JPH0897749A - Quadrature spread spectrum communication system and code division multiple access system - Google Patents

Quadrature spread spectrum communication system and code division multiple access system

Info

Publication number
JPH0897749A
JPH0897749A JP6254556A JP25455694A JPH0897749A JP H0897749 A JPH0897749 A JP H0897749A JP 6254556 A JP6254556 A JP 6254556A JP 25455694 A JP25455694 A JP 25455694A JP H0897749 A JPH0897749 A JP H0897749A
Authority
JP
Japan
Prior art keywords
code
spread spectrum
spread
signal
demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6254556A
Other languages
Japanese (ja)
Other versions
JP2653421B2 (en
Inventor
Shuichi Sasaoka
笹岡秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP6254556A priority Critical patent/JP2653421B2/en
Publication of JPH0897749A publication Critical patent/JPH0897749A/en
Application granted granted Critical
Publication of JP2653421B2 publication Critical patent/JP2653421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE: To improve the transmission characteristic by using a correlation processing means with gate between a spread demodulation code and a signal in a spread code length block after the synchronization between a reception signal and a spread demodulation code is established in spread demodulation processing. and to reduce interference between spread spectrum signals. CONSTITUTION: A guard block code addition section 10 at a transmitter side adds a code of a guard time block to a modified M sequence to generate a spread spectral code. Then input information bit 1 is modulated by an information modulation section 2 and subject to spread spectrum processing at a spread spectrum modulation section 3 based on the spread code to be a spread spectrum signal 4. Furthermore, a spread spectrum code generating section 17 at a receiver side generates a spread spectrum signal for spread spectrum demodulation and a spread spectrum demodulation section 15 applies gated correlation processing to the signal and a received spread spectrum signal 14 by a spread spectrum demodulation section 15 to attain spread spectrum modulation without interference. Then an information demodulation section 16 demodulates the information to provide an output of output bit information 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スペクトル拡散通信方
式においてスペクトル拡散信号間の相互干渉を低減し伝
送特性の改善を図る、直交スペクトル拡散通信方式及び
直交スペクトル拡散方式を適用した符号分割多元接続方
式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orthogonal spread spectrum communication system and a code division multiple access to which the orthogonal spread spectrum system is applied to reduce mutual interference between spread spectrum signals in a spread spectrum communication system and improve transmission characteristics. About the method.

【0002】[0002]

【従来の技術】スペクトル拡散(SS)通信方式を用い
た符号分割多元接続(CDMA)方式では、スペクトル
拡散(SS)信号間の相互干渉により伝送特性が劣化す
るとともに、チャネル容量が制限されるので、その対策
の一つとして直交SS通信方式が使用されている。従来
の直交SS通信方式には、スペクトル拡散符号としてウ
ォルシュ関数からなる直交符号を用いる方法が一般的で
あるが、これ以外にもDCバイアス付きM系列(変形M
系列と呼ぶ)を用いる方法(住吉、谷本、駒井:「同期
式スペクトル拡散多重通信方式の理論的検討」、電子情
報通信学会技術研究報告、CS81−11、1981年4月)があ
る。また、マンチェスタ符号化直交系列を用いる方法
(羽渕、長谷川、羽倉、羽石:「マンチェスタ符号化直
交系列による符号分割多重化法」、電子情報通信学会論
文誌、B−II、J74−B−II、No.5、1991年5月)等があ
る。しかし、ウォルシュ関数からなる直交符号及びマン
チェスタ符号化直交系列を用いる方式は、一般に特定の
同期状態でしか直交とならない。
2. Description of the Related Art In a code division multiple access (CDMA) system using a spread spectrum (SS) communication system, transmission characteristics are deteriorated due to mutual interference between spread spectrum (SS) signals, and channel capacity is limited. The orthogonal SS communication method is used as one of the measures. A conventional orthogonal SS communication system generally uses an orthogonal code composed of a Walsh function as a spread spectrum code, but in addition to this, an M sequence with DC bias (modified M
(Sumiyoshi, Tanimoto, Komai: "Theoretical Study of Synchronous Spread Spectrum Multiplexing", IEICE Technical Report, CS81-11, April 1981). In addition, a method using Manchester coded orthogonal sequences (Habuchi, Hasegawa, Hakura, Haneishi: “Code division multiplexing method using Manchester coded orthogonal sequences”, IEICE Transactions, B-II, J74-B-II, No. 5, May 1991). However, the method using the orthogonal code composed of the Walsh function and the Manchester encoded orthogonal sequence is generally orthogonal only in a specific synchronization state.

【0003】変形M系列による直交SS通信方式の概要
を示す。符号長NのM系列の自己相関関数 Q(τ)は、図
1に示すようになり、サイドローブの大きさは-1/Nとな
る。しかし、送受のM系列に適当な直流分αを付加すれ
ば、図1に示すように自己相関関数 R(τ)のサイドロー
ブを完全に零にすることができる。ここで、αは文献
(住吉、谷本、駒井:「同期式スペクトル拡散多重通信
方式の理論的検討」、電子情報通信学会技術研究報告、
CS81-11、1981年4月) に示されるように符号長Nの関
数となる。N=15、 α=0.2 の場合の変形M系列の例を
図2に示す。図においては、変形M系列の一例を数値系
列及びその時間波形で示すと共に、系列の時間的な最小
構成単位(チップ)の区切りによる簡略化表示で示して
いる。
An outline of an orthogonal SS communication system using a modified M-sequence will be described. The autocorrelation function Q (τ) of the M sequence of code length N is as shown in FIG. 1, and the size of the side lobe is −1 / N. However, if an appropriate DC component α is added to the transmitted and received M-sequence, the side lobe of the autocorrelation function R (τ) can be made completely zero as shown in FIG. Here, α is a document (Sumiyoshi, Tanimoto, Komai: "Theoretical study of synchronous spread spectrum multiplexing communication", IEICE Technical Report,
CS81-11, April 1981), it is a function of code length N. FIG. 2 shows an example of the modified M series when N = 15 and α = 0.2. In the figure, an example of the modified M-sequence is shown by a numerical sequence and its time waveform, and is shown in a simplified manner by delimiting a temporal minimum constituent unit (chip) of the sequence.

【0004】このような変形M系列を相対的に位相シフ
トしたものを各SS信号の拡散符号として割り当てる方
法では、SS信号の相互干渉が発生しない(スペクトル
拡散符号が直交する)ので非同期状態でSS信号が相互
に直交となることが期待される。しかし、情報ビットに
よる変調まで考慮すると同期状態でのみSS信号が相互
に直交となる。
In such a method of assigning a phase-shifted version of the modified M-sequence as a spread code of each SS signal, no mutual interference occurs between the SS signals (the spread spectrum codes are orthogonal), so that the SS signals are not synchronized. It is expected that the signals will be mutually orthogonal. However, considering even the modulation by the information bits, the SS signals are mutually orthogonal only in the synchronous state.

