JPH08972B2 - Ion mixing method and apparatus - Google Patents

Ion mixing method and apparatus

Info

Publication number
JPH08972B2
JPH08972B2 JP62082918A JP8291887A JPH08972B2 JP H08972 B2 JPH08972 B2 JP H08972B2 JP 62082918 A JP62082918 A JP 62082918A JP 8291887 A JP8291887 A JP 8291887A JP H08972 B2 JPH08972 B2 JP H08972B2
Authority
JP
Japan
Prior art keywords
ion
film
ions
holder
metal vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62082918A
Other languages
Japanese (ja)
Other versions
JPS63250454A (en
Inventor
三男 萩野谷
慶享 児島
昌一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62082918A priority Critical patent/JPH08972B2/en
Publication of JPS63250454A publication Critical patent/JPS63250454A/en
Publication of JPH08972B2 publication Critical patent/JPH08972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は新規なコーテイング技術に係り、特に、低温
で耐食,耐摩耗性に優れた被膜の形成におけるイオンミ
キシング方法とその装置に関する。
Description: TECHNICAL FIELD The present invention relates to a novel coating technique, and more particularly, to an ion mixing method and an apparatus therefor for forming a coating excellent in corrosion resistance and wear resistance at a low temperature.

〔従来の技術〕[Conventional technology]

構造部材の耐食性,耐摩耗性を向上させるために部材
表面に被膜を形成することは古くから行なわれている。
この被膜の形成方法としては、めつき,溶射,CVD法,PVD
法(イオンプレーテング法,イオンビームスパツタリン
グ法)あるいはイオンミキシング法等が用いられてい
る。しかし、これらには一長一短があり、めつき法,溶
射法では基材との密着性や内部欠陥等の問題がある。CV
D法は高温度で処理するため基材との密着性は良いが、
基材の変形が問題となる。更に、高温で処理するため、
被膜の結晶粒は大きくなる。
It has long been practiced to form a coating on the surface of structural members in order to improve the corrosion resistance and wear resistance of structural members.
This coating can be formed by plating, spraying, CVD, PVD
The method (ion plating method, ion beam spattering method) or ion mixing method is used. However, these have advantages and disadvantages, and the plating method and the thermal spraying method have problems such as adhesion to a substrate and internal defects. CV
Since the method D is processed at high temperature, it has good adhesion to the substrate,
Deformation of the base material becomes a problem. Furthermore, because it is processed at high temperature,
The crystal grains of the coating become large.

また、イオンプレーテインク法あるいはイオンビーム
スパツタリング法では、イオン化された原子を数eV〜数
百eVの運動エネルギーで基材へ被着するもので基材内部
に注入されることはほとんどなく、密着性の点で十分で
はなかつた。更にイオンミキシング法は基材表面にある
物質を蒸着し、数百KeV以上の希ガスイオン種によつて
基材内部へ蒸着物質を浸入させ、次で残余の蒸着膜を化
学的方法で除去するもので、多量の異種原子を基材表面
近傍に注入することができるが、基体の構成原子との混
合比を一定に保つことは困難である。したがつて、耐食
性,耐摩耗性に対する信頼性は十分でなかつた。また、
数百KeVの運動エネルギーが熱エネルギーに変換される
ため、基材の温度は高温となり基材の変形,変質はされ
られず、更に結晶粒も粗大なものとなる。
Further, in the ion plate ink method or the ion beam sputtering method, the ionized atoms are deposited on the base material with a kinetic energy of several eV to several hundred eV and are hardly injected into the base material. It was not sufficient in terms of adhesion. Furthermore, the ion mixing method deposits a substance on the surface of the base material, infiltrates the vapor deposition material into the base material by a rare gas ion species of several hundred KeV or more, and then removes the remaining deposited film by a chemical method. However, a large amount of heteroatoms can be injected near the surface of the substrate, but it is difficult to maintain a constant mixing ratio with the constituent atoms of the substrate. Therefore, the reliability of corrosion resistance and wear resistance was not sufficient. Also,
Since the kinetic energy of several hundred KeV is converted into thermal energy, the temperature of the base material becomes high, the base material is not deformed or altered, and the crystal grains become coarse.

一方、基材表面にある種の物質を蒸着させると同時に
希ガスイオンを注入して基材表面に被膜を形成するいわ
ゆるダイナミツクミキシング法による被膜形成方法が提
案されている。例えば特開昭60−169559号にはこの方法
による窒化ホウ素被膜の形成方法が提案されている。こ
の方法はホウ素を含有する物質を蒸発源に用い、蒸発源
のホウ素と作用して窒化ホウ素の被膜を形成するガスイ
オンを数十KeVに加速して基材表面に窒化ホウ素膜を形
成するものである。この方法でホウ素の蒸着量及びイオ
ン種の注入量をコントロールすれば窒化ホウ素被膜を形
成できるものではあるが、被膜の結晶粒の大きさ及び結
晶成長のコントロールの配慮はなされていない。すなわ
ち、化合物被膜は結晶の成長及び結晶粒の大きさ等によ
り特性が異なるものであり、良質な被膜を得るためには
これらをコントロールする必要がある。
On the other hand, there has been proposed a film forming method by a so-called dynamic mixing method in which a certain substance is vapor-deposited on the surface of a substrate and at the same time rare gas ions are injected to form a film on the surface of the substrate. For example, JP-A-60-169559 proposes a method for forming a boron nitride film by this method. This method uses a substance containing boron as an evaporation source, and forms a boron nitride film on the surface of a substrate by accelerating gas ions that act on boron of the evaporation source to form a film of boron nitride to several tens KeV. Is. Although a boron nitride film can be formed by controlling the vapor deposition amount of boron and the injection amount of ionic species by this method, no consideration is given to the control of the crystal grain size and crystal growth of the film. That is, the compound coating has different properties depending on the growth of crystals, the size of crystal grains, etc., and these must be controlled in order to obtain a good quality coating.

