JPH0899114A - Froth cooling method for high-temperature steel products - Google Patents

Froth cooling method for high-temperature steel products

Info

Publication number
JPH0899114A
JPH0899114A JP23631694A JP23631694A JPH0899114A JP H0899114 A JPH0899114 A JP H0899114A JP 23631694 A JP23631694 A JP 23631694A JP 23631694 A JP23631694 A JP 23631694A JP H0899114 A JPH0899114 A JP H0899114A
Authority
JP
Japan
Prior art keywords
foam
cooling
wire
specific
froth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23631694A
Other languages
Japanese (ja)
Inventor
Koichi Tomono
貢市 伴野
Norio Yasuzawa
典男 安沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23631694A priority Critical patent/JPH0899114A/en
Publication of JPH0899114A publication Critical patent/JPH0899114A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE: To simultaneously accomplish a wide range of cooling controllability and uniform coolability by specifying the particle diameter of the froth foamed from an aq. soln. contg. a foaming agent, such as surfactant or/and water-soluble polymer which is a cooling medium. CONSTITUTION: While a hot rolled wire S cooled down to a specific temp. from a finishing mill is wound to a nonconcentrical ring form at a specific ring pitch from a laying head 1, the wire is transported at a specific transporting speed in a transporting zone 2 in the atm. The wire is thereafter dropped into a froth cooling zone 3 and while the wire is transported at a specific transporting speed by a conveyor 5 in the cooling zone 3, the wire is directly cooled under the froth of a grain size of <=1mm injected at a specific injection speed from lower supply nozzles 8 arranged along the transverse and longitudinal directions below the annular wire on the inner side of side guides 7 or side direction supply nozzles 9 arranged transvessely in the longitudinal direction and upper supply nozzles 10 arranged in the longitudinal direction. The wire is cooled down to a specific temp. and is ten bundled in a bundling tab 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温鋼材の冷却媒体と
して界面活性剤または/および水溶性ポリマー等の起泡
剤を含む水溶液からなる泡沫流体で冷却する方法、特
に、泡沫の性状を規定した冷却方法に関するものであ
る。なお、本発明において、“泡沫”とは、それぞれ薄
い液体膜で隔てられている多数の気泡の集合状態をい
う。
FIELD OF THE INVENTION The present invention relates to a method for cooling a high temperature steel material with a foam fluid comprising an aqueous solution containing a foaming agent such as a surfactant or / and a water-soluble polymer as a cooling medium, and in particular, the characteristics of the foam are defined. The present invention relates to the cooling method. In addition, in the present invention, “foam” refers to an aggregated state of a large number of bubbles each separated by a thin liquid film.

【0002】[0002]

【従来の技術】先に、本出願人は単一冷却媒体で広範囲
の冷却速度制御が可能な泡沫流体による圧延線材の冷却
方法を提案した(特公平4−50370号公報および特
公平4−26924号公報)。更に本出願人は、泡沫流
体の気液混合比や被冷却材単位面積当たりの泡沫供給量
を変化させて、広範囲な冷却速度を自在に制御すること
を提案した。(特願昭63−256215号)。しか
し、これらの方法は泡沫で冷却する場合の冷却速度に注
目したものであり、供給する泡沫の安定性や均一冷却と
いう観点からは不満足なものであった。
2. Description of the Related Art The applicant of the present invention has previously proposed a method for cooling a rolled wire rod with a foaming fluid capable of controlling a wide range of cooling rates with a single cooling medium (Japanese Patent Publication No. 4-50370 and Japanese Patent Publication No. 4-26924). Issue). Further, the present applicant has proposed to freely control a wide range of cooling rates by changing the gas-liquid mixing ratio of the foam fluid and the foam supply amount per unit area of the material to be cooled. (Japanese Patent Application No. 63-256215). However, these methods focus on the cooling rate in the case of cooling with foam, and are unsatisfactory from the viewpoint of the stability of the foam to be supplied and uniform cooling.