【0005】[0005]

【発明が解決しようとする課題】従来の直交SS通信方
式は、非同期状態において直交性の消失による特性劣化
が著しいため、同期確立が容易な場合に使用形態が制限
されるという問題があった。それゆえ、非同期状態でも
直交となるSS通信方式を実現し、使用形態の制限を取
り除くことが課題である。また、直交SS通信方式を用
いて、直交な符号分割多元接続方式を実現することが課
題である。
The conventional orthogonal SS communication system has a problem that the form of use is limited when synchronization can be easily established because the characteristic deterioration due to the loss of orthogonality is significant in the asynchronous state. Therefore, it is an object to realize an SS communication scheme that is orthogonal even in an asynchronous state, and to remove restrictions on a usage form. Another object is to realize an orthogonal code division multiple access system by using an orthogonal SS communication system.

【0006】上記の目標を達成するため、はじめに変形
M系列を用いたSS通信方式を対象に非同期状態におい
て直交性が消失する原因を明かにする。SS信号が同期
(拡散符号及び情報ビットが同期)及び非同期の場合
に、拡散復調用符号のタイミングに対する相関出力の様
子を図3に示す。図の左側には、希望SS信号S(t)及び
非希望SS信号U(t)の情報ビット及び拡散符号のタイミ
ング関係を図示している。図において、各信号はその波
形で示すのでなく、簡単化のためにビット及びチップの
区切で表示し、希望SS信号及び非希望SS信号の拡散
符号CD(t)とCU(t)の一周期分を実線で区切って示した。
ここで、それぞれの拡散符号は、既に述べたように変形
M系列符号を相対的に位相シフトしたものである。な
お、拡散符号の一周期とビット区間は一致しており、拡
散符号長TCとビット間隔TBは等しい。また、変形M系列
の位相基準となるチップを黒塗りで示し、位相差(時間
差)をTPで表している。図の右側には、各SS信号と拡
散復調用符号CD(t) との相関出力を拡散符号との相対タ
イミングに対して示している。なお、図において自己相
関のピーク値と相関値が0の点以外の相関値は、概念的
なもので必ずしも正確のものではない。また、相関出力
の網掛けは、前後のビット(ビットの極性)等によって
相関値が異なる(値に幅がある)ことを概念的に示して
いる。
[0006] In order to achieve the above goal, the cause of the loss of orthogonality in an asynchronous state in an SS communication system using a modified M-sequence will first be clarified. FIG. 3 shows the state of the correlation output with respect to the timing of the spread demodulation code when the SS signal is synchronous (spread code and information bits are synchronous) and asynchronous. On the left side of the figure, the timing relationship between the information bits of the desired SS signal S (t) and the undesired SS signal U (t) and the spreading code is shown. In the figure, each signal is not shown by its waveform, but is shown by dividing it into bits and chips for simplification, and the spreading codes C D (t) and C U (t) of the desired SS signal and the undesired SS signal are shown. One cycle is shown separated by a solid line.
Here, each spreading code is a modified M-sequence code relatively phase-shifted as described above. It should be noted that one cycle of the spreading code and the bit interval match, and the spreading code length T C and the bit interval T B are equal. Also, the chip serving as the phase reference of the modified M series is shown in black, and the phase difference (time difference) is shown as T P. On the right side of the figure, the correlation output between each SS signal and the spreading demodulation code C D (t) is shown with respect to the relative timing with the spreading code. It should be noted that the correlation values other than the point where the autocorrelation peak value and the correlation value are 0 in the figure are conceptual and not necessarily accurate. Further, the hatching of the correlation output conceptually indicates that the correlation value differs depending on the preceding and succeeding bits (bit polarity) and the like (there is a range of values).

【0007】図3において、希望SSと拡散符号CD(t)
との相関は、拡散符号の同期タイミング(tS=0) にお
いてピーク値をとる。また、ビット同期の場合の干渉S
SとCD(t) との相関は、tS=0 において0となる。一
方、ビット非同期(同期タイミング誤差tD)の場合の相
関は、tS=0 において0とならない。しかし、情報によ
る変調(拡散符号の極性反転)がない場合には、タイミ
ング誤差が発生しても、相関がtS=0 において0とな
る。従って、変形M系列による直接拡散SS方式におけ
る直交性の消失は、前後のビットと拡散符号との部分相
関の影響であり、一種の符号間干渉が原因とも解釈でき
る。このような原因によって直交性が消失することが、
変形M系列を用いたSS通信方式の問題である。
In FIG. 3, desired SS and spreading code C D (t)
The correlation with and takes a peak value at the spread code synchronization timing (t S = 0). In addition, interference S in the case of bit synchronization
The correlation between S and C D (t) becomes 0 at t S = 0. On the other hand, the correlation in the case of bit asynchronous (synchronization timing error t D ) does not become 0 at t S = 0. However, when there is no modulation by information (inversion of the polarity of the spreading code), even if a timing error occurs, the correlation becomes 0 at t s = 0. Therefore, the loss of orthogonality in the direct sequence SS system using the modified M sequence is an effect of partial correlation between the preceding and subsequent bits and the spread code, and can be interpreted as a kind of inter-code interference. The loss of orthogonality due to such causes
This is a problem of the SS communication method using the modified M series.

【0008】本発明は、スペクトル拡散符号の選択とス
ペクトル逆拡散の手法などに工夫して、このような直交
性消失の原因を取り除くことにより、変形M系列を用い
たSS通信方式を非同期状態で直交化することを目的と
している。また、符号分割多元接続方式を準同期状態で
直交化することを目的としている。
The present invention devises a method of selecting a spread spectrum code and a technique of despreading a spectrum to remove such a cause of loss of orthogonality, thereby enabling an SS communication system using a modified M sequence to be asynchronously performed. The purpose is to make it orthogonal. It is another object of the present invention to orthogonalize the code division multiple access system in a quasi-synchronous state.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め本発明の直交スペクトル拡散通信方式では、(a)拡
散符号長とビット間隔を等しく設定するのでなく、拡散
符号長に対してビット間隔を長くして、ガード区間を導
入する第1の手段と、(b)このガード区間を無信号区
間とするのでなく、情報信号を延長するとともに拡散符
号の周期的繰返しにより拡散符号を延長する第2の手段
と、(c)スペクトル拡散信号の同期タイミング誤差よ
り相互の位相シフト量が大きい拡散符号群を変形M系列
より選択して割り当てる第3の手段と、(d)拡散復調
においては、受信信号と拡散復調用符号との同期を確立
後に、拡散復調用符号と拡散符号長区間で相関処理(ゲ
ート付き相関処理)を行う第4の手段と、を用いること
により、非同期状態においても直交化を実現した。
In order to achieve the above object, in the orthogonal spread spectrum communication system of the present invention, (a) the spread code length is not set equal to the bit interval, but the bit interval is set to the spread code length. And (b) extending the information signal and extending the spreading code by periodic repetition of the spreading code instead of making the guard interval a non-signal interval. (C) third means for selecting and allocating a spread code group having a larger phase shift amount than the synchronization timing error of the spread spectrum signal from the modified M sequence, and (d) receiving in the spread demodulation. After establishing synchronization between the signal and the spread demodulation code, the spread demodulation code and fourth means for performing correlation processing (correlation processing with a gate) in the spread code length section can be used in an asynchronous state. It was also realized orthogonalized in.