更に、特公昭61−57904号公報には窒素イオンのイオ
ンプラテーシヨン法が記載されている。
Further, Japanese Examined Patent Publication No. 61-57904 discloses an ion plating method for nitrogen ions.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

耐食性,耐摩耗性は被膜の結晶成長や結晶粒の大きさ
によつて特性が大きく異なり、これらをコントロールし
た被膜の形成が重要となる。すなわち、耐食性,耐摩耗
性を良好にするためには被膜の成長を等軸晶にし、か
つ、結晶粒が微細でなければならない。前述公報にはこ
れらについて全く記載されていない。
The characteristics of corrosion resistance and wear resistance vary greatly depending on the crystal growth of the coating and the size of the crystal grains, and it is important to form a coating that controls these. That is, in order to improve the corrosion resistance and wear resistance, the growth of the coating must be equiaxed and the crystal grains must be fine. The above publication does not describe them at all.

本発明の目的は等軸晶で結晶粒の微細な被膜を形成す
るイオンミキシング方法とその装置を提供することにあ
る。
An object of the present invention is to provide an ion mixing method and apparatus for forming a film of equiaxed crystal grains having a fine grain size.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、金属蒸気と反応して非金属化合物を形成す
るイオンをイオンプラテーシヨンによって注入し、被処
理部材表面に前記非金属化合物層を形成するイオンミキ
シング方法において、前記被処理部材を歳差運動させな
がら前記金属蒸気を該金属蒸気の蒸発源の真上に設けら
れた前記被処理部材表面に堆積させるとともに、前記イ
オンを水平方向に照射し前記被処理部材表面に注入する
ことを特徴とするイオンミキシング方法にある。
The present invention provides an ion mixing method of injecting ions, which react with a metal vapor to form a non-metal compound, by ion plating to form the non-metal compound layer on the surface of the member to be treated. The metal vapor is deposited on the surface of the member to be processed provided directly above the evaporation source of the metal vapor while being differentially moved, and the ions are horizontally irradiated and injected into the surface of the member to be processed. Ion mixing method.

特に、金属部材表面に非金属化合物層を有する部材に
おいて、前記非金属化合物層は前記金属部材と前記非金
属化物との混合物層を介して形成されており、且つ前記
化合物層の結晶粒は等軸晶を有し、前記結晶粒の粒径が
0.01〜0.5μmである被膜を形成できるようにするもの
でにある。
In particular, in a member having a non-metal compound layer on the surface of a metal member, the non-metal compound layer is formed via a mixture layer of the metal member and the non-metal compound, and the crystal grains of the compound layer are equal to each other. It has axial crystals and the grain size of the crystal grains is
This is to enable formation of a film having a thickness of 0.01 to 0.5 μm.

本発明者らは上記事情に鑑み、種々検討の結果、基材
と注入するイオンの入射角度のコントロール及び入射す
るイオンを歳差運動的に入射することにより窒化物,酸
化物,炭化物等の化合物を等軸晶で結晶粒の微細な被膜
が形成できることを見い出した。
In view of the above circumstances, the inventors of the present invention have conducted various investigations, and as a result, control of the incident angle of ions to be implanted with the base material and precession injection of the incident ions to form compounds such as nitrides, oxides, and carbides. It was found that a film with fine crystal grains can be formed by equiaxed crystals.

本発明によれば、形成すべき被膜の原料を蒸着あるい
はスパツタリング等により基材に被着させると共に、少
なくとも形成すべき反応イオン種を含有するイオン種を
基材とある角度をもつて歳差運動的に基材上に照射し、
基材上に等軸晶で微細結晶粒の窒化物,酸化物,炭化物
の被膜を形成することにより、耐食性,耐摩耗性に優れ
た部材を得ることができる。
According to the present invention, the raw material of the film to be formed is deposited on the substrate by vapor deposition or sputtering, and at the same time, the ionic species containing at least the reactive ionic species to be formed are precessed at an angle with the substrate. To irradiate the substrate
By forming a film of nitride, oxide, or carbide of equiaxed and fine crystal grains on the base material, a member excellent in corrosion resistance and wear resistance can be obtained.

また、本発明のイオンをイオンプラテーシヨンによつ
て注入し、被処理部材表面に前記非金属化合物層を形成
するイオンビームミキシング装置において、前記被処理
部材を設置する回転ホルダを備え、該回転ホルダは前記
金属蒸気の蒸発源の真上に設置され、かつ前記イオンの
水平方向の注入に対して所定の角度で傾斜しており、且
前記角度が前記回転に伴つて変化し、前記回転ホルダが
歳差運動する機構を備えていることを特徴とするイオン
ビームミキシング装置にある。
Further, in the ion beam mixing apparatus for injecting the ions of the present invention by an ion plating to form the non-metallic compound layer on the surface of the member to be processed, a rotating holder for setting the member to be processed is provided, The holder is installed right above the evaporation source of the metal vapor and is inclined at a predetermined angle with respect to the horizontal implantation of the ions, and the angle changes with the rotation. Is equipped with a mechanism for precession, which is an ion beam mixing apparatus.

