JPH0897752A - Acoustic echo elimination device - Google Patents
Acoustic echo elimination deviceInfo
- Publication number
- JPH0897752A JPH0897752A JP23486194A JP23486194A JPH0897752A JP H0897752 A JPH0897752 A JP H0897752A JP 23486194 A JP23486194 A JP 23486194A JP 23486194 A JP23486194 A JP 23486194A JP H0897752 A JPH0897752 A JP H0897752A
- Authority
- JP
- Japan
- Prior art keywords
- coefficient
- acoustic echo
- reception signal
- signal input
- input terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、通信回線、室内音場制
御装置そして高品質な音声通信会議装置に使用され、受
話径路の信号が音響反響経路を介して送話経路に現れる
音響反響成分を除去する音響反響除去装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a communication line, a room sound field control device, and a high-quality voice communication conference device, and an acoustic echo component in which a signal on a receiving path appears in a transmitting path via an acoustic echo path. The present invention relates to an acoustic echo canceller that removes noise.
【0002】[0002]
【従来の技術】一般に音響反響除去装置は通信衛生およ
び海底ケーブルを利用した長距離電話回線において、2
線4線変換器のインピーダンス不整合により生ずる反射
を除去するものと、テレビ会議システムなどの拡声電話
において、話者音声の音響結合による反響を除去するも
のとに大別でき、修正量演算回路、擬似音響反響を発生
する可変係数フィルタおよび減算回路から構成されてい
る。以下に音響反響除去装置の基本動作を述べる。2. Description of the Related Art Generally, an acoustic echo canceller is used in communication hygiene and long-distance telephone lines using a submarine cable.
It can be roughly classified into one that removes reflection caused by impedance mismatch of the line-to-four-line converter and one that removes reverberation due to acoustic coupling of speaker's voice in a loudspeaker such as a video conference system. It is composed of a variable coefficient filter and a subtraction circuit that generate pseudo-acoustic echo. The basic operation of the acoustic echo canceller will be described below.
【0003】図5は音響反響除去装置の基本構成を示す
図である。受話信号入力端子1は受話信号出力端子2に
接続され、その受話信号入力端子1の受話信号は可変係
数フィルタ3に分岐供給され、擬似音響反響を生成させ
る。送話信号入力端子4からの送話信号と可変係数フィ
ルタ3の出力である擬似音響反響は減算回路5へ入力さ
れ、送話信号中の音響反響成分が除去され、その減算回
路5の出力は送話信号出力端子6へ出力される。送話信
号出力端子6の出力と受話信号入力端子1の信号が修正
量演算回路7に入力され、係数修正量演算回路7の出力
により可変係数フィルタ3のフィルタ係数が修正され
る。可変係数フィルタ3内で受話信号は受話信号入力レ
ジスタ8に入力され、その受話信号入力レジスタ8の受
話信号と擬似インパルス応答レジスタ9の擬似インパル
ス応答との積和が積和回路10でとられ、積和回路10
の出力が擬似音響反響として出力される。受話信号出力
端子2および送話信号入力端子4は長距離電話回線の場
合、2線4線変換器に、拡声電話システムの場合、スピ
ーカとマイクロホンへと接続されている。FIG. 5 is a diagram showing the basic structure of an acoustic echo canceller. The reception signal input terminal 1 is connected to the reception signal output terminal 2, and the reception signal of the reception signal input terminal 1 is branched and supplied to the variable coefficient filter 3 to generate pseudo acoustic echo. The transmission signal from the transmission signal input terminal 4 and the pseudo-acoustic echo that is the output of the variable coefficient filter 3 are input to the subtraction circuit 5, the acoustic echo component in the transmission signal is removed, and the output of the subtraction circuit 5 is It is output to the transmission signal output terminal 6. The output of the transmission signal output terminal 6 and the signal of the reception signal input terminal 1 are input to the correction amount calculation circuit 7, and the filter coefficient of the variable coefficient filter 3 is corrected by the output of the coefficient correction amount calculation circuit 7. The reception signal is input to the reception signal input register 8 in the variable coefficient filter 3, and the sum of products of the reception signal of the reception signal input register 8 and the pseudo impulse response of the pseudo impulse response register 9 is obtained by the sum of products circuit 10. Sum of products circuit 10
Is output as a pseudo acoustic echo. The reception signal output terminal 2 and the transmission signal input terminal 4 are connected to a two-wire to four-wire converter in the case of a long-distance telephone line, and to a speaker and a microphone in the case of a public telephone system.