【0010】また、本発明の符号分割多元接続方式で
は、(a)基地局と移動局間の往復の伝搬時間の最大値
を同期タイミング誤差に設定して、それに伴いガード区
間の設定、拡散符号群の選定及びゲート付き相関処理の
範囲の設定を行う第1の手段と、(b)移動局送信のS
S信号の拡散符号タイミングを、基地局送信で移動局受
信の符号分割多重信号の拡散符号タイミングに従属させ
る第2の手段と、(c)基地局受信での拡散復調のため
の同期の確立を、符号分割多元接続信号のタイミングが
基地局送信のタイミングと準同期の関係にあることを活
用して、送信タイミングを基準としたタイミングの微調
整により実現する第3の手段と、を用いることにより、
準同期状態において直交化を実現した。
Further, in the code division multiple access system of the present invention, (a) the maximum value of the round-trip propagation time between the base station and the mobile station is set as the synchronization timing error, and accordingly, the guard interval is set and the spread code is set. First means for selecting a group and setting a range of gated correlation processing; and (b) S for mobile station transmission.
Second means for making the spread code timing of the S signal dependent on the spread code timing of the code division multiplexed signal of the mobile station reception at the base station transmission, and (c) establishing synchronization for the spread demodulation at the base station reception. , Third means for realizing by finely adjusting the timing with reference to the transmission timing by utilizing the fact that the timing of the code division multiple access signal is in a quasi-synchronous relationship with the timing of the base station transmission. ,
Orthogonalization is realized in quasi-synchronous state.

【0011】[0011]

【作用】ガード区間の設定とゲート付き相関処理を導入
すると、SS信号が同期及び非同期の場合の拡散符号と
の相互相関の様子は、図4のようになる。図の表記は図
3とほぼ同様であり、左側には希望SS信号と非希望S
S信号のタイミング関係を示している。図の左側におい
て、拡散符号の一周期分を太い実線で、ビット区間を細
い実線で区切って示している。ここで、ビット間隔T
Bは、拡散符号長TCに比べてを長くして設定され、その
差の部分がガード区間(時間TG)となる。このガード区
間は無信号区間でなく、情報符号及び拡散符号が延長さ
れている区間である。なお、拡散符号は周期的繰返しを
当てるものとする。一方、図の右側には拡散復調におけ
る拡散復調用符号との相関出力の様子を示している。こ
の拡散復調においては、TC区間で拡散復調用符号と相関
処理(ゲート付き相関処理)を行われる。なお、これと
類似の手法は、フーリエ変換(FFT)により復調を行
う直交マルチキャリア方式(OFDM)において、遅延
対策のためのガード区間の導入(B.Floch, R.Lassalle
and D.Castelain, "Digital sound broadcastingto mob
ile receivers," IEEE Trans. Consum. Electro., Vol.
35, No.3, Aug.1989. )に見られるが、スペクトル拡散
信号の拡散復調に用いた例はない。
When the setting of the guard section and the correlation processing with the gate are introduced, the state of the cross-correlation with the spread code when the SS signal is synchronous and asynchronous is as shown in FIG. The notation in the figure is almost the same as that in FIG.
The timing relationship of the S signal is shown. On the left side of the figure, one cycle of the spreading code is shown by a thick solid line and the bit section is shown by a thin solid line. Where the bit interval T
B is set to be longer than the spreading code length T C , and the difference is the guard interval (time T G ). The guard section is not a non-signal section but a section where the information code and the spreading code are extended. In addition, it is assumed that the spread code is subjected to periodic repetition. On the other hand, the right side of the figure shows the state of the correlation output with the spread demodulation code in the spread demodulation. In this spread demodulation, a spread demodulation code and a correlation process (gated correlation process) are performed in the TC section. Note that a similar technique is to introduce a guard interval (B.Floch, R.Lassallele) for delay countermeasures in an orthogonal multicarrier system (OFDM) that performs demodulation by Fourier transform (FFT).
and D.Castelain, "Digital sound broadcasting to mob
ile receivers, "IEEE Trans. Consum. Electro., Vol.
35, No. 3, Aug. 1989.), but there is no example used for spread demodulation of spread spectrum signals.

【0012】図4の右側に示される希望SSと拡散符号
CD(t) との相関は、拡散符号の同期タイミング(tS
0)においてピーク値をとる。また、ビット同期の場合
の干渉SSとCD(t) との相関は、tS=0 及びその周辺
(±TG区間)において0となる。一方、ビット非同期で
も同期タイミング誤差tDがガード時間TGより小さい場合
の相関は、tS=0 において0となる。上記の手段によっ
て大半の場合に直交化が可能となるが、同期タイミング
誤差により非希望SS信号と希望SS信号の拡散符号の
位相差が打ち消されて、両者の拡散符号が同期する場合
には、相関が非常に大きくなる。この現象は、変形M系
列から相互の位相シフト量が同期誤差以上となるような
拡散符号群を選択することにより避けられる。
Desired SS and spreading code shown on the right side of FIG.
The correlation with C D (t) is the synchronization timing (t S =
The peak value is taken at 0). Further, the correlation between the interference SS and CD (t) in the case of bit synchronization is 0 at t S = 0 and its periphery (± T G section). On the other hand, the correlation is 0 at t S = 0 when the synchronous timing error t D is smaller than the guard time T G even in the case of bit asynchronous. Although the orthogonalization is possible in most cases by the above means, the phase difference between the spreading codes of the undesired SS signal and the desired SS signal is canceled by the synchronization timing error, and when the spreading codes of both are synchronized, The correlation becomes very large. This phenomenon can be avoided by selecting a spreading code group in which the mutual phase shift amount is equal to or more than the synchronization error from the modified M sequence.

【0013】また、別の問題として、直交化が可能な反
面、同期していない非希望SS信号との相関出力が大き
く現れるため、SS信号の多重数が増加すると希望信号
との同期が困難となるとの問題(住吉、谷本、駒井:
「同期式スペクトル拡散多重通信方式の理論的検討」、
電子情報通信学会技術研究報告、CS81-11、1981年4
月)が指摘されている。しかし、この問題は、純粋に拡
散符号の同期の問題でなく、通常のSS方式で同期と一
体視されるチャネル識別又は、無線局識別の問題であ
る。それゆえ、チャネル識別の問題として対処が可能で
ある。
Another problem is that although orthogonalization is possible, a large correlation output with unsynchronized undesired SS signals makes it difficult to synchronize with desired signals when the number of multiplexed SS signals increases. The issue of becoming (Sumiyoshi, Tanimoto, Komai:
"Theoretical Study of Synchronous Spread Spectrum Multiplexing System",
IEICE Technical Report, CS81-11, April 1981
Mon) is pointed out. However, this problem is not a problem of spreading code synchronization purely, but a problem of channel identification or wireless station identification that is integrated with synchronization in the normal SS system. Therefore, it can be dealt with as a problem of channel identification.

