at 80°C.
The desired antibacterial composition was obtained by drying for 2 hours.

この抗菌性組成物における銀の付着状態をEPMAにて
観察した処、ゼオライト粉末の表面に銀が均斉に付着し
ていることが判明した。
When the state of silver adhesion in this antibacterial composition was observed using EPMA, it was found that silver was uniformly adhered to the surface of the zeolite powder.

化学分析によれば、銀の付着量は16.3Xであった。According to chemical analysis, the silver coverage was 16.3X.

数1111二」− 水不溶性無機酸化物分散液としてアルミナ、カオリン、
タルク、シリカゲル及び珪藻土粉末をそれぞれ241.
3gを取り、それぞれの分散液として用いたこと並びに
銀イオンの完全還元後の攪拌を2時間に亘り継続した以
外は、製造例1と全く同様にして5種類の抗菌性組成物
を得た。
Number 11112 - Alumina, kaolin, water-insoluble inorganic oxide dispersion
Talc, silica gel and diatomaceous earth powder at 241% each.
Five types of antibacterial compositions were obtained in exactly the same manner as in Production Example 1, except that 3 g was taken and used as each dispersion, and stirring was continued for 2 hours after complete reduction of silver ions.

EP)4A観察によれば、何れの抗菌性組成物において
も水不溶性無機酸化物粉末の表面に銀が均斉に付着して
おり、又化学分析によれば、銀の付着量はそれぞれ5.
0%であった。
According to EP) 4A observation, silver was uniformly deposited on the surface of the water-insoluble inorganic oxide powder in all antibacterial compositions, and according to chemical analysis, the amount of silver deposited was 5.5% in each case.
It was 0%.

11匠J (1)次の銅メツキ液及び銅メツキ用還元液を調製した
11 Takumi J (1) The following copper plating solution and reducing solution for copper plating were prepared.

B’)銅メツキ液 硫酸銅(5水和物)34.6g、酒石酸カリウムナトリ
ウム(4水和物) 173g、及び水酸化ナトリウム5
0gを純水により溶解して500■1となしたもの。
B') Copper plating solution Copper sulfate (pentahydrate) 34.6g, potassium sodium tartrate (tetrahydrate) 173g, and sodium hydroxide 5
0g was dissolved in pure water to make 500μ1.

C’)銅メツキ還元液 37%ホルムアルデヒド溶液150mjであって、液温
30℃に保たれたもの。
C') Copper plating reducing solution: 150 mj of 37% formaldehyde solution, kept at a liquid temperature of 30°C.

(2)操作 製造例1で調製したアルミナ分散液(A)に上記の銅メ
ツキ液(B′)を添加して混合し、液温30℃で攪拌し
ながら上記の銅メツキ還元液(C′)を添加して攪拌を
続けることにより銅イオンを完全に還元させ、次いで更
に1時間攪拌を継続した。
(2) Operation Add the above copper plating solution (B') to the alumina dispersion (A) prepared in Production Example 1 and mix. While stirring at a liquid temperature of 30°C, the above copper plating reducing solution (C' ) and continued stirring to completely reduce the copper ions, and then continued stirring for an additional hour.

その後に攪拌を中止し、No、5C濾紙を用いて吸引濾
過し、純水で充分に洗浄し、80℃の空気乾燥機内で1
2時間乾燥することにより所望の抗菌性組成物を得た。
After that, stirring was stopped, filtered by suction using No. 5C filter paper, thoroughly washed with pure water, and dried in an air dryer at 80°C.
The desired antibacterial composition was obtained by drying for 2 hours.

この抗菌性組成物における銅の付着状態をEPMAによ
り観察した処、アルミナ粉末の表面に銅が均斉に付着し
ていることが判明した。
When the state of copper adhesion in this antibacterial composition was observed by EPMA, it was found that copper was uniformly adhered to the surface of the alumina powder.

化学分析によれば銅の付着量は11.9%であった。According to chemical analysis, the amount of copper deposited was 11.9%.