【0004】音響反響経路の信号伝搬特性を線形で、且
つFIR形ディジタルフィルタで表されると仮定し、そ
のインパルス応答h(t)と入力受話信号x(t)とを
用いれば、サンプル時間間隔をTとし、時刻kTにおけ
る音響反響yk は、 yk = h’xk (1) で表される。但し、 h=[h1 ,h2 ,・・・,hn ]’ (2) x=[xk-1 ,・・・,xk-n ]’ ’:べクトルの転置である。Assuming that the signal propagation characteristic of the acoustic echo path is linear and represented by an FIR type digital filter, if the impulse response h (t) and the input received signal x (t) are used, the sampling time interval is was T, the acoustic echo yk is at time kT, represented by y k = h'x k (1) . However, h = [h 1 , h 2 , ..., H n ] '(2) x = [x k-1 , ..., x kn ]'': transposition of the vector.
【0005】一方、 時刻kTにおけるhの推定値をh
sk とすれば、yk の推定値yskは、 ysk = hsk ’xk (3) で与えられる。 音響反響除去装置では、受話信号入力
端子1に音声信号があり、送話信号入力端子4に音声信
号がなく音響反響のみが存在している時、適応動作状態
として反響除去動作を行う。この適応動作アルゴリズム
には、一般に学習同定法(野田淳彦、南雲仁一:“シス
テムの学習同定法”計測と制御、7、9、pp.597-605(1
968))が採用される。学習同定法によるhsk の逐次修
正は、 hsk+1 = hsk +α(xk ek )/xk ’xk (4)に よって行われる。但し、 ek =yk −ysk , 0<α≦1 (5) でありek を残留音響反響と呼ぶ。この様な演算動作が
係数修正量演算回路7において処理実行されている。擬
似インパルス応答レジスタ9の内容には可変係数系列h
sk が格納されている。αは推定の敏感さを決定する為
の係数更新利得で1.0に近いほど大きな修正量を与え
る事ができ、高速な音響反響除去が可能となるが、実際
に用いる場合には近端雑音や回線状態によって変えて設
定する必要がある。この係数更新利得αの決定は、現在
のところ経験則に依っているのが実態である。又、この
係数更新利得αを残留音響反響の大きさにより可変制御
するものや室内特性に合わせて設定するものがある(例
えば、牧野昭二、小泉宣夫:“エコーキャンセラの室内
音場における適応特性の改善について”、信学論
(A)、J71-A,12,pp.2212-2214(1988-12))。On the other hand, the estimated value of h at time kT is h
If s k , the estimated value ys k of y k is given by ys k = hs k ′ x k (3). In the acoustic echo canceller, when there is a voice signal in the reception signal input terminal 1 and there is no voice signal in the transmission signal input terminal 4 and only acoustic echo exists, the echo elimination operation is performed as an adaptive operation state. This adaptive motion algorithm is generally a learning identification method (Atsuhiko Noda, Jinichi Nagumo: “System Learning Identification Method” Measurement and Control, 7, 9, pp.597-605 (1
968)) is adopted. Successive correction of hsk by the learning identification method is performed by the hs k + 1 = hs k + α (x k e k) / x k 'x k (4). However, e k = y k −y s k , 0 <α ≦ 1 (5), and e k is called residual acoustic echo. Such a calculation operation is processed in the coefficient correction amount calculation circuit 7. The contents of the pseudo impulse response register 9 include the variable coefficient series h.
sk is stored. α is a coefficient update gain for determining the sensitivity of estimation, and the closer it is to 1.0, the larger the amount of correction can be given, and high-speed acoustic echo removal can be performed. However, in actual use, near-end noise can be reduced. It is necessary to change the setting depending on the line status. The fact that the coefficient update gain α is currently determined depends on an empirical rule. There are also ones that variably control the coefficient updating gain α depending on the magnitude of the residual acoustic echo and ones that are set according to the indoor characteristics (for example, Shoji Makino and Nobuo Koizumi: “The adaptive characteristics of echo cancellers in the room sound field. Regarding improvement ”, J. A., J71-A, 12, pp.2212-2214 (1988-12).