【0014】さらに、同期タイミング誤差が大きいとガ
ード時間も大きく設定する必要があると共に、使用可能
な直交な拡散符号数が減少する問題がある。このため、
実用的観点から提案方式が有効な範囲は、ビット準同期
状態(同期誤差がビット間隔に比べて十分に小さい状
態)での使用で、且つビット準同期状態の実現が容易な
システムへの適用に限定される。しかし、衛星通信シス
テム及び移動通信システムにおいては、このような問題
が基地局送信SS信号に従属同期して移動局でSS送信
する方式により解決できる。
Further, if the synchronization timing error is large, it is necessary to set a large guard time, and there is a problem that the number of usable orthogonal spreading codes decreases. For this reason,
From a practical point of view, the range in which the proposed method is effective is that it is used in a bit quasi-synchronous state (a state where the synchronization error is sufficiently smaller than the bit interval) and is applied to a system in which the bit quasi-synchronous state can be easily realized. Limited. However, in a satellite communication system and a mobile communication system, such a problem can be solved by a method in which a mobile station performs SS transmission in a subordinate synchronization with an SS signal transmitted by a base station.

【0015】[0015]

【実施例】本発明の請求項1及び2による直交スペクト
ル拡散通信方式の実施例の構成図を図5に示す。図は、
送信側の構成(スペクトル拡散信号の発生法)及び受信
側の構成(スペクトル拡散信号の復調法)を示してい
る。
FIG. 5 is a block diagram showing an embodiment of an orthogonal spread spectrum communication system according to claims 1 and 2 of the present invention. The figure is
The configuration on the transmission side (spread spectrum signal generation method) and the configuration on the reception side (spread spectrum signal demodulation method) are shown.

【0016】送信側においては、データのクロック5か
ら符号タイミング発生部6で拡散符号のタイミング信号
11を発生させるとともに、拡散符号クロック発生部7
で拡散符号用のクロック信号12を発生させる。このタ
イミング信号11及びクロック信号12を時刻基準とし
て、拡散符号位相設定部8で拡散符号の位相シフト量を
設定して、変形M系列発生部9で変形M系列を発生させ
る。次に、ガード区間符号付加部10で、変形M系列に
ガードタイム区間の符号を付加したスペクトル拡散符号
を発生させる。一方、入力情報ビット1は、情報変調部
2で情報変調されたあと、スペクトル拡散変調部3で拡
散符号によりスペクトル拡散されて、スペクトル拡散信
号4となる。この送信側の構成は、希望SS信号の発生
について示しているが、同様の構成で発生させた非希望
SS信号が合成され、受信信号となる。
On the transmitting side, the code timing generator 6 generates the spread code timing signal 11 from the data clock 5, and the spread code clock generator 7
Generates a clock signal 12 for the spreading code. With the timing signal 11 and the clock signal 12 as the time reference, the spread code phase setting unit 8 sets the phase shift amount of the spread code, and the modified M sequence generation unit 9 generates the modified M sequence. Next, the guard interval code adding section 10 generates a spread spectrum code in which the code of the guard time interval is added to the modified M sequence. On the other hand, the input information bit 1 is information-modulated by the information modulator 2 and then spread-spectrum spread by the spread-spectrum modulator 3 to be a spread-spectrum signal 4. Although the configuration on the transmitting side shows generation of a desired SS signal, non-desired SS signals generated by the same configuration are combined to become a reception signal.

【0017】一方、受信側においては、受信スペクトル
拡散信号14から同期タイミング検出部20で希望SS
信号の拡散符号と同期したタイミングを検出し、このタ
イミングを基準としてタイミング制御部でタイミングの
調整を行ったあと、符号クロックタイミング発生部18
でクロック信号を発生させる。次に、スペクトル拡散符
号発生部17で拡散復調用のスペクトル拡散信号を発生
させ、この信号と受信スペクトル拡散信号14とのゲー
ト付き相関処理を拡散復調部15で行うことにより、相
互干渉がない状態で拡散復調を行う。ここで、相関とし
ては複素相関が取られて、搬送波位相の影響が除く処理
が行われる。なお、非希望SS信号は、希望SS信号と
の搬送波位相差によらず直交性が維持される。その後、
情報復調部16で情報復調を行って出力ビット情報22
を出力する。
On the other hand, on the receiving side, the synchronization timing detector 20 detects the desired SS from the received spread spectrum signal 14.
After the timing synchronized with the spread code of the signal is detected and the timing control section adjusts the timing based on this timing, the code clock timing generation section 18
Generates a clock signal. Next, a spread spectrum signal for spread demodulation is generated by a spread spectrum code generation section 17, and the spread demodulation section 15 performs a gated correlation process between the spread spectrum signal and the received spread spectrum signal 14 so that no mutual interference occurs. Performs spread demodulation. Here, a complex correlation is taken as the correlation, and processing for removing the influence of the carrier phase is performed. The non-desired SS signal maintains orthogonality regardless of the carrier phase difference from the desired SS signal. afterwards,
The information demodulation unit 16 demodulates information and outputs the output bit information 22
Is output.

【0018】図5に示す方法では、希望SS信号との同
期の確立において、場合によって希望SS信号以外に相
互位相差の小さい拡散符号をもつ非希望SS信号に誤同
期する可能性がある。そこで、出力ビット情報によりチ
ャネル識別部21でチャネル識別、具体的には誤同期の
検出を行い、その結果によりタイミング制御部19で同
期が正常となるまで拡散復調用符号のタイミングを調整
して、希望SS信号との同期を確立させる。
In the method shown in FIG. 5, when establishing synchronization with the desired SS signal, there is a possibility that, in some cases, erroneous synchronization with a non-desired SS signal having a spreading code with a small mutual phase difference other than the desired SS signal may occur. Therefore, the channel identification unit 21 performs channel identification based on the output bit information, specifically, detects false synchronization, and based on the result, the timing control unit 19 adjusts the timing of the spread demodulation code until the synchronization becomes normal. The synchronization with the desired SS signal is established.

【0019】次に、スペクトル拡散通信方式を多重波遅
延歪対策として適用した、本発明の請求項3による直交
スペクトル通信方式の実施例を説明する。本来、直接拡
散SS方式は耐多重波性に優れ、パスダイバーシチが可
能であるが、スペクトル利用効率が低いことが問題であ
った。多重波伝搬における遅延時間差を考慮して拡散符
号を選択して、符号分割多重化を行う。このことによ
り、符号分割多重化したスペクトル拡散信号の直交性
が、多重路伝搬環境において保持できるとともに、スペ
クトル利用効率の向上も可能となる。
Next, an embodiment of the orthogonal spectrum communication system according to claim 3 of the present invention, in which the spread spectrum communication system is applied as a countermeasure against multipath delay distortion, will be described. Originally, the direct spread SS method was excellent in multi-wave resistance and capable of path diversity, but had a problem of low spectrum utilization efficiency. A spreading code is selected in consideration of a delay time difference in multiplex wave propagation, and code division multiplexing is performed. As a result, the orthogonality of the code-division-multiplexed spread spectrum signal can be maintained in the multipath propagation environment, and the spectrum utilization efficiency can be improved.