〔作用〕 本発明の方法によって得られる耐食,耐摩耗部材は基
材と被膜(窒化物,酸化物,炭化物あるいはこれらの混
合物)の間は基材と被膜の成分からなる混合層が形成さ
れており、基材と被膜との明確な境界がなく、被膜の密
着性が優れている。すなわち、加速された反応イオン種
は基材内部へ注入され、同時に基材はスパツタリングさ
れ基材の成分粒子がはじき出される。このはじき出され
た基材の粒子は蒸着法で形成された被着粒子と混合され
た状態で基材表面に層が形成される。また、蒸着粒子は
基材表面に到達する間に反応イオン種と衝突したものは
加速されて化合物を形成すると共に基材へ食い込むもの
もある。このような状態で基材と被膜間には混合層が形
成される。しかし、この混合層はある程度の厚さまで
で、被膜の厚さが厚くなると加速された反応イオン種は
基材表面近傍まで注入されなくなり、基材表面から徐々
に被膜成分のみとなる。一方、この化合物被膜の形成で
あるが、加速された反応イオン種は基材あるいは被膜に
衝突して停止する。この加速されたイオン種の運動エネ
ルギーが熱エネルギーに変換されるため高熱を発する。
この熱により蒸着あるいはスパツタリングで形成された
被着粒子と反応イオン種により化合物が形成される。し
かし、高温となる部分は極めて表層のみであり、低温が
保てる。もし、蓄熱して基材の材質変化や変形が生ずる
場合は必要に応じて基材を冷却するか又は反応イオン種
の注入を断続的に行うことも可能である。一方、蓄熱し
て基材が高温となつた場合には形成された化合物は再結
晶して結晶粒径は粗大化し、本発明の望ましい被膜は形
成できない。したがつて、本発明の結晶粒径0.01〜0.05
μmの被膜を得るためには再結晶温度以下にする必要が
ある。
[Function] In the corrosion-resistant and wear-resistant member obtained by the method of the present invention, a mixed layer composed of the components of the base material and the coating film is formed between the base material and the coating film (nitride, oxide, carbide or a mixture thereof). Therefore, there is no clear boundary between the substrate and the coating, and the adhesion of the coating is excellent. That is, the accelerated reactive ion species are injected into the base material, and at the same time, the base material is sputtered and the component particles of the base material are ejected. A layer is formed on the surface of the base material in a state in which the particles of the base material thus ejected are mixed with the adhered particles formed by the vapor deposition method. Further, in some cases, the vapor deposition particles that collide with the reactive ion species while reaching the surface of the base material are accelerated to form a compound and bite into the base material. In such a state, a mixed layer is formed between the base material and the coating film. However, this mixed layer has a certain thickness, and when the thickness of the coating becomes thick, the accelerated reactive ion species are not injected into the vicinity of the surface of the base material and gradually become only the coating component from the surface of the base material. On the other hand, in the formation of this compound film, the accelerated reactive ion species collide with the substrate or the film and stop. The accelerated kinetic energy of the ion species is converted into thermal energy, so that high heat is generated.
A compound is formed by the adhered particles formed by vapor deposition or sputtering by the heat and the reactive ion species. However, the high temperature part is extremely only the surface layer, and the low temperature can be maintained. If the material changes or deforms due to heat storage, the base material may be cooled or the reactive ion species may be intermittently injected, if necessary. On the other hand, when heat is stored and the temperature of the substrate becomes high, the formed compound is recrystallized and the crystal grain size becomes coarse, so that the desirable coating film of the present invention cannot be formed. Therefore, the crystal grain size of the present invention 0.01 ~ 0.05
In order to obtain a film having a thickness of μm, the temperature needs to be lower than the recrystallization temperature.

化合物層の形成方法としては被着粒子層の形成と反応
イオン種の注入を同時に行うことが望ましいが、被着粒
子層形成と反応イオン種の注入とを交互に行つても同様
に化合物層は形成できる。但し、被着粒子層の厚さと反
応イオン種の加速電圧を考慮する必要がある。
As a method of forming the compound layer, it is desirable to simultaneously perform the formation of the adhered particle layer and the injection of the reactive ion species. Can be formed. However, it is necessary to consider the thickness of the deposited particle layer and the acceleration voltage of the reactive ion species.

次に、等軸晶で微細な結晶粒を得る方法であるが、等
軸晶の被膜を形成するためには注入する反応イオン種を
水平に注入するとともに蒸発源を被処理部材の直下に設
け、被処理部材に歳差運動を与えることが必要である。
すなわち、イオンビームは直進性を有するため、一定角
度で一定方向から注入した場合にはビームの入射される
方向に向つて結晶が成長し、樹脂状晶の被膜となる。一
方、ある角度をもつて歳差運動しながら注入される場合
には注入方向が一定でないため、等軸晶の被膜が形成さ
れる。反応イオン種の注入角度は良質な被膜を形成する
ためには25°〜60°が好ましい。25°未満では入射角度
が小さ過ぎて被膜の密着強度が低下し、かつ、反応イオ
ン種によるスパツタが激しくなり被膜の形成速度も低下
する。また、60°以上では完全な等軸晶とはならず、方
向性をもつた結晶が混在して好ましくない。望ましくは
30°〜50°が良い。この角度は回転とともに変化し、そ
の変化する角度は10〜45°が好ましい。回転速度は2〜
20RPMが好ましく、特に5〜15RPMが良い。
Next, it is a method to obtain fine crystal grains with equiaxed crystal. In order to form a film of equiaxed crystal, the reactive ion species to be injected are injected horizontally and the evaporation source is provided directly below the member to be treated. It is necessary to give a precession motion to the processed member.
That is, since the ion beam has a straight traveling property, when the ion beam is injected from a certain direction at a certain angle, the crystal grows in the direction in which the beam is incident to form a resinous crystal film. On the other hand, when the injection is performed while precessing at an angle, the injection direction is not constant, so that an equiaxed film is formed. The implantation angle of the reactive ion species is preferably 25 ° to 60 ° in order to form a good quality film. When the angle is less than 25 °, the incident angle is too small, the adhesion strength of the coating is lowered, and the spatter caused by the reactive ion species becomes severe, and the coating formation rate is also lowered. Further, at 60 ° or more, perfect equiaxed crystals are not formed, and crystals having directionality coexist, which is not preferable. Preferably
30 ° to 50 ° is good. This angle changes with rotation, and the changing angle is preferably 10 to 45 °. Rotation speed is 2
20 RPM is preferable, and 5 to 15 RPM is particularly preferable.