【0006】[0006]
【発明が解決しようとする課題】最小二乗法(LMS)
を基本とする学習同定法によるパラメータ推定では、係
数更新利得αの量にその推定性能は大きく依存してい
る。式(5)よりαの取る範囲は0から1の間に有れば
それなりの性能は得られるのだが、その値の差により収
束速度と飽和反響除去量が異なってくる。その状況を示
したのが図4で係数更新利得αの値は図中aが1.0と
図中bが0.5の時のものである。α値が大きいほど高
速になるが飽和反響除去量は逆に低下する事が判る。高
速化と動作安定化はトレードオフの関係にあり、従っ
て、高速性と動作安定性を両立させるのは困難であると
いう問題点があった。The method of least squares (LMS)
In the parameter estimation by the learning identification method based on, the estimation performance greatly depends on the amount of the coefficient update gain α. According to the equation (5), if the range of α is between 0 and 1, some performance can be obtained, but the convergence speed and the saturation echo removal amount differ due to the difference in the value. This situation is shown in FIG. 4, where the value of the coefficient update gain α is 1.0 when a in the figure is 1.0 and b in the figure is 0.5. It can be seen that as the α value increases, the speed increases, but the amount of saturated echo removal decreases. There is a trade-off relationship between speeding up and operation stabilization, and thus it is difficult to achieve both high speed and operation stability.
【0007】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去し、高速性と動作安定性に優れ、
高い適応性能を有し、常時大きな音響反響消去量を維持
しながら音響制御を行う音響反響除去装置を提供する事
を目的とする。The present invention has been made in view of the above points, eliminates the above problems, and is excellent in high speed and operational stability.
An object of the present invention is to provide an acoustic echo canceller having high adaptive performance and performing acoustic control while always maintaining a large acoustic echo canceling amount.
【0008】[0008]
【課題を解決するための手段】本発明はこれらの課題を
解決するためのものであり、受話信号入力端子と、受話
信号出力端子と、送話信号入力端子と、送話信号出力端
子と、該受話信号入力端子の受話信号を入力とする擬似
インパルス応答レジスタを有する可変係数ディジタルフ
ィルタと、該受話信号出力端子から音響反響経路を介し
て該送話信号入力端子に入力される受話信号の音響反響
成分から該可変係数ディジタルフィルタで生起された擬
似音響反響を減算して求められる残差信号を最小とする
様に係数修正量演算回路によって係数系列が逐次更新さ
れる音響反響除去装置において、該擬似インパルス応答
レジスタに格納された各可変係数の累積加算平均電力の
変動率によって該係数修正量演算回路に対する係数更新
利得を更新する音響反響除去装置を提供する。SUMMARY OF THE INVENTION The present invention is to solve these problems and comprises a reception signal input terminal, a reception signal output terminal, a transmission signal input terminal, and a transmission signal output terminal. A variable coefficient digital filter having a pseudo impulse response register that receives the reception signal of the reception signal input terminal, and the sound of the reception signal input from the reception signal output terminal to the transmission signal input terminal through the acoustic echo path. In an acoustic echo canceling apparatus in which a coefficient sequence is sequentially updated by a coefficient correction amount calculation circuit so as to minimize a residual signal obtained by subtracting a pseudo acoustic echo generated by the variable coefficient digital filter from an echo component, A sound for updating the coefficient update gain for the coefficient correction amount calculation circuit according to the variation rate of the cumulative average power of each variable coefficient stored in the pseudo impulse response register. To provide an echo removal device.
【0009】[0009]
【作用】本発明では、上記手段により推定動作の高速性
と高安定性が確保されるので、通信回線上に反響成分が
混入する事が極めて少なくなり、通信音声音質の劣化を
防ぎ、通話そのものを出来なくしてしまうハウリング発
生の危険性を低く抑える事が出来、高品質な音響制御が
可能となる。According to the present invention, since the high speed and high stability of the estimation operation are ensured by the above means, the reverberation component is hardly mixed into the communication line, the deterioration of the communication voice sound quality is prevented, and the call itself. It is possible to reduce the risk of howling that would otherwise be impossible, and high-quality acoustic control becomes possible.