【0020】次に、直交スペクトル通信方式を移動通信
システムに適用した本発明の請求項4による符号分割多
元接続方式の実施例について説明する。
Next, an embodiment of a code division multiple access system according to claim 4 of the present invention in which the orthogonal spectrum communication system is applied to a mobile communication system will be described.

【0021】はじめに、符号分割多元接続方式を移動通
信に適用した場合に想定されるシステムの全体構成を図
6に示す。想定システムは、基地局と多数の移動局から
構成され、下り回線(基地局から移動局)は同期状態の
符号分割多重(CDM)で、上り回線(移動局から基地
局)は準同期状態で符号分割多元接続(CDMA)で運
用する。CDMAの拡散符号としては、変形M系列の位
相シフトにより作られる拡散符号群を用いる。なお、他
セルにおいては、別の変形M系列から作られる拡散符号
群を用いる。一方、移動局の拡散符号の送信タイミング
は、CDM受信信号タイミングに同期するものとする。
ここで、基地局受信のCDMA信号間のタイミング誤差
は、基地局と移動局間の往復の伝搬時間の最大値TMAX
下となる。ビット準同期、即ち、往復の伝搬時間TMAX
ビット間隔TBに比べて十分に大きいが成り立つものとす
る。以下では、準同期で運用される上り回線について送
受信系の構成を示す。
First, FIG. 6 shows an overall configuration of a system assumed when the code division multiple access system is applied to mobile communication. The assumed system is composed of a base station and a number of mobile stations. The downlink (base station to mobile station) is code division multiplexed (CDM) in a synchronized state, and the uplink (mobile station to base station) is in a semi-synchronized state. Operates in code division multiple access (CDMA). As a CDMA spreading code, a spreading code group created by phase shift of a modified M sequence is used. In another cell, a spreading code group created from another modified M sequence is used. On the other hand, the transmission timing of the spreading code of the mobile station is synchronized with the CDM reception signal timing.
The timing error between CDMA signal of the base station reception becomes less than or equal to the maximum value T MAX of the propagation time of the round trip between the base station and the mobile station. It is assumed that bit quasi-synchronization, that is, the round-trip propagation time T MAX is sufficiently larger than the bit interval T B. Hereinafter, the configuration of the transmission / reception system for the uplink operated in quasi-synchronization will be described.

【0022】準同期で直交となるCDMAのための移動
局の送信系の構成図を図7に示す。送信系では、入力情
報ビット1から情報変調部2で情報変調を行い、次にス
ペクトル拡散符号発生部17で拡散符号を発生させ、ス
ペクトル拡散変調部3でスペクトル拡散信号を発生させ
る。符号クロック発生部18で発生する拡散符号のタイ
ミングは、受信符号クロックタイミング25で制御され
る。発生したSS信号は、場合により別系統のスペクト
ル拡散信号発生部で発生させたSS信号と多重化部24
で多重化されて送信される形態もある。
FIG. 7 shows a block diagram of a transmission system of a mobile station for CDMA which is orthogonal in quasi-synchronization. In the transmission system, information modulation is performed from the input information bit 1 by the information modulator 2, a spread code is generated by the spread spectrum code generator 17, and a spread spectrum signal is generated by the spread spectrum modulator 3. The timing of the spread code generated by the code clock generator 18 is controlled by the reception code clock timing 25. The generated SS signal is optionally combined with the SS signal generated by another system of spread spectrum signal generation unit and the multiplexing unit 24.
There is also a form that is multiplexed and transmitted in.

【0023】図7に示す拡散変調においては、基地局受
信時のタイミング誤差に対して直交性が維持できるよう
に、ガード区間を設定するとともに拡散符号群を選定す
る。基地局受信のCDMA信号間のタイミング誤差が2
チップ以内の場合におけるガード区間の設定と拡散符号
群の選定の様子を図8に示す。図では変形M系列長を3
1としている。拡散符号群は、相互位相シフトが3チッ
プ以上のM系列から選択され、符号数は10となる。な
お、タイミング誤差が2チップ以内の設定は、十分に現
実的なものである。例えば、セル半径が300mのマイクロ
セル(最大伝搬遅延1μs)でチップ速度1M chip/sの
直接拡散SS方式を用いる場合、タイミング誤差が2チ
ップ以内となる。
In the spreading modulation shown in FIG. 7, a guard interval is set and a spreading code group is selected so that orthogonality can be maintained with respect to a timing error at the time of receiving a base station. Timing error between CDMA signals received by the base station is 2
FIG. 8 shows the setting of the guard section and the selection of the spreading code group in the case of within the chip. In the figure, the modified M sequence length is 3
It is set to 1. The spreading code group is selected from M sequences having a mutual phase shift of 3 chips or more, and the number of codes is 10. The setting of the timing error within two chips is sufficiently realistic. For example, in the case of using a direct spreading SS system with a chip speed of 1 M chip / s in a micro cell having a cell radius of 300 m (maximum propagation delay of 1 μs), the timing error is within 2 chips.

【0024】非同期で直交となるCDMAのための基地
局の受信系の構成図を図9に示す。基地局では、受信ス
ペクトル拡散信号が信号分配部26で分配され、各移動
局から多元接続されるSS信号毎に用意されるスペクト
ル拡散受信部27に供給させる。拡散復調における同期
は、各受信信号のタイミングが基地局送信の送信クロッ
クタイミング28と準同期関係にあることを活用して、
タイミング制御部19でタイミングの微調整により実現
される。なお、場合によっては、同期タイミング検出部
20で別に拡散符号の同期を検出する方式も考えられ
る。
FIG. 9 shows a configuration diagram of a receiving system of a base station for CDMA which is asynchronous and orthogonal. In the base station, the received spread spectrum signal is distributed by the signal distribution unit 26 and supplied from each mobile station to the spread spectrum reception unit 27 prepared for each of the multiple access SS signals. The synchronization in spread demodulation takes advantage of the fact that the timing of each received signal is in a semi-synchronous relationship with the transmission clock timing 28 of base station transmission,
It is realized by the timing control unit 19 by finely adjusting the timing. In some cases, a method may be considered in which the synchronization timing detection unit 20 separately detects the synchronization of the spread code.