【0003】[0003]

【発明が解決しようとする課題】本発明はこれら従来技
術の問題点を解決し、広範囲な冷却制御性と均一冷却性
を同時に達成することのできる高温鋼材の泡沫冷却方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these problems of the prior art and to provide a foam cooling method for high temperature steel material capable of simultaneously achieving a wide range of cooling controllability and uniform cooling performance. It is what

【0004】[0004]

【課題を解決するための手段】本発明は、 (1)泡沫を媒体として高温鋼材を冷却する方法におい
て、冷却媒体である界面活性剤または/および水溶性ポ
リマー等の起泡剤を含む水溶液から生成した泡沫の粒径
を1mm以下とすることを特徴とする高温鋼材の泡沫冷却
方法。 (2)泡沫を媒体として高温鋼材を冷却する方法におい
て、冷却媒体となる界面活性剤または/および水溶性ポ
リマー等の起泡剤を含む水溶液から生成した泡沫の生成
直後の体積をVf 、泡沫を生成してから高温鋼材近傍に
到達するまでの経過時間をt(分)、この時間t内に泡
沫中気泡間の液膜内を重力の影響で流下し、排水する水
溶液の体積をVL とした時、下記の(1)式が満足する
ようにすることを特徴とする高温鋼材の泡沫冷却方法。 (VL /Vf )×100/t≦5.0〔%/分〕 (1) である。尚、上記(1)の方法と(2)の方法を同時に
実施することは、何ら妨げるものではない。
The present invention provides (1) a method for cooling a high temperature steel product using a foam as a medium, from an aqueous solution containing a cooling medium such as a surfactant or / and a foaming agent such as a water-soluble polymer. A foam cooling method for high-temperature steel material, characterized in that the particle diameter of the generated foam is 1 mm or less. (2) In a method of cooling a high temperature steel material using foam as a medium, a volume immediately after generation of foam generated from an aqueous solution containing a surfactant serving as a cooling medium and / or a foaming agent such as a water-soluble polymer is V f , foam an elapsed time from generation to reach the vicinity of the high-temperature steel the t (min), the inside of the liquid film between in foam bubbles flows down under the influence of gravity within this time t, the volume of the aqueous solution to drain V L The method of foam cooling of high temperature steel material is characterized by satisfying the following formula (1). (V L / V f ) × 100 / t ≦ 5.0 [% / min] (1) It should be noted that the simultaneous implementation of the method (1) and the method (2) does not hinder at all.

【0005】[0005]

【作用】本発明者らは前記の目的を達成すべく、非同心
リング状高温線材を移動コンベア上で泡沫冷却する場合
において種々検討した結果、泡沫を被冷却材の例えば下
方、側方または上方から被冷却材を覆うように供給する
際に、被冷却材近傍の泡沫(泡沫流体)の気液混合比の
変化割合を小さく、更に線材の重なり密度の高い部分に
まで冷却媒体が細部まで浸透するように、泡沫の粒径を
1mm以下として冷却することで、広範囲な冷却速度制御
性と均一冷却性を同時に達成できることを確認した。具
体的には、泡沫の粒径を0.05〜0.3mmとすること
が好ましい。
In order to achieve the above-mentioned object, the present inventors have made various investigations in the case of foam cooling a non-concentric ring-shaped high-temperature wire on a moving conveyor. As a result, the foam is, for example, below, lateral, or above the material to be cooled. When supplying so as to cover the material to be cooled, the rate of change in the gas-liquid mixing ratio of the foam (foam fluid) near the material to be cooled is small, and the cooling medium penetrates into the parts where the overlapping density of the wire is high. As described above, it was confirmed that a wide range of cooling rate controllability and uniform cooling property could be achieved at the same time by cooling with a particle size of foam of 1 mm or less. Specifically, it is preferable that the particle size of the foam is 0.05 to 0.3 mm.