1童m二1 水不溶性無機酸化物分散液としてゼオライト、カオリン
、タルク、シリカゲル、及び珪藻土粉末をそれぞれ16
6.1gを取り、それぞれの分散液として用いたこと並
びに銅イオンの完全還元後の攪拌を2時間に亘り継続し
た以外は、製造例5と全く同様にして5 種類の抗菌性
組成物を得た。
1 m2 1 child 16 zeolite, kaolin, talc, silica gel, and diatomaceous earth powder each as a water-insoluble inorganic oxide dispersion
Five types of antibacterial compositions were obtained in exactly the same manner as in Production Example 5, except that 6.1 g was taken and used as each dispersion, and stirring was continued for 2 hours after complete reduction of copper ions. Ta.

EPMA @察によれば、何れの抗菌性組成物において
も水不溶性無機酸化物粉末の表面に銅が均斉に付着して
おり、又化学分析によれば、銅の付着量はそれぞれ5.
0%であった。
According to EPMA @Survey, copper is uniformly attached to the surface of the water-insoluble inorganic oxide powder in all antibacterial compositions, and chemical analysis shows that the amount of copper attached is 5.5% in each case.
It was 0%.

i肚燵ユ 平均粒、径0.5μmのアルミナ微粒子を担体とし、A
gを5%付着させた抗菌性組成物20重量部、アクリロ
ニトリル(以下ANと略記する)/アクリル酸メチル(
以下MAと略記する)/メタリルスルホン酸ソーダ= 
90.0/9.0/1.0の組成で分子量5万のアクリ
ル系重合体(A)2重量部、ジメチルホルムアミド(以
下DMFと略記する)78重量部をホモミキサーを用い
て約1時間分散した0次いでサンドグラインダーを用い
て上記該抗菌剤予備分散液を約5分間分散しな後、連続
的に前記アクリル系重合体(A) 20重量部、DMF
 80重量部よりなる紡糸原液に上記該抗菌性組成物が
上記アクリル系重合体(A)に対して1.0.0.7.
0.2重量%となるようにパイプラインミキサーを用い
て添加混合し、常法に従って湿式紡糸して3デニールの
抗菌性アクリル系繊維を得た。
i.A.A.A.A.
20 parts by weight of an antibacterial composition to which 5% of g.
Hereinafter abbreviated as MA) / Sodium methallylsulfonate =
2 parts by weight of an acrylic polymer (A) with a composition of 90.0/9.0/1.0 and a molecular weight of 50,000 and 78 parts by weight of dimethylformamide (hereinafter abbreviated as DMF) were mixed for about 1 hour using a homomixer. After dispersing the antibacterial agent predispersion for about 5 minutes using a sand grinder, 20 parts by weight of the acrylic polymer (A) and DMF were continuously added.
The above-mentioned antibacterial composition is added to the spinning stock solution consisting of 80 parts by weight in an amount of 1.0.0.7.
They were added and mixed using a pipeline mixer to a concentration of 0.2% by weight, and wet-spun according to a conventional method to obtain a 3-denier antibacterial acrylic fiber.

この繊維の抗菌性評価を後記の第1表に示す。The antibacterial evaluation of this fiber is shown in Table 1 below.

この表によると上記の抗菌性組成物を0.7%以上添加
することによって良好な抗菌性がもたらされることが判
る。尚、抗菌性の評価は、抗菌性アクリル系繊維を常法
により紡績して30番単糸となした後、丸編みしたもの
を被験体として用い且つ繊維製品衛生加工協議会制定の
抗閉防臭加工製品認定基準「シェークフラスコ法」の方
法により行った(以下の使用例においても同様)。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.7% or more of the above antibacterial composition. The antibacterial properties were evaluated by spinning antibacterial acrylic fibers into No. 30 single yarn using a conventional method, and then circularly knitting them. This was carried out using the "shake flask method" method according to the processed product certification standard (the same applies to the following usage examples).

そして後記の第1.2.3及び4表において、洗濯回数
の右欄が被検体の菌減少率を示す。
In Tables 1.2.3 and 4 below, the column to the right of the number of washes indicates the bacterial reduction rate of the test object.

i肛1ユ 平均粒径0.5μIのカオリン微粒子を担体とし、Ag
を5%付着させた抗菌性組成物を用いて使用例1と同様
の組成、方法で抗菌性アクリル系繊維を得た。
Ag
Antibacterial acrylic fibers were obtained using the same composition and method as in Use Example 1 using an antibacterial composition to which 5% of the antibacterial composition was adhered.