【0025】受信SS信号は、拡散復調部15で拡散復
調用符号とのゲート付き相関処理が行われ、相互干渉が
ない状態で拡散復調が行われる。その後、情報復調部1
6で情報復調を行って出力ビット情報22を出力する。
非希望SS信号への誤同期の対策として、出力ビット情
報によりチャネル識別部でチャネル識別を行い、その結
果によりタイミング制御部19で拡散復調用符号のタイ
ミングを調整して、希望SS信号に同期させる。
The received SS signal is subjected to a gated correlation process with a spread demodulation code by a spread demodulation unit 15 and spread demodulation is performed without mutual interference. Then, the information demodulation unit 1
In step 6, information demodulation is performed, and output bit information 22 is output.
As a measure against erroneous synchronization with an undesired SS signal, the channel identification unit performs channel identification based on the output bit information, and the timing control unit 19 adjusts the timing of the spreading demodulation code according to the result, and synchronizes with the desired SS signal. .

【0026】上記の準同期で直交な符号分割多元接続方
式の実施例は、同一セル内で直交となるセルラーシステ
ムへの適用であった。次に、隣接セル間での直交性が保
たれる本発明の請求項4による符号分割多元接続方式の
実施例を示す。隣接基地局から送信されるSS通信信号
間で同期をとることにより、下り回線、即ち、移動局受
信において準同期状態が実現できる。また、上り回線に
おいても移動局送信のSS信号の拡散符号タイミングを
基地局送信で移動局受信の拡散符号タイミングに従属さ
せることにより準同期状態が実現可能である。それゆ
え、基地局と移動局との往復の伝搬時間差の最大値より
同期タイミング誤差を大きく設定して、それに伴ってガ
ード区間の設定、拡散符号群の選定及びゲート付き相関
処理の範囲の設定を行うことにより、隣接セル間でも直
交の実現の可能となる。
The above-described embodiment of the quasi-synchronous and orthogonal code division multiple access system has been applied to a cellular system in which orthogonality is achieved in the same cell. Next, an embodiment of the code division multiple access system according to claim 4 of the present invention in which orthogonality between adjacent cells is maintained will be described. By establishing synchronization between SS communication signals transmitted from adjacent base stations, a quasi-synchronous state can be realized in the downlink, that is, in the mobile station reception. Also in the uplink, a quasi-synchronous state can be realized by making the spread code timing of the SS signal transmitted by the mobile station dependent on the spread code timing of the mobile station reception by the base station transmission. Therefore, the synchronization timing error is set to be larger than the maximum value of the round-trip propagation time difference between the base station and the mobile station, and accordingly, the setting of the guard section, the selection of the spreading code group, and the setting of the range of the gated correlation processing are performed. By doing so, orthogonalization can be realized even between adjacent cells.

【0027】次に、隣接セル間での直交性が保たれる本
発明の請求項4による符号分割多元接続方式の別の実施
例を示す。隣接セル間で直交性が保たれると、隣接セル
から同一の希望SS信号を送信し、それぞれの信号を独
立に復調してダイバーシチ合成することにより、パスダ
イバーシチ又はサイトダイバーシチが相互干渉による劣
化を起こすことなく実現できる。
Next, another embodiment of the code division multiple access system according to claim 4 of the present invention in which orthogonality between adjacent cells is maintained. When orthogonality is maintained between adjacent cells, the same desired SS signal is transmitted from the adjacent cells, and each signal is independently demodulated and diversity-combined, so that path diversity or site diversity can be reduced by mutual interference. It can be realized without getting up.

【0028】[0028]

【発明の効果】本発明の直交スペクトル拡散通信方式に
よって、スペクトル拡散信号間の相互干渉の軽減が、相
互の信号の同期を前提にしないで実現できるので、幅広
い適用分野においてスペクトル拡散通信方式の特性向上
が可能となる。また、スペクトル拡散通信方式による多
重波遅延歪対策が、スペクトル利用効率をあまり損なわ
ないで実現可能となる。
By means of the orthogonal spread spectrum communication system of the present invention, mutual interference between spread spectrum signals can be reduced without presupposing that the signals are synchronized with each other. It is possible to improve. In addition, a countermeasure against a multipath delay distortion by the spread spectrum communication method can be realized without significantly impairing the spectrum use efficiency.

【0029】一方、本発明の符号分割多元接続方式によ
って、移動通信分野においてCDMAセルラーシステム
のチャネル容量の増加が期待できる。また、非直交の従
来方式と異なり「遠近問題」が軽微となるため、送信電
力制御の負担を大幅に軽減できる。さらに、準同期で直
交なシステムの実現が容易となる。また、隣接セル間で
直交なシステムの実現も可能となるとともに、サイトダ
イバーシチの効果的な実現も可能となる。
On the other hand, the code division multiple access method of the present invention can be expected to increase the channel capacity of a CDMA cellular system in the mobile communication field. Further, unlike the non-orthogonal conventional method, the "far problem" is negligible, so that the burden of transmission power control can be greatly reduced. Furthermore, it becomes easy to realize a quasi-synchronous and orthogonal system. In addition, it is possible to realize a system orthogonal to adjacent cells and to effectively realize site diversity.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術の説明に関するM系列符号と変形M系
列符号の自己相関関数の図。
FIG. 1 is a diagram of an autocorrelation function of an M-sequence code and a modified M-sequence code related to the description of the related art.

【図2】従来技術の説明に関する変形M系列の1例を示
す図。
FIG. 2 is a diagram showing an example of a modified M sequence related to the description of the conventional technique.

【図3】従来技術の課題に関する変形M系列におけるビ
ット非同期による直交性の消失の様子を示す図。
FIG. 3 is a diagram showing a state of loss of orthogonality due to bit asynchronization in a modified M sequence related to the problem of the conventional technique.

【図4】本発明の課題解決の手段に関するビット非同期
における直交性の消失の対策を示す図。
FIG. 4 is a diagram showing a countermeasure against loss of orthogonality in bit asynchronous operation according to the means for solving the problem of the present invention.

【図5】本発明の請求項1及び2の実施例に関する送信
側及び受信側の構成図。
FIG. 5 is a configuration diagram of a transmitting side and a receiving side according to an embodiment of claims 1 and 2 of the present invention.

【図6】本発明の請求項3の一実施例において適用を想
定したマイクロセルCDMAセルラシステムの図。
FIG. 6 is a diagram of a micro cell CDMA cellular system which is supposed to be applied in an embodiment of claim 3 of the present invention.

【図7】本発明の請求項3の一実施例における移動局の
CDMA送信系の構成図。
FIG. 7 is a configuration diagram of a CDMA transmission system of a mobile station according to an embodiment of the present invention.

【図8】本発明の請求項3の一実施例におけるガード区
間の設定と拡散符号の選択の一例を示す図。
FIG. 8 is a diagram showing an example of setting a guard interval and selecting a spreading code according to an embodiment of claim 3 of the present invention.