【0006】更に、冷却媒体である泡沫に適度の保水性
を持たせ、被冷却材近傍の泡沫(泡沫流体)の泡沫中水
分を一様とし、且つ冷却中の高温鋼材と泡沫流体との界
面に発生する上記膜厚さを一定とするために、泡沫の生
成直後の水溶液と空気を含む一定体積の泡沫をVf 、泡
沫を生成してから被冷却材近傍に到達するまでの経過時
間をt(分)、この時間t内に泡沫中気泡間の液膜内を
重力の影響で流下し、排水する水溶液の体積をVL とし
た時、この単位時間当たりの体積の比率(VL/Vf
×100/tを排水率Rとし、Rを5.0%/分以下と
した泡条件で冷却することで均一冷却が達成されること
を確認した。具体的には、単位時間当たりの排水率Rは
2.0〜5.0%/分とすることが好ましい。
Further, the foam as a cooling medium is made to have an appropriate water retention property to make the water content in the foam (foam fluid) near the material to be cooled uniform, and the interface between the high temperature steel material and the foam fluid during cooling. In order to make the above-mentioned film thickness generated in a constant value , Vf is a constant volume of foam containing the aqueous solution and air immediately after the foam is generated, and the elapsed time from the generation of foam to the vicinity of the material to be cooled is t (minutes), when the volume of the aqueous solution that flows down and drains in the liquid film between the bubbles in the foam due to gravity within this time t is VL , the volume ratio per unit time ( VL / V f )
It was confirmed that uniform cooling was achieved by cooling under a foaming condition in which the drainage rate R was × 100 / t and R was 5.0% / min or less. Specifically, the drainage rate R per unit time is preferably 2.0 to 5.0% / min.

【0007】本発明の鋼材製造ラインにおける実施態様
例を図面に基づいて説明する。図1において、1はリン
グ状に圧延線材を払い出すレーイングヘッド、2は大気
中における搬送帯、3は泡沫冷却帯、4は集束タブ、S
は非同心リング状熱延線材である。図2は泡沫冷却帯3
の横断面図であり、5はコンベア、6は冷却槽、7はサ
イドガイド、8は下方泡沫供給ノズル、9は側方泡沫供
給ノズル、10は上方泡沫供給ノズル、Fは泡沫流体で
ある。発泡器は、冷却槽6の外にあり(図示せず)、配
管を通じて泡沫供給ノズル8,9,10から非同心リン
グ状熱延線材Sを覆うように供給される。
An embodiment of the steel product manufacturing line of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a laying head for paying out a rolled wire rod in a ring shape, 2 is a transport zone in the atmosphere, 3 is a foam cooling zone, 4 is a focusing tab, and S
Is a non-concentric ring-shaped hot rolled wire. Figure 2 shows the foam cooling zone 3
FIG. 5 is a cross-sectional view of the conveyor, 5 is a conveyor, 6 is a cooling tank, 7 is a side guide, 8 is a lower foam supply nozzle, 9 is a side foam supply nozzle, 10 is an upper foam supply nozzle, and F is a foam fluid. The foaming device is located outside the cooling tank 6 (not shown), and is supplied from the foam supplying nozzles 8, 9 and 10 through pipes so as to cover the non-concentric ring-shaped hot rolled wire S.

【0008】仕上圧延機から所定温度に冷却された熱延
線材Sは、レーイングヘッド1から所定のリングピッチ
の非同心リング状に巻き取られながら、大気中搬送帯2
を所定の搬送速度で搬送された後、泡沫冷却帯3中に落
下せしめられて同冷却帯をコンベア5で所定の搬送速度
で搬送される間に、サイドガイド7の内側でリング状線
材の下方に幅方向且つ長手方向に沿って配置した下方供
給ノズル8または側方に長手方向に沿って配置した側方
供給ノズル9および長手方向に配置した上方供給ノズル
10より所定の噴射速度で噴射している泡沫Fにより直
接冷却され、所定温度に冷却された後、集束タブ4にて
集束される。
The hot-rolled wire S cooled to a predetermined temperature from the finish rolling mill is wound in a non-concentric ring shape with a predetermined ring pitch from the laying head 1 while being conveyed in the atmosphere to the conveying belt 2.
Of the ring-shaped wire rod inside the side guide 7 while being transported into the foam cooling zone 3 at a predetermined transport speed after being transported at a predetermined transport speed by the conveyor 5. At a predetermined injection speed from the lower supply nozzle 8 arranged in the width direction and the longitudinal direction, the side supply nozzle 9 arranged laterally in the longitudinal direction and the upper supply nozzle 10 arranged in the longitudinal direction. It is directly cooled by the foam F and is cooled to a predetermined temperature and then focused by the focusing tab 4.