この繊維の抗菌性評価を後記の第1表に示す。The antibacterial evaluation of this fiber is shown in Table 1 below.

この表によると上記の抗菌性組成物を0.8%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.8% or more of the above antibacterial composition.

吏肛匠」 平均粒径0.5μmのアルミナ微粒子を担体とし、Cu
をii、9%付着させた抗菌性組成物を用いて使用例1
と同様の組成、方法で抗菌性アクリル系繊維を得た。
"Rikaku Takumi" Cu
Use example 1 using an antibacterial composition with 9% adhesion of
Antibacterial acrylic fibers were obtained using the same composition and method.

この繊維の抗菌性評価を後記の第2表に示すや この表によると上記の抗菌性組成物を0.5%以上添加
することによって良好な抗菌性がもたらされることが判
る。
The antibacterial evaluation of this fiber is shown in Table 2 below, which shows that good antibacterial properties can be obtained by adding 0.5% or more of the above antibacterial composition.

1肛匠j 平均粒径0,5μIのカオリン微粒子を担体とし、Cu
を5%付着させた抗菌性組成物を用いて使用例1と同様
の組成、方法で抗菌性アクリル系繊維を得た。
1. Kaolin fine particles with an average particle size of 0.5 μI are used as a carrier, and Cu
Antibacterial acrylic fibers were obtained using the same composition and method as in Use Example 1 using an antibacterial composition to which 5% of the antibacterial composition was adhered.

この繊維の抗菌性評価を後記の第2表に示す。The antibacterial evaluation of this fiber is shown in Table 2 below.

この表によると上記の抗菌性組成物を0.8%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.8% or more of the above antibacterial composition.

1肛匠j 平均粒径0.5μmのゼオライトとアルミナ微粒子を担
体とし、Agを5X、 Cuを5%それぞれ付着させた
抗菌性組成物を用いて使用例1と同様の組成、方法で抗
菌性アクリル系繊維を得た。
1 Anal Takumi j Antibacterial properties were obtained using the same composition and method as in Use Example 1 using an antibacterial composition in which zeolite and alumina fine particles with an average particle size of 0.5 μm were used as carriers, and 5% Ag and 5% Cu were attached. Acrylic fibers were obtained.

この繊維の抗菌性評価を後記の第3表に示す。The antibacterial evaluation of this fiber is shown in Table 3 below.

この表によると上記の抗菌性組成物を0.5%以上添加
することによって良好な抗菌性がもたらされることが判
る。
According to this table, it can be seen that adding 0.5% or more of the above-mentioned antibacterial composition brings about good antibacterial properties.

吏肛燵1 平均粒径0.5μ重のカオリンと珪藻土微粒子を担体と
し、Agを5%、Cuを5%それぞれ付着させた抗菌性
組成物を用いて使用例1と同様の組成、方法で抗菌性ア
クリル系繊維を得た。
吏口燵 1 Using the same composition and method as in Use Example 1, using an antibacterial composition in which kaolin and diatomaceous earth microparticles with an average particle size of 0.5μ are used as a carrier, and 5% of Ag and 5% of Cu are attached respectively. Antibacterial acrylic fibers were obtained.

この繊維の抗菌性評価を後記の第3−表に示す。The antibacterial evaluation of this fiber is shown in Table 3 below.

この表によ、ると上記の抗菌性組成物を0.6%以上添
加することによって良好な抗菌性がもたらされることが
判る。
According to this table, it can be seen that good antibacterial properties are brought about by adding 0.6% or more of the above antibacterial composition.

吏几匠ユ 平均粒径0.5μ朧のタルクとシリカゲル微粒子を担体
とし、Agを5X 、Cuを5%それぞれ付着させた抗
菌性組成物を用いて使用例1と同様の組成、方法で抗菌
性アクリル繊維を得た。
Using an antibacterial composition containing talc and silica gel microparticles with an average particle size of 0.5 μ as a carrier, and adhering 5X Ag and 5% Cu, antibacterial treatment was carried out using the same composition and method as in Use Example 1. A synthetic acrylic fiber was obtained.