被膜の結晶粒径としては0.01μm〜0.5μmとするの
がよい。結晶粒径が小さくなると耐摩耗性は良好になる
傾向を示すが、耐食性は低下する傾向を示す。すなわ
ち、腐食は一般に粒界が先天的に腐食されて腐食が進行
する。したがつて、結晶粒が小さい場合には結晶粒が早
く脱落し、腐食の進行が早くなる。一方、摩耗は結晶粒
が小さい場合には結晶粒同志の結び付きが強固となり、
摩擦による結晶粒の脱落がしずらくなる。本発明者らの
実験においては、結晶粒径が0.01μm以下になると耐食
性が著しく低下し、結晶粒径が0.5μm以上になると摩
耗が激しくなる結果が得られた。望ましくは0.05〜0.3
μmが好ましい。前述したが、このような結晶粒を得る
ためには再結晶温度以下で処理することが必要であり、
再結晶温度以上では形成した被膜の再結晶が起り結晶粒
が組大となつて耐摩耗性は低下する。したがつて、被膜
形成処理温度は再結晶温度以下とした。望ましくは再結
晶温度以下で、かつ、基材の変形や変質の生じない温度
で処理することが好ましい。
The crystal grain size of the coating is preferably 0.01 μm to 0.5 μm. Abrasion resistance tends to improve as the crystal grain size decreases, but corrosion resistance tends to decrease. That is, in general, the grain boundaries are innately corroded and the corrosion progresses. Therefore, when the crystal grains are small, the crystal grains fall off quickly and the corrosion progresses quickly. On the other hand, in the case of wear, when the crystal grains are small, the bond between the crystal grains becomes strong,
It becomes difficult for crystal grains to fall off due to friction. In the experiments conducted by the present inventors, it was found that when the crystal grain size was 0.01 μm or less, the corrosion resistance was significantly reduced, and when the crystal grain size was 0.5 μm or more, the wear was severe. Desirably 0.05-0.3
μm is preferred. As mentioned above, in order to obtain such crystal grains, it is necessary to perform the treatment at a recrystallization temperature or lower,
When the temperature is higher than the recrystallization temperature, the formed film is recrystallized and the crystal grains become large, so that the wear resistance decreases. Therefore, the film forming treatment temperature was set to the recrystallization temperature or lower. It is preferable to perform the treatment at a temperature not higher than the recrystallization temperature and at a temperature at which the base material is not deformed or deteriorated.

次に、基材上に形成する被膜あるが、窒化物,酸化
物,炭化物等の耐食,耐摩耗性に優れた化合物を目的,
必要に応じて用いればよく、又これらの化合物の混合物
としたものを必要に応じて合成してもよい。要は目的に
応じた必要な化合物を抽出,合成した被膜を形成して用
いれば良い。
Next, for the film to be formed on the base material, a compound having excellent corrosion resistance and wear resistance such as nitrides, oxides and carbides,
It may be used as necessary, or a mixture of these compounds may be synthesized as needed. In short, it is only necessary to extract and synthesize the required compound according to the purpose and form a film to use.

以上のような方法で形成した被膜は、混合層の存在に
よる密着性に優れ、低温処理により基材の変形,材質変
化がなく、耐食,耐摩耗部材に用いて好適なものであ
る。
The coating film formed by the method as described above has excellent adhesion due to the presence of the mixed layer, is free from deformation of the base material and material change due to the low temperature treatment, and is suitable for use as a corrosion resistant and wear resistant member.

金属部材として、Fe系,Cu系,Al系,Ni系,Co系,Zr系,Ti
系部材が用いられる。
Fe, Cu, Al, Ni, Co, Zr, Ti as metal parts
A system member is used.

非金属化合物層にはSi,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W,Al
の1種以上からなる窒化物,炭化物,酸化物の少なくと
も1種以上からなるものが好ましい。
Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Al for non-metallic compound layer
It is preferable to use at least one of nitrides, carbides and oxides of at least one of the above.

実施例1 第1図は本発明のイオンビームミキシング装置のシス
テム構成図である。
Embodiment 1 FIG. 1 is a system configuration diagram of an ion beam mixing apparatus of the present invention.

ガスボンベ10より注入しようとするガスがイオン源2
に送られ、イオンビーム1となつて回転試料ホルダ3に
設けられた試料16に水平に注入される。同時に金属蒸気
4は試料ホルダ3の真下に設けられたルツボ17に入れら
れ、電子ビーム蒸発器14によつて形成され、シヤツタ5
によつてその開閉が行われる。試料ホルダ3は冷却水6
によつて冷却されるとともに図に示す方向に回転すると
ともに、イオンビーム1の水平の入射方向に対して傾斜
して設けられ、その回転に伴つて矢印18のようにその角
度が変化する。その他、本発明の装置は純水冷却装置8,
ガスコントローラ9,電源11,ビーム引出しGTOスイツチ,
真空ポンプ13,真空容器7,膜厚モニタ15を備えている。
The gas to be injected from the gas cylinder 10 is the ion source 2
And is horizontally injected into the sample 16 provided on the rotating sample holder 3 together with the ion beam 1. At the same time, the metal vapor 4 is put into a crucible 17 provided directly below the sample holder 3 and is formed by an electron beam evaporator 14, and a shutter 5 is formed.
It is opened and closed by Sample holder 3 is cooling water 6
It is cooled by the rotation of the ion beam 1 and is rotated in the direction shown in the figure, and is inclined with respect to the horizontal incident direction of the ion beam 1, and its angle is changed as indicated by an arrow 18 with the rotation. In addition, the device of the present invention is a pure water cooling device 8,
Gas controller 9, power supply 11, beam extraction GTO switch,
A vacuum pump 13, a vacuum container 7, and a film thickness monitor 15 are provided.

以下、上述の装置を用いて非金属化合物層を形成し
た。
Hereinafter, a nonmetallic compound layer was formed using the above-mentioned apparatus.