【0010】[0010]
【実施例】以下本発明の実施例を図面にもとづいて詳細
に説明する。図1は本発明の音響反響除去装置の構成を
示すブロック図である。図1に示されるように、本発明
は従来の受話信号入力端子1、3受話信号出力端子2、
可変係数ディジタルフィルタ3、送話信号入力端子4、
減算回路5、送話信号出力端子6、係数修正量演算回路
7、受話信号入力レジスタ8、擬似インパルス応答レジ
スタ9、そして、積和演算回路10から構成された適応
アルゴリズムとして学習同定法を採用した音響反響除去
装置と同一構成の装置に、累積加算平均電力演算回路1
1、電力変動率算出回路12、そして、係数更新利得選
択回路13を追加した構成となっている。該受話信号入
力端子1と、該受話信号出力端子2と、該送話信号入力
端子4と、該送話信号出力端子6と、該受話信号入力端
子1の受話信号を入力とする該擬似インパルス応答レジ
スタ9を持つ該可変係数ディジタルフィルタ3と、該受
話信号出力端子2から音響反響経路を介して該送話信号
入力端子4に入力される受話信号の音響反響成分から該
可変係数ディジタルフィルタ3で生起された擬似音響反
響を減算して求められる残差信号を最小とする様に該係
数修正量演算回路7によって係数系列が逐次更新される
音響反響除去装置において、該擬似インパルス応答レジ
スタ9に格納された各可変係数単独のの累積加算平均電
力を算出する該累積加算平均電力演算回路11と、各可
変係数単独の累積加算平均電力の変動率を算出する該電
力変動率算出回路12と、累積加算平均電力の変動率に
対応した該係数更新利得選択回路13に記憶された0.
0から1.0の範囲の係数更新利得αを選択して該係数
修正量演算回路7にその選択値を送出し、この値を基に
式(4)によって修正量を算出する事を特徴とする音響
反響除去装置。該係数更新利得選択回路13では、係数
電力の変動率の値を回路に内挿された数種類の各閾値と
比較し、適合する閾値範囲に対応させた係数更新利得を
選択する動作を行っている。図2にこの概念図を示す。
この時、係数電力の変動率が一定以下になったと検出し
た場合には、その係数の該係数修正量演算回路7での修
正量演算と更新演算を行わない設定にしておけば、演算
量を削減さす事が可能となり、ハードウェアの負担が軽
減できる。変動率の算出法は以下の通りである。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the acoustic echo canceller of the present invention. As shown in FIG. 1, according to the present invention, a conventional receiving signal input terminal 1, 3 receiving signal output terminal 2,
Variable coefficient digital filter 3, transmission signal input terminal 4,
The learning identification method was adopted as an adaptive algorithm composed of a subtraction circuit 5, a transmission signal output terminal 6, a coefficient correction amount calculation circuit 7, a reception signal input register 8, a pseudo impulse response register 9, and a product-sum calculation circuit 10. A device having the same configuration as the acoustic echo canceller is provided with a cumulative addition average power calculation circuit 1
1, a power fluctuation rate calculation circuit 12, and a coefficient update gain selection circuit 13 are added. The reception signal input terminal 1, the reception signal output terminal 2, the transmission signal input terminal 4, the transmission signal output terminal 6, and the pseudo impulse which receives the reception signal of the reception signal input terminal 1 The variable coefficient digital filter 3 having the response register 9 and the variable coefficient digital filter 3 from the acoustic echo component of the reception signal input from the reception signal output terminal 2 to the transmission signal input terminal 4 through the acoustic echo path. In the acoustic echo canceling apparatus in which the coefficient series is sequentially updated by the coefficient correction amount calculation circuit 7 so as to minimize the residual signal obtained by subtracting the pseudo acoustic echo generated by The accumulated arithmetic mean power calculation circuit 11 for calculating the accumulated arithmetic mean power of each stored variable coefficient, and the power variation circuit calculating the fluctuation rate of the accumulated arithmetic mean power of each variable coefficient. A rate calculation circuit 12, stored in the coefficient update gain selection circuit 13 corresponding to the variation rate of the cumulative addition average power 0.
The coefficient update gain α in the range of 0 to 1.0 is selected, the selected value is sent to the coefficient correction amount calculation circuit 7, and the correction amount is calculated by the equation (4) based on this value. Acoustic echo canceller. The coefficient update gain selection circuit 13 compares the coefficient power fluctuation rate value with each of several kinds of threshold values interpolated in the circuit, and selects a coefficient update gain corresponding to a suitable threshold range. . FIG. 2 shows this conceptual diagram.
At this time, if it is detected that the coefficient power variation rate is below a certain level, the amount of calculation can be reduced by setting the coefficient correction amount calculation circuit 7 not to perform the correction amount calculation and update calculation. It is possible to reduce the load and reduce the load on the hardware. The method of calculating the volatility is as follows.