この繊維の抗菌性評価を後記第4表に示す、この表によ
ると上記の抗菌性組成物を0.5%以上添加することに
よって良好な抗菌性がちな・らされることが判る。
The antibacterial evaluation of this fiber is shown in Table 4 below. According to this table, it can be seen that good antibacterial properties tend to be achieved by adding 0.5% or more of the above antibacterial composition.

11匠J 平均粒径0.5μ朧のシリカゲル微粒子を担体とし、A
gを5%付着させた抗菌性組成物20重量部、AN/M
A/メタリルスルホン酸ソーダ= 90.0/9.0/
1.0の組成で分子量5万のアクリル系重合体(A)2
重量部、D M F 78重量部をホモミキサーを用い
て約1時間分散した0次いでサンドグラインダーを用い
て上記の抗菌性組成物予備分散液を約5分間分散した後
、連続的に前記アクリル系重合体(A) 23重量部、
DMF 77重量部よりなる紡糸原液に上記該抗菌剤が
上記アクリル系重合体(A)  に対して0.3重量%
となるようにパイプラインミキサーを用いて添加混合し
、常法に従って湿式紡糸して3デニールの抗菌性アクリ
ル系繊維を得た。この繊維の抗菌性評価を後記の第5表
に示す。
11 Takumi J Using silica gel fine particles with an average particle size of 0.5μ as a carrier, A
20 parts by weight of antibacterial composition to which 5% of g was attached, AN/M
A/Sodium methallylsulfonate = 90.0/9.0/
Acrylic polymer (A) 2 with a composition of 1.0 and a molecular weight of 50,000
78 parts by weight of DMF were dispersed for about 1 hour using a homomixer.Then, the above antibacterial composition preliminary dispersion was dispersed for about 5 minutes using a sand grinder, and then the acrylic composition was dispersed continuously for about 5 minutes using a sand grinder. Polymer (A) 23 parts by weight,
The above-mentioned antibacterial agent is added to the spinning stock solution consisting of 77 parts by weight of DMF at 0.3% by weight based on the above-mentioned acrylic polymer (A).
They were added and mixed using a pipeline mixer and wet-spun according to a conventional method to obtain a 3-denier antibacterial acrylic fiber. The antibacterial evaluation of this fiber is shown in Table 5 below.

この表によると、上記の抗菌性繊維は種々の細菌類に対
して良好な抗菌性を有していることが判る。
According to this table, it can be seen that the antibacterial fibers described above have good antibacterial properties against various bacteria.

(発明の効果) 上述のことから、本発明により次の効果がもたらされる
(Effects of the Invention) From the above, the present invention provides the following effects.

(1)水不溶性無機酸化物微粒子の表面に銀や銅が付着
せしめられているので、従来の銀粉や銅粉のみの粒子に
比較して同i粒径、同一重量であっても、その表面積が
飛躍的に大になる。
(1) Since silver and copper are attached to the surface of water-insoluble inorganic oxide fine particles, their surface area is higher than that of conventional particles of silver powder or copper powder only, even if they have the same particle size and weight. becomes exponentially larger.

(2)従って銀や銅の使用量が従来品に比較してはるか
に少なくても、抗菌効果が著しく向上し、従って本発明
による抗菌性組成物、は従来品よりも相対的に廉価に供
給することができる。
(2) Therefore, even if the amount of silver and copper used is much lower than that of conventional products, the antibacterial effect is significantly improved, and therefore, the antibacterial composition of the present invention can be supplied at a relatively lower price than conventional products. can do.

(3)本発明の抗菌性組成物は担体が水不溶性無機酸化
物であるため、銀や銅に比較して全体としての比重が約
1/2−1/3であるので、これを使用して抗菌性製品
を製造する場合に、沈降による偏分数を抑制乃至阻止す
ることができる。
(3) Since the carrier of the antibacterial composition of the present invention is a water-insoluble inorganic oxide, the overall specific gravity is about 1/2 to 1/3 compared to silver or copper. When producing antibacterial products, it is possible to suppress or prevent partial fractionation due to sedimentation.