【0009】本発明において、泡沫流体の粒径を1mm以
下として冷却するのは、泡沫の粒径が1mm以上になると
破泡しやすく、泡沫流体の気液混合比の変化割合が大き
くなり冷却速度にばらつきが生じやすくなるのに対し、
泡沫粒径が1mm以下では破泡し難く、非同心リング状線
材の重なり密度の高い部分にも冷却媒体が細部まで浸透
するため、沸騰伝熱が安定するためである。
In the present invention, cooling is performed with the particle size of the foam fluid being 1 mm or less. When the particle size of the foam is 1 mm or more, the bubbles are easily broken, and the rate of change in the gas-liquid mixing ratio of the foam fluid increases, and the cooling rate. However, there is a tendency for variations in
This is because when the foam particle size is 1 mm or less, it is difficult for the foam to break, and the cooling medium penetrates into the high-density overlapping portion of the non-concentric ring-shaped wire as well, so that the boiling heat transfer is stable.

【0010】また本発明において、泡沫の単位時間当た
りの排水率Rを5.0%/分以下としたのは、泡沫に適
度の保水性を持たせ、泡沫流体の泡沫中水分を一様と
し、且つ冷却中の被冷却材と泡沫流体との界面に発生す
る蒸気膜厚さを一定とし、沸騰伝熱を安定化させるため
である。
Further, in the present invention, the drainage rate R of the foam per unit time is set to 5.0% / minute or less so that the foam has an appropriate water retention property and the water content in the foam of the foam fluid is made uniform. This is to stabilize the boiling heat transfer by making the vapor film thickness generated at the interface between the cooling target material and the foam fluid during cooling constant.

【0011】[0011]

【実施例】仕上圧延機から仕上圧延速度80m/sec で熱
延された鋼線材(冷間鍛造用非調質高張力鋼線材、C:
0.18〜0.25%,Si:0.15〜0.30%,
Mn:0.70〜1.70%,P:0.030%以下、
S:0.03%以下、T.Al:0.010〜0.05
0%,線径5.5mm)をレーイングヘッドで非同心リン
グ状に形成し、大気中搬送帯で60m/min の搬送速度で
搬送した後、泡沫冷却帯に落下させ、泡沫冷却帯搬送速
度を50m/min 、リングピッチを40mmとして搬送中
に、泡沫粒径0.05〜1.9mm、単位時間当たりの排
水率2.0〜20.0%/分、単位床面積当たりの泡供
給量1.2m3 /min・m2 の泡沫流体で800℃から4
00℃まで冷却し、その後放冷して得られた鋼線材の引
張強度の平均値XTSと標準偏差σTSの比、すなわち変動
率σTS/XTSを調査したところ、図3に示すとおり、泡
沫粒径を1mm以下とすることにより、又は、供給泡沫の
単位時間当たりの排水率Rを5.0%/分以下とするこ
とにより上記変動率は、格段に小さくなり、更に、上記
両条件を同時に満足させることにより、同変動率は0.
015以下と極めて小さい値となり、更なる均一冷却が
図られることが判る。
[Examples] Steel wire rod hot rolled from a finishing mill at a finishing rolling speed of 80 m / sec (non-heat treated high tensile strength steel wire rod for cold forging, C:
0.18-0.25%, Si: 0.15-0.30%,
Mn: 0.70 to 1.70%, P: 0.030% or less,
S: 0.03% or less, T.I. Al: 0.010 to 0.05
(0%, wire diameter 5.5 mm) is formed into a non-concentric ring shape with a laying head, and is transported in the atmospheric transport zone at a transport rate of 60 m / min, then dropped into the foam cooling zone, and the foam cooling zone transport rate is set. Is 50 m / min, the ring pitch is 40 mm, and the bubble diameter is 0.05 to 1.9 mm, the drainage rate is 2.0 to 20.0% / min per unit time, and the amount of foam is supplied per unit floor area during transportation. 4 from 800 ℃ with 1.2m 3 / min ・ m 2 foam fluid
The ratio of the average value X TS of the tensile strength and the standard deviation σ TS of the steel wire obtained by cooling to 00 ° C. and then allowing it to cool, that is, the fluctuation rate σ TS / X TS was investigated, and as shown in FIG. By setting the foam particle size to 1 mm or less, or by setting the drainage rate R of the supplied foam per unit time to 5.0% / min or less, the above-mentioned fluctuation rate is significantly reduced. By satisfying the conditions at the same time, the same fluctuation rate becomes 0.
It is a very small value of 015 or less, and it can be seen that further uniform cooling can be achieved.