【0011】 dhk+1 =|hsk+1 2−hsk 2 |/hsk 2 (6) 式(6)に示した変動率は一例であり、決定的な算出法
ではない。例えば分子が過去値ではなくて現在値でもよ
い。又、dhk+1 とdhk との間での差分値を用いても
本発明は有効に機能する。Dh k + 1 = | hs k + 1 2 −hs k 2 | / hs k 2 (6) The fluctuation rate shown in the equation (6) is an example, and is not a definitive calculation method. For example, the numerator may be the present value instead of the past value. The present invention also works effectively by using the difference value between dhk + 1 and dhk.
【0012】図3に白色雑音を参照入力とした場合の本
発明による適応処理動作の結果aを示す。比較対象とし
て係数更新利得を0.5に固定したモデルの結果bを同
図に載せている。縦軸は音響反響消去量、横軸は時間で
ある。本発明によるモデルの係数更新利得の最大設定値
は1.0、最小設定値は0.05とした。初期の消去過
渡領域における応答速度は音響反響消去量が30[d
B]の時で比較すると約2倍本発明によるモデルの方が
優れている事が判る。そして、係数更新利得が徐々に小
さな値に設定されているので外乱の影響を受けずに済
む。FIG. 3 shows the result a of the adaptive processing operation according to the present invention when white noise is used as a reference input. As a comparison target, the result b of the model in which the coefficient update gain is fixed to 0.5 is shown in the same figure. The vertical axis represents the amount of acoustic echo cancellation, and the horizontal axis represents time. The maximum setting value of the coefficient update gain of the model according to the present invention is 1.0 and the minimum setting value is 0.05. The response speed in the initial elimination transient region is 30 [d
It can be seen that the model according to the present invention is superior to the model according to the present invention about twice as much when compared in the case of B]. Since the coefficient update gain is gradually set to a small value, it is not affected by disturbance.
【0013】[0013]
【発明の効果】以上、詳細に説明したように本発明によ
れば、下記のような優れた効果が期待される。As described in detail above, according to the present invention, the following excellent effects are expected.
【0014】(1)本発明を用いる事で、高速化と高安
定化を同時に実現できるので、高品質な音声通信の維持
を図れ、ハウリング発生の危険性を低く抑える事ができ
る。 (2)適応動作過程において、更新演算を行わずに済む
可変係数が発生する。この事により演算量が削減され、
ハードウェアの負担が低減出来る。(1) By using the present invention, high speed and high stability can be realized at the same time, so that high quality voice communication can be maintained and the risk of howling can be suppressed to a low level. (2) In the adaptive operation process, a variable coefficient that does not need to be updated is generated. This reduces the amount of calculation,
The burden on the hardware can be reduced.
【0015】(3)必要以上に可変係数の更新を行わな
いのでディジタルシグナルプロセッサ等で構成する場
合、演算誤差や誤動作を生じにくい。(3) Since the variable coefficient is not updated more than necessary, a calculation error or malfunction is less likely to occur when the digital signal processor or the like is used.
【図1】 本発明による音響反響除去装置の一構成例を
示すブロック図である。FIG. 1 is a block diagram showing a configuration example of an acoustic echo canceller according to the present invention.
【図2】 本説明に用いた状態判定制御部の概念を示す
ブロック図である。FIG. 2 is a block diagram showing the concept of a state determination control unit used in this description.
【図3】 本発明に用いた本発明による白色雑音を参照
入力とした場合の音響反響消去特性の一例を示した図で
ある。FIG. 3 is a diagram showing an example of acoustic echo cancellation characteristics when white noise according to the present invention used as a reference input is used in the present invention.
【図4】 本説明に用いた本発明による白色雑音を参照
入力とした場合の従来方式による音響反響消去特性の一
例を示した図である。FIG. 4 is a diagram showing an example of acoustic echo canceling characteristics according to a conventional method when white noise according to the present invention used in the present description is used as a reference input.
【図5】 従来の一般的な学習同定法を用いた音響反響
除去装置の基本構成の一例を示したブロック図である。FIG. 5 is a block diagram showing an example of a basic configuration of an acoustic echo canceller using a conventional general learning identification method.