Claims (6)

【特許請求の範囲】[Claims] (1)抗菌作用を有する金属が、水不溶性無機酸化物微
粒子の表面に付着せしめられていることを特徴とする抗
菌性組成物。
(1) An antibacterial composition characterized in that a metal having an antibacterial effect is attached to the surface of water-insoluble inorganic oxide fine particles.
(2)抗菌作用を有する金属が銀及び銅の少くとも一方
であることを特徴とする、請求項(1)に記載の抗菌性
組成物。
(2) The antibacterial composition according to claim (1), wherein the metal having an antibacterial effect is at least one of silver and copper.
(3)水不溶性無機酸化物微粒子の平均粒径が1μm又
はそれ以下であることを特徴とする、請求項(1)又は
(2)に記載の抗菌性組成物。
(3) The antibacterial composition according to claim (1) or (2), wherein the water-insoluble inorganic oxide fine particles have an average particle size of 1 μm or less.
(4)抗菌作用を有する金属の付着量が水不溶性無機酸
化物微粒子に対して1wt%以上であることを特徴とす
る、請求項(1)−(3)の何れか一つに記載の抗菌性
組成物。
(4) The antibacterial agent according to any one of claims (1) to (3), wherein the amount of the metal having an antibacterial effect attached is 1 wt% or more based on the water-insoluble inorganic oxide fine particles. sexual composition.
(5)抗菌作用を有する金属が銀と銅の両者であつて、
その付着量が水不溶性無機酸化物微粒子に対してそれぞ
れ0.5wt%以上であることを特徴とする、請求項(
1)−(4)の何れか一つに記載の抗菌性組成物。
(5) The metals having antibacterial effects are both silver and copper,
Claim (1) characterized in that the adhesion amount thereof is 0.5 wt% or more based on the water-insoluble inorganic oxide fine particles.
The antibacterial composition according to any one of 1) to (4).
(6)水不溶性無機酸化物微粒子が、ゼオライト、珪藻
土、マイカ、カオリン、アルミナ、タルク、シリカゲル
単体又はそれらの混合物であることを特徴とする、請求
項(1)−(5)の何れか一つに記載の抗菌性組成物。
(6) Any one of claims (1) to (5), wherein the water-insoluble inorganic oxide fine particles are zeolite, diatomaceous earth, mica, kaolin, alumina, talc, silica gel alone, or a mixture thereof. The antibacterial composition described in .
JP8700289A 1989-02-28 1989-04-07 Antimicrobial composition Pending JPH02268104A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8700289A JPH02268104A (en) 1989-04-07 1989-04-07 Antimicrobial composition
PCT/JP1990/000243 WO1990009736A1 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof
EP19900903399 EP0427858A4 (en) 1989-02-28 1990-02-27 Antibacterial or conductive composition and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8700289A JPH02268104A (en) 1989-04-07 1989-04-07 Antimicrobial composition

Publications (1)

Publication Number Publication Date
JPH02268104A true JPH02268104A (en) 1990-11-01

Family

ID=13902680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8700289A Pending JPH02268104A (en) 1989-02-28 1989-04-07 Antimicrobial composition

Country Status (1)