【図9】本発明の請求項3の一実施例における基地局の
CDMA受信系の構成図。
FIG. 9 is a configuration diagram of a CDMA receiving system of a base station according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 入力ビット情報 2 情報変調部 3 スペクトル拡散変調部 4 スペクトル拡散信号 5 クロック信号 6 符号タイミング発生部 7 拡散符号クロック発生部 8 拡散符号位相設定部 9 変形M系列発生部 10 ガードタイム区間符号付加部 11 タイミング信号 12 クロック信号 13 スペクトル拡散符号発生部 14 受信スペクトル拡散信号 15 拡散復調部 16 情報復調部 17 スペクトル拡散符号発生部 18 符号クロック発生部 19 タイミング制御部 20 同期タイミング検出部 21 チャネル識別部 22 出力ビット情報 23 スペクトル拡散信号発生部 24 多重化部 25 受信符号クロックタイミング 26 信号分配部 27 スペクトル拡散受信部 28 送信符号クロックタイミング 1 Input Bit Information 2 Information Modulation Section 3 Spread Spectrum Modulation Section 4 Spread Spectrum Signal 5 Clock Signal 6 Code Timing Generation Section 7 Spread Code Clock Generation Section 8 Spread Code Phase Setting Section 9 Modified M Sequence Generation Section 10 Guard Time Section Code Addition Section 11 timing signal 12 clock signal 13 spread spectrum code generation unit 14 received spread spectrum signal 15 spread demodulation unit 16 information demodulation unit 17 spread spectrum code generation unit 18 code clock generation unit 19 timing control unit 20 synchronization timing detection unit 21 channel identification unit 22 Output bit information 23 Spread spectrum signal generation unit 24 Multiplexing unit 25 Reception code clock timing 26 Signal distribution unit 27 Spread spectrum reception unit 28 Transmission code clock timing

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】スペクトル拡散信号間の相互干渉を低減す
るため、変形M系列、即ち、M系列にDCバイアスを付
加して自己相関関数のサイドローブを完全に零とした系
列を位相シフトしたものを拡散符号として用いる直交ス
ペクトル拡散通信方式において、(a)拡散符号長とビ
ット間隔を等しく設定するのでなく、拡散符号長に対し
てビット間隔を長くして、ガード区間を導入する第1の
手段と、(b)このガード区間を無信号区間とするので
なく、情報信号を延長するとともに拡散符号の周期的繰
返しにより拡散符号を延長する第2の手段と、(c)ス
ペクトル拡散信号の同期タイミング誤差より相互の位相
シフト量が大きい拡散符号群を変形M系列より選択して
割り当てる第3の手段と、(d)拡散復調においては、
受信信号と拡散復調用符号との同期を確立後に、拡散復
調用符号と拡散符号長区間で相関処理(ゲート付き相関
処理)を行う第4の手段と、を用いることにより、非同
期状態においても直交性が保たれることを特徴とする直
交スペクトル拡散通信方式。
1. A modified M sequence, that is, a sequence in which a side lobe of an autocorrelation function is completely zero by adding a DC bias to the M sequence in order to reduce mutual interference between spread spectrum signals. In the orthogonal spread spectrum communication system using as a spreading code, (a) first means for introducing a guard interval by making the bit interval longer than the spreading code length rather than setting the spreading code length equal to the bit spacing. And (b) second means for extending the information signal and extending the spread code by periodically repeating the spread code instead of setting the guard section as a no-signal section, and (c) synchronization timing of the spread spectrum signal. Third means for selecting and allocating a spreading code group having a mutual phase shift amount larger than an error from a modified M sequence, and (d) spreading demodulation,
By using the spread demodulation code and the fourth means for performing correlation processing (correlation processing with gate) in the spread code length section after establishing synchronization between the received signal and the spread demodulation code, orthogonality is achieved even in an asynchronous state. An orthogonal spread spectrum communication method characterized by maintaining the property.
【請求項2】スペクトル拡散信号間の相互干渉を低減す
るため、変形M系列、即ち、M系列にDCバイアスを付
加して自己相関関数のサイドローブを完全に零とした系
列を位相シフトしたものを拡散符号として用いる直交ス
ペクトル拡散通信方式において、(a)情報復調信号か
らチャネル識別を行い、誤同期を検出する第1の手段
と、(b)誤同期の場合に拡散復調用符号のタイミング
を微調整する第2の手段と、を用いることにより、拡散
復調における拡散復調用符号と希望スペクトル拡散信号
との同期を正しく確立することを特徴とする請求項1記
載の直交スペクトル拡散通信方式。
2. A modified M sequence, that is, a sequence in which a side lobe of an autocorrelation function is completely zero by adding a DC bias to the M sequence in order to reduce mutual interference between spread spectrum signals. In the orthogonal spread spectrum communication system using as a spreading code, (a) first means for performing channel identification from the information demodulated signal to detect false synchronization, and (b) timing of the spreading demodulation code in the case of false synchronization. 2. The orthogonal spread spectrum communication system according to claim 1, wherein synchronization between the spread spectrum demodulation code and the desired spread spectrum signal in spread spectrum demodulation is correctly established by using the second means for fine adjustment.
【請求項3】多重波遅延歪対策として用いる直交スペク
トル拡散通信方式において、(a)多重波伝搬による遅
延時間差を考慮して、拡散符号群を選択する第1の手段
と、(b)選択された拡散符号群の各拡散符号によって
情報信号系列をスペクトル拡散変調し、発生した直交ス
ペクトル拡散信号を多重化する第2の手段と、を用いる
ことにより、スペクトル利用効率が低いとの欠点を克服
して、使用帯域当たりの情報伝送速度の向上を図ること
を特徴とする請求項1、2記載の直交スペクトル拡散通
信方式。
3. In an orthogonal spread spectrum communication system used as a countermeasure against multipath delay distortion, (a) first means for selecting a spread code group in consideration of a delay time difference due to multipath propagation, and (b) selection. And a second means for performing spread spectrum modulation of the information signal sequence by each spread code of the spread code group and multiplexing the generated orthogonal spread spectrum signal, thereby overcoming the disadvantage of low spectrum utilization efficiency. The orthogonal spread spectrum communication system according to claim 1, wherein the information transmission rate per used band is improved.
【請求項4】請求項1、2記載の直交スペクトル拡散通
信方式を基地局と多数の移動局から構成される移動通信
システムに適用し、基地局から移動局向けの下り回線を
同期状態で、移動局から基地局向けの上り回線を準同期
状態で運用する符号分割多元接続方式において、(a)
基地局と移動局間の往復の伝搬時間の最大値を同期タイ
ミング誤差に設定して、それに伴いガード区間の設定、
拡散符号群の選定及びゲート付き相関処理の範囲の設定
を行う第1の手段と、(b)移動局送信のSS信号の拡
散符号タイミングを、基地局送信で移動局受信の符号分
割多重信号の拡散符号タイミングに従属させる第2の手
段と、(c)基地局受信での拡散復調のための同期の確
立を、符号分割多元接続信号のタイミングが基地局送信
のタイミングと準同期の関係にあることを活用して、送
信タイミングを基準としたタイミングの微調整により実
現する第3の手段と、を用いることにより、準同期状態
において直交性が保持されることを特徴とする符号分割
多元接続方式。
4. The orthogonal spread spectrum communication system according to claim 1 or 2 is applied to a mobile communication system composed of a base station and a large number of mobile stations, and a downlink from the base station to the mobile stations is synchronized. In the code division multiple access system in which the uplink from the mobile station to the base station is operated in a semi-synchronous state, (a)
Set the maximum value of the round-trip propagation time between the base station and the mobile station to the synchronization timing error, and accordingly set the guard interval,
A first means for selecting a spread code group and setting a range of gated correlation processing, and (b) a spread code timing of an SS signal transmitted by a mobile station, a base station transmission of a code division multiplexed signal received by a mobile station. The second means that is dependent on the spread code timing and (c) the establishment of synchronization for spread demodulation at the base station reception have a quasi-synchronous relationship with the timing of the code division multiple access signal and the transmission timing of the base station. And a third means for realizing fine adjustment of the timing based on the transmission timing by utilizing the above, and the orthogonality is maintained in the quasi-synchronized state. .
【請求項5】請求項1、2記載の直交スペクトル拡散通
信方式を複数基地局と多数の移動局から構成されるセル
ラーシステムに適用し、基地局から移動局向けの下り回
線を同期状態で、移動局から基地局向けの上り回線を準
同期状態で運用する符号分割多元接続方式において、
(a)隣接基地局から送信されるスペクトル拡散信号の
相互の同期をとる第1の手段と、(b)隣接セルも含め
て基地局と移動局との往復の伝搬時間差の最大値より同
期タイミング誤差を大きく設定して、それに伴ってガー
ド区間の設定、拡散符号群の選定及びゲート付き相関処
理の範囲の設定を行う第2の手段と、(c)選定された
拡散符号群から隣接セルも含めて拡散符号の割当を行う
第3の手段と、を用いて隣接セルを含めて準同期状態で
直交性が保持されることを特徴とする請求項4記載の符
号分割多元接続方式。
5. The orthogonal spread spectrum communication system according to claim 1 or 2 is applied to a cellular system composed of a plurality of base stations and a large number of mobile stations, and a downlink from the base stations to the mobile stations is synchronized. In the code division multiple access system that operates the uplink from the mobile station to the base station in a semi-synchronous state,
(A) First means for synchronizing the spread spectrum signals transmitted from the adjacent base stations with each other, and (b) Synchronization timing based on the maximum value of the round-trip propagation time difference between the base station and the mobile station including the adjacent cells. Second means for setting a large error and accordingly setting a guard interval, a spreading code group and a range of gated correlation processing, and (c) an adjacent cell from the selected spreading code group 5. The code division multiple access method according to claim 4, wherein orthogonality is maintained in a quasi-synchronized state including adjacent cells by using a third means for allocating spreading codes.
JP6254556A 1994-09-22 1994-09-22 Orthogonal spread spectrum communication system, code division multiple access system and code division multiple access cellular system Expired - Lifetime JP2653421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6254556A JP2653421B2 (en) 1994-09-22 1994-09-22 Orthogonal spread spectrum communication system, code division multiple access system and code division multiple access cellular system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6254556A JP2653421B2 (en) 1994-09-22 1994-09-22 Orthogonal spread spectrum communication system, code division multiple access system and code division multiple access cellular system