1 受話信号入力端子 2 受話信号出力端子 3 可変係数フィルタ 4 送話信号入力端子 5 減算回路 6 送話信号出力端子 7 修正量演算回路 8 受話信号入力レジスタ 9 擬似インパルス応答レジスタ 10 積和演算回路 11 累積加算平均電力演算回路 12 電力変動率算出回路 13 係数更新利得選択回路 1 reception signal input terminal 2 reception signal output terminal 3 variable coefficient filter 4 transmission signal input terminal 5 subtraction circuit 6 transmission signal output terminal 7 correction amount calculation circuit 8 reception signal input register 9 pseudo impulse response register 10 sum of products calculation circuit 11 Cumulative average power calculation circuit 12 Power fluctuation rate calculation circuit 13 Coefficient update gain selection circuit
Claims (1)
と、送話信号入力端子と、送話信号出力端子と、該受話
信号入力端子の受話信号を入力とする擬似インパルス応
答レジスタを有する可変係数ディジタルフィルタと、該
受話信号出力端子から音響反響経路を介して該送話信号
入力端子に入力される受話信号の音響反響成分から該可
変係数ディジタルフィルタで生起された擬似音響反響を
減算して求められる残差信号を最小とする様に係数修正
量演算回路によって係数系列が逐次更新される音響反響
除去装置において、該擬似インパルス応答レジスタに格
納された各可変係数の累積加算平均電力の変動率によっ
て該係数修正量演算回路に対する係数更新利得を更新す
ることを特徴とする音響反響除去装置。1. A variable having a reception signal input terminal, a reception signal output terminal, a transmission signal input terminal, a transmission signal output terminal, and a pseudo impulse response register to which the reception signal of the reception signal input terminal is input. A coefficient digital filter, and subtracts the pseudo-acoustic echo generated by the variable coefficient digital filter from the acoustic echo component of the reception signal input to the transmission signal input terminal from the reception signal output terminal through the acoustic echo path. In the acoustic echo canceller in which the coefficient sequence is sequentially updated by the coefficient correction amount calculation circuit so as to minimize the obtained residual signal, the fluctuation rate of the cumulative addition average power of each variable coefficient stored in the pseudo impulse response register. The acoustic echo canceling device is characterized in that the coefficient updating gain for the coefficient correction amount calculation circuit is updated by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23486194A JP3217614B2 (en) | 1994-09-29 | 1994-09-29 | Acoustic echo canceller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23486194A JP3217614B2 (en) | 1994-09-29 | 1994-09-29 | Acoustic echo canceller |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0897752A true JPH0897752A (en) | 1996-04-12 |
JP3217614B2 JP3217614B2 (en) | 2001-10-09 |
Family
ID=16977501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23486194A Expired - Fee Related JP3217614B2 (en) | 1994-09-29 | 1994-09-29 | Acoustic echo canceller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3217614B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100436479B1 (en) * | 2000-03-08 | 2004-06-24 | 엘지전자 주식회사 | Astriction-speed Variable Control Method Of Adaptive Echo Cancelier In Switching System |
-
1994
- 1994-09-29 JP JP23486194A patent/JP3217614B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100436479B1 (en) * | 2000-03-08 | 2004-06-24 | 엘지전자 주식회사 | Astriction-speed Variable Control Method Of Adaptive Echo Cancelier In Switching System |
Also Published As
Publication number | Publication date |
---|---|
JP3217614B2 (en) | 2001-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100721034B1 (en) | A method for enhancing the acoustic echo cancellation system using residual echo filter | |
JPH08288890A (en) | Method and device for adaptive type filtering | |
US5875246A (en) | Distributed audio signal processing in a network experiencing transmission delay | |
JPH06113027A (en) | Echo eliminating device | |
JP2000059270A (en) | Sound echo canceler | |
JP3217614B2 (en) | Acoustic echo canceller | |
JP3217618B2 (en) | Acoustic echo canceller | |
JP3121998B2 (en) | Acoustic echo canceller | |
JP3217619B2 (en) | Acoustic echo canceller | |
JP3121997B2 (en) | Acoustic echo canceller | |
JP2000252884A (en) | Adaptive filter learning system | |
JP3121983B2 (en) | Acoustic echo canceller | |
JP3244416B2 (en) | Echo canceller | |
JP3152822B2 (en) | Acoustic echo canceller | |
JPH0946276A (en) | Public-address information communication system | |
JP3152825B2 (en) | Acoustic echo canceller | |
JP3152815B2 (en) | Acoustic echo canceller | |
JP3121988B2 (en) | Acoustic echo canceller | |
JPH1013310A (en) | Echo canceller | |
JP3121969B2 (en) | Acoustic echo canceller | |
JP2551869B2 (en) | Echo canceller | |
JP2000165300A (en) | Method and system for identifying unknown system using sub band adaptive filter | |
JPH0964792A (en) | Loud speaker information communication system | |
JP3187715B2 (en) | Echo canceller | |
JPH0746160A (en) | Sound echo canceller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080803 |
|
LAPS | Cancellation because of no payment of annual fees |