基板としてアルミニウム合金JIS 2024合金(100mm×1
00mm×5mm)を用い、真空容器内の回転及び角度調整可
能な水冷ホルダに取付け、容器内を10-6Torr以下に排気
した後、基板上にTiを蒸着させながら窒素イオンを注入
し、TiN化合物被膜を約3μmの厚さに形成した。成膜
条件は蒸着速度:9Å/s,加速電圧:20Kv,窒素イオン注入
量:5×1017個/cm2/minである。なお、反応イオン種と
試料の入射角度は20°〜90°の範囲で水冷ホルダを回転
しながら角度を変えたもの(歳差揺動運動)及び回転し
ないものとの2種類の成膜を行つた。また、上記と同様
の方法、条件でTiを蒸着させながら酸素イオン及び炭素
イオンを注入してTiO2及びTiC被膜を約3μmの厚さに
形成した。これらの試料から腐食試験片,摩耗試験片及
びSEM観案用試験片を採取した。
Aluminum alloy JIS 2024 alloy (100mm × 1
(00 mm × 5 mm), attach it to a water-cooled holder that can adjust the rotation and angle in the vacuum container, evacuate the container to 10 -6 Torr or less, and then inject Ti ions on the substrate while implanting nitrogen ions, The compound coating was formed to a thickness of about 3 μm. The film forming conditions are vapor deposition rate: 9Å / s, accelerating voltage: 20 Kv, and nitrogen ion implantation amount: 5 × 10 17 pieces / cm 2 / min. The incident angle between the reactive ion species and the sample is in the range of 20 ° to 90 °. Two types of film formation are performed: one that changes the angle while rotating the water-cooled holder (precession swing motion) and one that does not rotate. Ivy. Further, oxygen ions and carbon ions were implanted while depositing Ti under the same method and conditions as described above to form a TiO 2 and TiC coating film with a thickness of about 3 μm. Corrosion test pieces, wear test pieces and SEM sample test pieces were taken from these samples.

本発明の方法で形成した被膜(TiN)の代表的なSEM観
察を行つた。基材が取り付けられた水冷ホルダへの反応
イオン種の入射角度が30〜50°になるように調整し、水
冷ホルダを回転しながら被膜を形成したもので、反応イ
オン種を歳差揺動運動的に基材に注入させた。
A typical SEM observation of the film (TiN) formed by the method of the present invention was performed. The reaction ion species are adjusted so that the incident angle to the water-cooled holder with the base material attached is 30 to 50 °, and a film is formed while rotating the water-cooled holder. It was injected into the base material.

回転しないものは反応イオン種と基材との入射角度が
90°で水冷ホルダを回転せずに被膜形成を行つた。すな
わち、反応イオン種の入射角が一定で一方向から入射し
た場合のものである。
For those that do not rotate, the incident angle between the reactive ion species and the substrate is
The film was formed without rotating the water-cooled holder at 90 °. That is, the incident angle of the reactive ion species is constant and the incident angle is one direction.

本発明の方法で形成した被膜は等軸晶で微細な結晶粒
で形成されており、結晶粒間のすき間が殆んど認められ
ない。これに比し、従来方法で作成した被膜は反応イオ
ン種の注入方向に向つて成長した柱状晶で結晶粒も粗大
で、かつ、結晶粒間にすき間のある被膜であることがわ
かる。SEM観察した結果においては、TiO2,TiCも同様な
結果であることが確認された。したがつて、これらの写
真を比較しただけでも耐食性がどちらが良好かを判断で
きる。すなわち、結晶粒間にすき間がある場合には、こ
のすき間に腐食液が進入して腐食が促進される。したが
つて、結晶粒間のすき間は出来る限り少なくすることが
望ましい。
The coating film formed by the method of the present invention is equiaxed and formed of fine crystal grains, and there is almost no gap between the crystal grains. On the other hand, it can be seen that the film formed by the conventional method is a columnar crystal that grows in the direction of implantation of the reactive ion species, has coarse crystal grains, and has a gap between the crystal grains. From the results of SEM observation, it was confirmed that TiO 2 and TiC had similar results. Therefore, it is possible to judge which of the corrosion resistance is better just by comparing these photographs. That is, when there is a gap between the crystal grains, the corrosive liquid enters the gap to promote the corrosion. Therefore, it is desirable to minimize the gap between crystal grains.

第2図はTiO2被膜を形成したものの腐食試験及び摩耗
試験の代表的な結果を示す。腐食試験は常温の0.1mol/l
塩水中に浸漬して腐食減量を求めたものである。なお、
腐食試験片は全面にTiO2被膜を形成したもので行つた。
摩耗試験はピン−デイスク型試験機を用い、摩擦速度:1
0m/s,荷重:5kg,潤滑油:タービン油#140,潤滑油流量:3
0cc/min,相手材:超硬で行つた。なお、摩耗量は結晶粒
径が0.5μmの時の摩耗量を1とした時の相対比で示し
たものである。
FIG. 2 shows typical results of a corrosion test and an abrasion test of the TiO 2 film formed. Corrosion test at room temperature 0.1 mol / l
The corrosion weight loss was obtained by immersing in salt water. In addition,
The corrosion test piece was prepared by forming a TiO 2 film on the entire surface.
The abrasion test uses a pin-disk type tester and the friction rate is 1
0m / s, load: 5kg, lubricating oil: turbine oil # 140, lubricating oil flow rate: 3
0cc / min, partner material: Carbide. The amount of wear is shown as a relative ratio when the amount of wear when the crystal grain size is 0.5 μm is 1.

第2図を見ても明らかなように、腐食試験では結晶粒
径が0.01μm以下になると腐食減量が増大する傾向を示
している。一方、摩耗試験では結晶粒径が0.5μm以上
になると摩耗量が増大する傾向を示している。一般に使
われる材料では耐食性,耐摩耗性は相乗された使われ方
が多い。したがつて、耐食性,耐摩耗性ともに良好な材
料が望ましい。本発明者らは耐食性,耐摩耗性ともに良
好な範囲として、結晶粒径が0.01μm〜0.5μmの範囲
に限定したが、どちらか一方が良好であれば良い使い方
の場合はこれらの限定に限る必要はない。なお、TiN,Ti
C被膜を形成したものにおいても同様な結果が得られて
いる。
As is clear from FIG. 2, in the corrosion test, the corrosion weight loss tends to increase when the crystal grain size is 0.01 μm or less. On the other hand, in the wear test, the wear amount tends to increase when the crystal grain size is 0.5 μm or more. In most commonly used materials, corrosion resistance and wear resistance are often used synergistically. Therefore, a material having good corrosion resistance and wear resistance is desirable. The present inventors limited the crystal grain size to a range of 0.01 μm to 0.5 μm as a range having good corrosion resistance and wear resistance, but if either one is good, it is limited to these limits. No need. In addition, TiN, Ti
Similar results were obtained with the C film.