Country Link
JP (1) JPH02268104A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292201A (en) * 1989-05-02 1990-12-03 Yoshio Ichikawa Antibacterial silica gel and antibacterial resin
JPH05155725A (en) * 1990-11-28 1993-06-22 Matsushita Electric Ind Co Ltd Antibacterial composition, its production and resin and caulking material containing the same
JPH0680507A (en) * 1992-09-01 1994-03-22 Matsushita Electric Ind Co Ltd Production of antimicrobial and antifungal material
US5476881A (en) * 1993-02-15 1995-12-19 Suh; Kang I. Antimicrobial composition for manufacturing nipples
JPH0859404A (en) * 1994-08-26 1996-03-05 Catalysts & Chem Ind Co Ltd Antimicrobial inorganic oxide particle
JP2006523628A (en) * 2003-04-18 2006-10-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Compound
JP2012533614A (en) * 2009-07-21 2012-12-27 エイダンス スキンケア アンド トピカル ソリューションズ エルエルシー Silver oxide formulations with improved whiteness characteristics
US9486527B2 (en) 2009-05-08 2016-11-08 Emplicure Ab Composition for sustained drug delivery comprising geopolymeric binder
US9622972B2 (en) 2009-03-04 2017-04-18 Emplicure Ab Abuse resistant formula
JP2018531881A (en) * 2015-08-14 2018-11-01 イメリーズ ミネラルズ リミテッド Inorganic particles containing antibacterial metals
US10251834B2 (en) 2010-09-07 2019-04-09 Emplicure Ab Transdermal drug administration device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02292201A (en) * 1989-05-02 1990-12-03 Yoshio Ichikawa Antibacterial silica gel and antibacterial resin
JPH05155725A (en) * 1990-11-28 1993-06-22 Matsushita Electric Ind Co Ltd Antibacterial composition, its production and resin and caulking material containing the same
JPH0680507A (en) * 1992-09-01 1994-03-22 Matsushita Electric Ind Co Ltd Production of antimicrobial and antifungal material
JPH0813723B2 (en) * 1992-09-01 1996-02-14 松下電器産業株式会社 Method for producing antibacterial and antifungal material
US5476881A (en) * 1993-02-15 1995-12-19 Suh; Kang I. Antimicrobial composition for manufacturing nipples
JPH0859404A (en) * 1994-08-26 1996-03-05 Catalysts & Chem Ind Co Ltd Antimicrobial inorganic oxide particle
JP2006523628A (en) * 2003-04-18 2006-10-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Compound
US9622972B2 (en) 2009-03-04 2017-04-18 Emplicure Ab Abuse resistant formula
US10543203B2 (en) 2009-03-04 2020-01-28 Emplicure Ab Abuse resistant formula
US9486527B2 (en) 2009-05-08 2016-11-08 Emplicure Ab Composition for sustained drug delivery comprising geopolymeric binder
US10092652B2 (en) 2009-05-08 2018-10-09 Emplicure Ab Composition for sustained drug delivery comprising geopolymeric binder
JP2012533614A (en) * 2009-07-21 2012-12-27 エイダンス スキンケア アンド トピカル ソリューションズ エルエルシー Silver oxide formulations with improved whiteness characteristics
US10251834B2 (en) 2010-09-07 2019-04-09 Emplicure Ab Transdermal drug administration device
US10736838B2 (en) 2010-09-07 2020-08-11 Emplicure Ab Transdermal drug administration device
JP2018531881A (en) * 2015-08-14 2018-11-01 イメリーズ ミネラルズ リミテッド Inorganic particles containing antibacterial metals
US10736324B2 (en) 2015-08-14 2020-08-11 Imertech Sas Inorganic particulate containing antimicrobial metal

Similar Documents

Publication Publication Date Title
EP0695501B1 (en) Metallic bactericidal agent
JPH02268104A (en) Antimicrobial composition
WO1990009736A1 (en) Antibacterial or conductive composition and applications thereof
JPH02225402A (en) Antibacterial composition
KR20090131847A (en) Antibiotic polymer and method for preparing the same
JPH02268103A (en) Antimicrobial composition
JPH07173022A (en) Antimicrobial agent
JPH04194074A (en) Processing of cloth having antibacterial and deodorizing property
JPS627747A (en) Hydrophobic antifungal zeolite composition coated with silicone film and its production
JPH08133918A (en) Inorganic antimicrobial agent
CN114163734B (en) High-antibacterial polypropylene material and preparation method and application thereof
JPH02268105A (en) Antimicrobial composition
JPH06100403A (en) Antimicrobial and mildewproofing composition
JPH0413605A (en) Inorganic antimicrobial agent and production thereof
JPH03145410A (en) Antimicrobial silver zeolite and antimicrobial polymer composition free from change of color
JPH04231062A (en) Antimicrobial medical product
JPS61136530A (en) Treatment of polymer molding containing zeolite particle
JPH10259531A (en) Antimicrobial cellulose acetate yarn and its production
JPH0497912A (en) Production of titanium oxide fine particle coated with silver
JPH0899812A (en) Metallic antibacterial agent and antibacterial material
KR102609452B1 (en) Antibacterial melt-blown non-woven fabric and Manufacturing method thereof
JPH0494009A (en) Conductive compound
CN110845762A (en) Nano metal-stearate composite material and preparation method and application thereof
JP2002104823A (en) Anti-bacteria.anti-mildew agent
JPH09301802A (en) Antibacterial porous glass fiber