Publications (2)

Publication Number Publication Date
JPH0897749A true JPH0897749A (en) 1996-04-12
JP2653421B2 JP2653421B2 (en) 1997-09-17

Family

ID=17266691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6254556A Expired - Lifetime JP2653421B2 (en) 1994-09-22 1994-09-22 Orthogonal spread spectrum communication system, code division multiple access system and code division multiple access cellular system

Country Status (1)

Country Link
JP (1) JP2653421B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023767A1 (en) * 2005-08-23 2007-03-01 Ntt Docomo, Inc. Base station and communication system
KR100743888B1 (en) * 2006-01-09 2007-08-02 국방과학연구소 Cdma communication apparatus and system using quasi-orthogonal spreading sequence with guard interval sequence

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315886B2 (en) 2004-10-01 2009-08-19 Okiセミコンダクタ株式会社 Method and circuit for synchronization acquisition of spread spectrum signal
EP2490340B1 (en) 2009-10-16 2019-05-01 QUADRAC Co., Ltd. Wireless communication system, transmitter apparatus, receiver apparatus, receiving method, and transmitting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023767A1 (en) * 2005-08-23 2007-03-01 Ntt Docomo, Inc. Base station and communication system
US7912030B2 (en) 2005-08-23 2011-03-22 Ntt Docomo, Inc. Base station and communication system
KR100743888B1 (en) * 2006-01-09 2007-08-02 국방과학연구소 Cdma communication apparatus and system using quasi-orthogonal spreading sequence with guard interval sequence

Also Published As

Publication number Publication date
JP2653421B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US7130293B2 (en) Transmitter, transmitting method, receiver, and receiving method for MC-CDMA communication system
KR100748402B1 (en) Method and apparatus for mitigating interference between base stations in a wide-band cdma system
EP2074707B1 (en) A method for transmitting information using sequence.
US7468943B2 (en) Transmission/Reception apparatus and method in a mobile communication system
US20070041348A1 (en) Transmitting/receiving apparatus and method for cell search in a broadband wireless communications system
US20080043702A1 (en) Method and apparatus for cell search in a communication system
US20100272034A1 (en) Base station device, mobile station device, communication system, channel estimation method, transmission antenna detection method, and program
JP2010528565A (en) Scramble method for synchronization channel
JP2006094537A (en) Method for displaying group of codes belonging to base station in time division duplex (tdd) communications system
WO2006134829A1 (en) Transmitter, receiver, mobile communication system and synchronization channel transmission method
KR20000008080A (en) Device and method for eliminating code interference of code division multiple access communication system
KR20030068484A (en) Mobile communication system, channel synchronization establishing method, and mobile station
CN1150709C (en) Speed band-enlarging and-deenlarging method for two-stage code converter chips in CDMA cellular system
EP1204224B1 (en) Mobile communication system in multi-carrier CDMA scheme using short code and long code
CA2306509A1 (en) Pn sequence identifying device in cdma communication system
EP0564937A1 (en) CDMA Radio communication system with pilot signal transmission between base and handsets for channel distortion compensation
JP2653421B2 (en) Orthogonal spread spectrum communication system, code division multiple access system and code division multiple access cellular system
JPH08251117A (en) Multicarrier transmission system and method thereof
JP2000354021A (en) Code division multiplex transmission system
JPH08293818A (en) Spectrum diffusion communication equipment
JPH11243381A (en) Spread spectrum communication equipment
JP2003023675A (en) Communication system employing cross-correlation suppression type spread system set
RU2434329C2 (en) Method of performing cell search in wireless communication system
Harada et al. Cyclic extended spread coded multicarrier CDMA/TDD transmission scheme for wireless broadband multimedia communications
JP2004297593A (en) Spreading code generation method, spreading code generator, and communication method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term