実施例2 実施例1と同様の方法、条件でSUS304の基材上へTiを
蒸着しながら窒素イオンを注入し、TiN被膜を約0.3μm
の厚さに形成した。この試料をオージエ電子分光分析法
により、アルゴンスパツタエツチングしながら表面から
深さ方向の組成分析を行つた。比較材としてはSUS304基
材にイオンプレーテイング法により、膜厚0.3μmのTiN
被膜を形成したものを用いた。なお、これらSUS304基材
は被膜形成前に表面をラツピングしてから被膜を形成し
た。
Example 2 Under the same method and conditions as in Example 1, nitrogen ions were implanted while depositing Ti on a SUS304 substrate to form a TiN film of about 0.3 μm.
Formed to a thickness of. This sample was subjected to composition analysis in the depth direction from the surface by means of Auger electron spectroscopy while performing argon sputtering. As a comparative material, TiN with a film thickness of 0.3 μm is formed on the SUS304 substrate by the ion plating method.
What formed the film was used. The surface of each of these SUS304 base materials was lapped before forming a film.

第3図はオージエ電子分光分析結果を、横軸がスパツ
タエツチング時間(分)と、縦軸がピーク強度比(IΣ
/ΣI)との関係を示すグラフである。第3図からも明
らかなように、本発明材は表面にTiN被膜が形成され、
基材近傍で被膜の組成が徐々に減少し、基材組成が徐々
に増加している部分の巾が大きくなつている。これに比
し、イオンプレーテイング法で形成した被膜は、この巾
が狭くなつている。この狭い巾の部分は基材表面の凹凸
によるものと思われ、混合層はないと考えられる。しか
し、本発明材はこの巾を差し引いたとしても被膜及び基
材の組成のオーバーラツプしている部分があるが、この
部分が混合層であり、被膜と基材との間には明確な境界
がなく、密着性が良好であることがわかる。
FIG. 3 shows the results of Auger electron spectroscopy analysis, with the horizontal axis representing the spatching etching time (minutes) and the vertical axis representing the peak intensity ratio (IΣ
3 is a graph showing the relationship with / ΣI). As is clear from FIG. 3, the material of the present invention has a TiN coating formed on its surface,
The composition of the coating gradually decreases in the vicinity of the base material, and the width of the portion where the base material composition gradually increases increases. On the contrary, the width of the film formed by the ion plating method is narrow. It is considered that this narrow width portion is due to the unevenness of the substrate surface, and it is considered that there is no mixed layer. However, in the material of the present invention, even if this width is subtracted, there is an overlapping portion of the composition of the coating film and the substrate, but this portion is a mixed layer, and there is no clear boundary between the coating film and the substrate. It can be seen that there is no adhesiveness.

実施例3 基材としてSS41材(φ20mm×3mm)を用い、実施例1
と同様の方法、条件でTi,Cr,B,Si,Alを蒸着しながら窒
素イオンを注入し、TiN,CrN,BN,Si3N4,AlN被膜を約2.5
μm形成した。また、Al,Siを蒸着しながら酸素イオン
を注入し、Al2O3,SiO2被膜を約2.5μm形成した。な
お、反応イオンの基材への入射角度は75°及び35°と
し、入射角75°のものは水冷ターゲツトを回転せず35°
は回転して処理した。これらの試料を5%NaCl水溶液に
100時間浸漬後、引張試験機を用いて被膜の密着強度を
測定した。なお、比較材には入射角75°一定で一方向か
ら注入したもの及びイオンプレーテイング法によりTiN
被膜を約2.5μm厚さに形成したものを用いた。
Example 3 Example 1 using SS41 material (φ20 mm × 3 mm) as a base material
Ni, Ni, CrN, BN, Si 3 N 4 , and AlN coatings were deposited to a thickness of about 2.5 by implanting nitrogen ions while depositing Ti, Cr, B, Si, and Al under the same method and conditions.
μm formed. In addition, oxygen ions were implanted while depositing Al and Si to form an Al 2 O 3 and SiO 2 coating film of about 2.5 μm. The incident angles of the reaction ions to the base material were 75 ° and 35 °, and those with an incident angle of 75 ° were 35 ° without rotating the water-cooled target.
Processed by spinning. These samples in 5% NaCl solution
After immersion for 100 hours, the adhesion strength of the coating was measured using a tensile tester. In addition, the comparative materials were those injected from one direction at a constant incident angle of 75 ° and TiN by the ion plating method.
A film having a thickness of about 2.5 μm was used.

第1表は5%NaCl水溶液に100時間浸漬したものの基
材と被膜の密着強度試験結果を示す。第1表を見ても明
らかなように、本発明の方法で形成した被膜はいずれも
接着剤(エポキシ樹脂系)から剥離し、接着剤の強度以
上の強度を示した。これらに比し、比較材であるイオン
プレーテイング法及び従来法で形成した被膜は、いずれ
も5kg/mm2以下で低い値を示した。前述したように、従
来法で形成した被膜は結晶粒間にすき間があり、このす
き間からNaCl水溶液が浸透し基材との界面が腐食されて
強度が低下したものと思われる。
Table 1 shows the adhesion strength test results of the base material and the coating film after being immersed in a 5% NaCl aqueous solution for 100 hours. As is clear from Table 1, all the coating films formed by the method of the present invention were peeled off from the adhesive (epoxy resin type) and showed a strength equal to or higher than that of the adhesive. In comparison with these, the films formed by the ion plating method and the conventional method, which are comparative materials, both showed low values of 5 kg / mm 2 or less. As described above, it is considered that the coating film formed by the conventional method has a gap between crystal grains, and the NaCl aqueous solution permeates through the gap to corrode the interface with the base material to lower the strength.