【0012】[0012]

【発明の効果】本発明によれば、高温鋼材を泡沫で冷却
する場合に、著しく均一な冷却が可能であり、鋼材の引
張強度等の機械的性質のばらつきを著しく低減すること
ができる。
According to the present invention, when a high-temperature steel material is cooled with foam, it is possible to cool it extremely uniformly, and it is possible to significantly reduce variations in mechanical properties such as tensile strength of the steel material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様例を説明する図である。FIG. 1 is a diagram illustrating an example of an embodiment of the present invention.

【図2】本発明の実施態様装置例の横断面図である。FIG. 2 is a cross-sectional view of an example device of an embodiment of the present invention.

【図3】泡沫粒径および単位時間当たりの排水率Rと線
材引張強度の平均値XTSと標準偏差σTSの比、すなわち
変動率σTS/XTSとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a foam particle size, a drainage rate R per unit time, a ratio of an average value X TS of a wire rod tensile strength and a standard deviation σ TS , that is, a variation rate σ TS / X TS .

【符号の説明】[Explanation of symbols]

1 レーイングヘッド 2 大気中搬送帯 3 泡沫冷却帯 4 集束タブ 5 コンベア 6 冷却槽 7 サイドガイド 8 下方泡沫供給ノズル 9 側方泡沫供給ノズル 10 上方泡沫供給ノズル S 非同心リング状線材 F 泡沫流体 1 Laying Head 2 Air Transport Zone 3 Foam Cooling Zone 4 Focusing Tab 5 Conveyor 6 Cooling Tank 7 Side Guide 8 Lower Foam Supply Nozzle 9 Side Foam Supply Nozzle 10 Upper Foam Supply Nozzle S Non-Concentric Ring Wire F Foam Fluid

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年10月5日[Submission date] October 5, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】先に、本出願人は単一冷却媒体で広範囲
の冷却速度制御が可能な泡沫流体による圧延線材の冷却
方法を提案した(特公平4−50370号公報および特
公平4−26924号公報)。更に本出願人は、泡沫流
体の気液混合比や被冷却材単位面積当たりの泡沫供給量
を変化させて、広範囲な冷却速度を自在に制御すること
を提案した。(特公平3−22450号公報)。しか
し、これらの方法は泡沫で冷却する場合の冷却速度に注
目したものであり、供給する泡沫の安定性や均一冷却と
いう観点からは不満足なものであった。
2. Description of the Related Art The applicant of the present invention has previously proposed a method for cooling a rolled wire rod with a foaming fluid capable of controlling a wide range of cooling rates with a single cooling medium (Japanese Patent Publication No. 4-50370 and Japanese Patent Publication No. 4-26924). Issue). Further, the present applicant has proposed to freely control a wide range of cooling rates by changing the gas-liquid mixing ratio of the foam fluid and the foam supply amount per unit area of the material to be cooled. ( Japanese Patent Publication No. 3-22450 ). However, these methods focus on the cooling rate in the case of cooling with foam, and are unsatisfactory from the viewpoint of the stability of the foam to be supplied and uniform cooling.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 泡沫を媒体として高温鋼材を冷却する方
法において、冷却媒体である界面活性剤または/および
水溶性ポリマー等の起泡剤を含む水溶液から生成した泡
沫の粒径を1mm以下とすることを特徴とする高温鋼材の
泡沫冷却方法。
1. A method of cooling a high temperature steel material using foam as a medium, wherein the particle diameter of the foam produced from an aqueous solution containing a cooling medium such as a surfactant or / and a foaming agent such as a water-soluble polymer is 1 mm or less. A method for foam cooling of high-temperature steel material, which is characterized in that
【請求項2】 泡沫を媒体として高温鋼材を冷却する方
法において、冷却媒体となる界面活性剤または/および
水溶性ポリマー等の起泡剤を含む水溶液から生成した泡
沫の生成直後の体積をVf 、泡沫を生成してから高温鋼
材近傍に到達するまでの経過時間をt(分)、この時間
t内に泡沫中気泡間の液膜内を重力の影響で流下し、排
水する水溶液の体積をVL とした時、下記の(1)式を
満足するようにすることを特徴とする高温鋼材の泡沫冷
却方法。 (VL /Vf )×100/t≦5.0〔%/分〕 (1)
2. A method for cooling a high temperature steel material using foam as a medium, wherein the volume immediately after formation of foam generated from an aqueous solution containing a surfactant serving as a cooling medium and / or a foaming agent such as a water-soluble polymer is V f , T (minutes) is the elapsed time from the generation of foam until reaching the vicinity of the high temperature steel material, and within this time t, the volume of the aqueous solution that flows down in the liquid film between the bubbles in the foam due to the effect of gravity and drains A foam cooling method for a high-temperature steel material, characterized in that the following expression (1) is satisfied when V L is satisfied. (V L / V f ) × 100 / t ≦ 5.0 [% / min] (1)
JP23631694A 1994-09-30 1994-09-30 Froth cooling method for high-temperature steel products Withdrawn JPH0899114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23631694A JPH0899114A (en) 1994-09-30 1994-09-30 Froth cooling method for high-temperature steel products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23631694A JPH0899114A (en) 1994-09-30 1994-09-30 Froth cooling method for high-temperature steel products