以上のように、本発明材は耐食性に優れ、基材との密
着性が良好であることがわかる。
As described above, it can be seen that the material of the present invention has excellent corrosion resistance and good adhesion to the substrate.

実施例4 基材としてアルミナ板(15mm×15mm×1mm)を用い、
実施例1と同様の方法,条件によりTiを蒸着しながら窒
素イオンを基材への入射角度を20°〜90°の範囲で注入
しTiN被膜を形成した。なお、被膜形成時には試料ホル
ダーを回転して処理した。これらの試料をSEMで結晶の
成長を観察した。また、これらの試料の密着強度を測定
するため、引張試験を行つた。
Example 4 An alumina plate (15 mm × 15 mm × 1 mm) was used as a base material,
Under the same method and conditions as in Example 1, while depositing Ti, nitrogen ions were implanted at an incident angle of 20 ° to 90 ° on the substrate to form a TiN coating film. The sample holder was rotated during the coating process. Crystal growth of these samples was observed by SEM. In addition, a tensile test was conducted to measure the adhesion strength of these samples.

第2表はSEM観察結果及び密着強度試験結果を示す。
第2表を見ても明らかなように、反応イオン種の入射角
度が70°及び80°では等軸晶と柱状晶の混在した結晶成
長となり、90°では柱状晶のみの成長となる。また、密
着強度試験結果では20°の場合には6kg/mm2で密着強度
が比較的低いが30°〜90°ではいずれも10kg/mm2以上で
接着剤の接着面より剥離し、強度が著しく高い。本発明
者らは密着強度及び結晶成長の点から反応イオン種の入
射角度を25°〜60°に限定した。
Table 2 shows the SEM observation results and the adhesion strength test results.
As is clear from Table 2, when the incident angles of the reactive ion species are 70 ° and 80 °, crystal growth is a mixture of equiaxed crystals and columnar crystals, and at 90 °, only columnar crystals are grown. In addition, the adhesion strength test result shows that the adhesion strength is relatively low at 6 kg / mm 2 at 20 °, but it is 10 kg / mm 2 or more at 30 ° to 90 ° and peels off from the adhesive surface of the adhesive, Remarkably high. The present inventors limited the incident angle of the reactive ion species to 25 ° to 60 ° from the viewpoint of adhesion strength and crystal growth.

以上のように、反応イオン種の入射角度を25°〜60°
の範囲で成膜することによつて、等軸晶で密着性の良好
な被膜を形成できる。
As described above, the incident angle of the reactive ion species is 25 ° to 60 °.
By forming the film within the range, it is possible to form a film having equiaxed crystal and good adhesion.

〔発明の効果〕 本発明によれば基材と被膜間に混合層のある密着性に
優れた等軸晶で微細結晶の被膜を形成でき、耐食,耐摩
耗部材に最適な被膜となり、従来には見られない特性を
有する耐食,耐摩耗部材が得られる。
[Effect of the Invention] According to the present invention, it is possible to form a film of equiaxed and finely crystalline equiaxed crystal having a mixed layer between a base material and a film, which is an optimum film for corrosion- and wear-resistant members. Corrosion- and wear-resistant members with characteristics that are not seen are obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すイオンビームミキシン
グ装置のシステム構成図、第2図は被膜の結晶粒径と腐
食量及び耐摩耗性との関係を示すグラフ、第3図はオー
ジエ電子分光分析結果を示すグラフである。 1……イオンビーム、2……イオン源、3……回転試料
ホルダ、4……金属蒸気、5……シヤツタ、6……冷却
水、7……真空容器。
FIG. 1 is a system configuration diagram of an ion beam mixing apparatus showing an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the crystal grain size of the coating and the amount of corrosion and wear resistance, and FIG. It is a graph which shows a spectroscopic analysis result. 1 ... Ion beam, 2 ... Ion source, 3 ... Rotating sample holder, 4 ... Metal vapor, 5 ... Shatter, 6 ... Cooling water, 7 ... Vacuum container.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属蒸気と反応して非金属化合物を形成す
るイオンをイオンプラテーシヨンによって注入し、被処
理部材表面に前記非金属化合物層を形成するイオンミキ
シング方法において、前記被処理部材を歳差運動させな
がら前記金属蒸気を該金属蒸気の蒸発源の真上に設けら
れた前記被処理部材表面に堆積させるとともに、前記イ
オンを水平方向に照射し前記被処理部材表面に注入する
ことを特徴とするイオンミキシング方法。
1. An ion mixing method for injecting ions, which react with a metal vapor to form a non-metal compound, by ion plating to form the non-metal compound layer on the surface of the member to be treated. While precipitating the metal vapor, the metal vapor is deposited on the surface of the member to be treated provided directly above the evaporation source of the metal vapor, and the ions are horizontally irradiated and injected into the surface of the member to be treated. Characteristic ion mixing method.
【請求項2】前記金属蒸気の堆積と前記イオンの注入と
を交互に行う特許請求の範囲第1項記載のイオンミキシ
ング方法。
2. The ion mixing method according to claim 1, wherein the deposition of the metal vapor and the implantation of the ions are alternately performed.
【請求項3】前記歳差運動は前記被処理部材を前記イオ
ンの注入方向に対して傾斜したホルダに設置し、前記ホ
ルダの前記傾斜角度を変化させながら回転運動させるも
のである特許請求の範囲第1項又は第2項記載のイオン
ミキシング方法。
3. The precession movement is to install the member to be processed in a holder tilted with respect to the ion implantation direction, and rotate the holder while changing the tilt angle of the holder. The ion mixing method according to item 1 or 2.
【請求項4】前記傾斜角度は前記イオンの注入方向に対
して25度〜60度であり、前記角度の変化する角度は10度
〜45度であり、前記回転速度は1分間に5〜20回転であ
る特許請求の範囲第3項に記載のイオンミキシング方
法。
4. The inclination angle is 25 degrees to 60 degrees with respect to the ion implantation direction, the angle changing angle is 10 degrees to 45 degrees, and the rotation speed is 5 to 20 minutes per minute. The ion mixing method according to claim 3, wherein the method is rotation.
【請求項5】前記非金属化合物層を前記被処理部材を冷
却しながら該非金属化合物の再結晶温度以下で形成する
特許請求の範囲第1項〜第4項のいずれかに記載のイオ
ンミキシング方法。
5. The ion mixing method according to claim 1, wherein the non-metallic compound layer is formed below the recrystallization temperature of the non-metallic compound while cooling the member to be treated. .
【請求項6】金属蒸気と反応して非金属化合物を形成す
るイオンをイオン源によって被処理部材表面に照射し、
該被処理部材表面に前記非金属化合物層を形成するイオ
ンビームミキシング装置において、前記被処理部材を設
置する回転ホルダを備え、該回転ホルダは前記金属蒸気
の蒸発源の真上に設置され、かつ前記イオンの水平方向
の照射に対して所定の角度で傾斜しており、前記回転ホ
ルダの角度が前記回転に伴って変化し、前記回転ホルダ
が歳差運動する機構を備えていることを特徴とするイオ
ンビームミキシング装置。
6. A surface of a member to be treated is irradiated with ions, which react with metal vapor to form a non-metallic compound, by an ion source,
In the ion beam mixing apparatus for forming the non-metal compound layer on the surface of the member to be processed, a rotating holder for installing the member to be processed is provided, and the rotating holder is installed directly above the evaporation source of the metal vapor, and A mechanism that is inclined at a predetermined angle with respect to the horizontal irradiation of the ions, the angle of the rotary holder changes with the rotation, and the rotary holder precesses. Ion beam mixing equipment.
JP62082918A 1987-04-06 1987-04-06 Ion mixing method and apparatus Expired - Lifetime JPH08972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62082918A JPH08972B2 (en) 1987-04-06 1987-04-06 Ion mixing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082918A JPH08972B2 (en) 1987-04-06 1987-04-06 Ion mixing method and apparatus