Publications (1)

Publication Number Publication Date
JPH0899114A true JPH0899114A (en) 1996-04-16

Family

ID=16998997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23631694A Withdrawn JPH0899114A (en) 1994-09-30 1994-09-30 Froth cooling method for high-temperature steel products

Country Status (1)

Country Link
JP (1) JPH0899114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360637B1 (en) * 1998-10-09 2002-11-13 모건 컨스트럭션 캄파니 Retarded cooling system with granular insulation material
KR101066756B1 (en) * 2008-11-27 2011-09-21 현대제철 주식회사 Cooling And Transferring Apparatus for Steel
JP2012171006A (en) * 2011-02-24 2012-09-10 Keylex Corp Hot press device, and hot press forming method
US9139888B2 (en) 2006-07-14 2015-09-22 Thermcraft, Inc. Rod or wire manufacturing system, related methods, and related products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360637B1 (en) * 1998-10-09 2002-11-13 모건 컨스트럭션 캄파니 Retarded cooling system with granular insulation material
US9139888B2 (en) 2006-07-14 2015-09-22 Thermcraft, Inc. Rod or wire manufacturing system, related methods, and related products
KR101066756B1 (en) * 2008-11-27 2011-09-21 현대제철 주식회사 Cooling And Transferring Apparatus for Steel
JP2012171006A (en) * 2011-02-24 2012-09-10 Keylex Corp Hot press device, and hot press forming method

Similar Documents

Publication Publication Date Title
JPH0899114A (en) Froth cooling method for high-temperature steel products
JP2007056300A (en) Direct heat treatment method and apparatus for hot-rolled wire rod
JPS6035974B2 (en) Cooling method for high-temperature plate-shaped objects
JPS5941491B2 (en) Direct heat treatment method and equipment for steel wire
JP3511183B2 (en) Continuous bright annealing method for austenitic stainless steel bars.
JP2019210549A (en) Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet
US4931108A (en) Method of heat treatment of rolled steel material using foams impregnated with water soluble polymers
JPH0899115A (en) Method for adjusting air-liquid mixing ratio in froth cooling of high-temperature steel products
KR100527064B1 (en) Injection nozzle and Method for manufacturing strip wire using it
JPH06226326A (en) Cooling method for rolled wire
JPH06226325A (en) Cooling method for rolled wire rod and device therefor
JPS5942050B2 (en) Cooling method during solution heat treatment of stainless steel materials
JP3511182B2 (en) Method and apparatus for continuous heat treatment of steel bars
JP4209737B2 (en) Cooling method for continuous casting bloom
JP2005264244A (en) Method and apparatus for operating direct heat-treatment of hot-rolled wire rod
JPH08176681A (en) Direct quenching of rolled wire rod
JPS63250421A (en) Method for cooling wire rod
JPS5852427A (en) Quenching method of metallic pipe
JPH0480969B2 (en)
JPS6044122A (en) Method and apparatus for cooling hot rolled steel plate
JPS6335689B2 (en)
JPS6324048B2 (en)
JPS61117228A (en) Heating method of continuous annealing furnace for metallic strip
JPH07275919A (en) Cooling method for wire rod
JPH07252538A (en) Method for cooling thin steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115