Publications (2)

Publication Number Publication Date
JPS63250454A JPS63250454A (en) 1988-10-18
JPH08972B2 true JPH08972B2 (en) 1996-01-10

Family

ID=13787624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082918A Expired - Lifetime JPH08972B2 (en) 1987-04-06 1987-04-06 Ion mixing method and apparatus

Country Status (1)

Country Link
JP (1) JPH08972B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759744B2 (en) * 1988-12-20 1995-06-28 松下電工株式会社 Blade surface treatment method
JPH03177570A (en) * 1989-12-05 1991-08-01 Raimuzu:Kk Production of combined hard material
JPH03202461A (en) * 1989-12-29 1991-09-04 Nissin Electric Co Ltd Formation of highly insulating thin silicon oxide film
JPH0762234B2 (en) * 1991-04-11 1995-07-05 株式会社ライムズ Method for manufacturing high corrosion resistant composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169559A (en) * 1984-02-13 1985-09-03 Agency Of Ind Science & Technol Manufacture of high hardness boron nitride film
JPS6215566B2 (en) * 1976-10-19 1987-04-08 Kao Corp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215566U (en) * 1985-07-12 1987-01-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215566B2 (en) * 1976-10-19 1987-04-08 Kao Corp
JPS60169559A (en) * 1984-02-13 1985-09-03 Agency Of Ind Science & Technol Manufacture of high hardness boron nitride film

Also Published As

Publication number Publication date
JPS63250454A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
Knotek et al. Industrial deposition of binary, ternary, and quaternary nitrides of titanium, zirconium, and aluminum
Yu et al. Microstructure and properties of TiAlSiN coatings prepared by hybrid PVD technology
Molarius et al. Comparison of cutting performance of ion-plated NbN, ZrN, TiN and (Ti, Al) N coatings
US20090214787A1 (en) Erosion Resistant Coatings
SE453403B (en) ALSTER COVERED WITH HIGH QUALITY MATERIAL, PROCEDURE FOR ITS MANUFACTURING AND USE OF THE ALSTRET
JPH08209332A (en) Production of tool excellent in wear resistance
JP2003071611A (en) Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003034859A (en) Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating
Liu et al. Effect of modulation structure on the microstructural and mechanical properties of TiAlSiN/CrN thin films prepared by high power impulse magnetron sputtering
Lin et al. Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance
JP2013096004A (en) Coated tool having excellent peel resistance and method for manufacturing the same
KR20120138755A (en) Synthesis of metal oxides by reactive cathodic arc evaporation
JP2003034858A (en) Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating
Komiya et al. Hardness and grain size relations for thick chromium films deposited by hallow cathode discharge
JPH08972B2 (en) Ion mixing method and apparatus
Guan et al. Improved mechanical and tribological properties of TiAlN coatings by high current pulsed electron beam irradiation
Kiryukhantsev-Korneev et al. Healing effect in coatings deposited by hybrid technology of vacuum electro-spark alloying, pulsed cathodic arc evaporation, and magnetron sputtering using Cr3C2-NiAl electrodes
Riviere et al. Crystalline TiB2 coatings prepared by ion-beam-assisted deposition
EP0429993A2 (en) Method of forming thin film containing boron nitride, magnetic head and method of preparing said magnetic head
JP4097972B2 (en) Target for physical vapor deposition and method for producing the same
Vardanyan et al. Yttrium molybdates coating deposition of oxide-fibre/molybdenum-matrix composites
Lothrop et al. Characterization of (AlCrTiVZr) N High-Entropy Coating Produced by Cathodic Arc Evaporation
JPS61195971A (en) Formation of wear resisting film
Das et al. Characteristics of high-power impulse magnetron sputtering (HiPIMS) deposited nanocomposite-TiAlSiN coating under variable pulse frequencies
Gissler Preparation and characterization of cubic boron nitride and metal boron nitride films