JPH0896989A - Plasma treatment device and plasma treatment method - Google Patents

Plasma treatment device and plasma treatment method

Info

Publication number
JPH0896989A
JPH0896989A JP22631994A JP22631994A JPH0896989A JP H0896989 A JPH0896989 A JP H0896989A JP 22631994 A JP22631994 A JP 22631994A JP 22631994 A JP22631994 A JP 22631994A JP H0896989 A JPH0896989 A JP H0896989A
Authority
JP
Japan
Prior art keywords
sample
plasma
voltage
electrode block
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22631994A
Other languages
Japanese (ja)
Inventor
Tetsuya Nishizuka
哲也 西塚
Toshihisa Nozawa
俊久 野沢
Takashi Kinoshita
隆 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22631994A priority Critical patent/JPH0896989A/en
Publication of JPH0896989A publication Critical patent/JPH0896989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a plasma treatment device having a mounting base in which an electrostatic chuck is simplified, and a treatment method thereof. CONSTITUTION: In a plasma treatment device for fixing a sample 8 placed on a mounting base 1 to be arranged in a vacuum chamber by electrostatic attraction, applying a high frequency voltage to the sample 8, and plasma- treating the sample 8 by the plasma, the mounting base 1 has a dielectric body 9 arranged on the surface for mounting the sample 8, and an electrode block 10 to which a DC voltage for electrostatic attraction and the high frequency voltage are alternately applied. Since static electricity is generated between the dielectric body 9 and the electrode block 10 when the DC voltage is applied to the electrode block 10 in the state where a plasma is generated, the static electricity between the dielectric body 9 and the electrode block 10 is moved to between the dielectric body 9 and the sample 8 when the application of the DC voltage is stopped, and the sample 8 is attracted by the dielectric body 9. When the plasma treatment is ended, the DC voltage is applied to the electrode block 10 to release the attraction of the sample 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,半導体集積回路等の製
造プロセスに用いられるプラズマ処理装置及びその取扱
方法に係り,詳しくは真空容器内にて処理ガスをプラズ
マ化し,CVD,エッチング等のプラズマ処理を行うプ
ラズマ処理装置及びその取扱方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used in a manufacturing process of semiconductor integrated circuits and the like, and more particularly to a plasma processing apparatus for converting a processing gas into a plasma in a vacuum container. The present invention relates to a plasma processing apparatus that performs processing and a method of handling the same.

【0002】[0002]

【従来の技術】図5はプラズマ処理装置の一例であるE
CRプラズマ処理装置の構成を示す模式図である。磁気
コイル33による磁場と,マイクロ波導入窓34からの
マイクロ波とが印加される真空容器30内に導入された
処理ガスを上記磁場とマイクロ波とによるECR条件の
もとでプラズマ化し,このプラズマにより真空容器30
内に配置された試料31をプラズマ処理する。上記試料
31は載置台32上に設けられた静電チャック35によ
り静電吸着され,温度調整される電極ブロック36との
間に冷却ガスを充填することにより熱伝導による試料3
1の冷却がなされるよう構成されている。又,電極ブロ
ック36には高周波電源39が接続されており,静電チ
ャック35を通じて試料31に高周波電圧が印加され
る。図6は上記載置台32の要部構造を示す断面図であ
る(特開平6−112302号)。該載置台32は,電
極ブロック36の上面に誘電体内に直流電極38を内包
した静電チャック35を設けて構成されている。電極ブ
ロック36は冷媒通路37に冷媒を循環させて温度調整
されており,静電チャック35により試料31を吸着
し,試料31と電極ブロック36との間に冷却用ガスを
介在させることにより,プラズマに曝される試料31の
温度を制御している。プラズマ処理は真空中で処理が行
われるため,上記冷却用ガスの介在がない場合,試料3
1と載置台32との間も真空となり,試料31の熱伝導
は非常に小さく,プラズマ照射を受ける試料31は温度
上昇し,温度制御がなされない状態では正常なプラズマ
処理がなされない。そこで,上記構成のように静電チャ
ック35による吸着を行うと共に,電極ブロック36及
び静電チャック35にガスの導入路を形成し,静電チャ
ック35の表面に冷却用ガスを分配して,静電チャック
35で吸着した試料31の熱を冷却用ガスを媒体として
温度調整されている電極ブロック36に熱伝導させるこ
とにより,試料31の温度制御を可能にしている。上記
静電チャック35による試料31の吸着は,誘電体内に
内包された直流電極38に直流電圧を印加することによ
り,試料31を静電気的に吸着するもので,基本的には
直流電圧オンで吸着,オフで取り外すように,試料31
の交換動作がなされる。しかしながら,単に直流電圧を
オフにしても誘電体のヒステリシスにより電荷が残留
し,試料31の取り外しの際に残留する吸着力により試
料31が割れたり跳ねたりすることがある。そこで,従
来のプラズマ処理装置の取扱方法では,下記のように直
流電圧を制御することより残留電荷による影響を回避し
ている(特開平6−112302号)。上記試料31を
静電チャック35上に載置した後,プラズマを発生さ
せ,直流電極38に一旦所定電圧を印加した後,逆電圧
を印加して試料31を吸着し,冷却用ガスを充填させた
後,プラズマ処理を開始する。プラズマ処理が終了する
と,上記冷却用ガスを排出し,直流電極38に印加した
電圧を徐々に下げて0にした後,直流電極38を接地
し,次いでプラズマ発生を停止させ,試料31を取り外
す。この制御により,誘電体のヒステリシスによる残留
電荷を小さく抑えることができる。
2. Description of the Related Art FIG. 5 shows an example of a plasma processing apparatus E
It is a schematic diagram which shows the structure of a CR plasma processing apparatus. The processing gas introduced into the vacuum container 30 to which the magnetic field by the magnetic coil 33 and the microwave from the microwave introduction window 34 are applied is turned into plasma under the ECR condition by the magnetic field and the microwave, and the plasma is generated. By vacuum container 30
The sample 31 placed inside is plasma-processed. The sample 31 is electrostatically adsorbed by the electrostatic chuck 35 provided on the mounting table 32, and the cooling gas is filled between the sample 31 and the electrode block 36 whose temperature is adjusted.
1 is configured to be cooled. A high frequency power source 39 is connected to the electrode block 36, and a high frequency voltage is applied to the sample 31 through the electrostatic chuck 35. FIG. 6 is a sectional view showing the structure of the main part of the mounting table 32 described above (JP-A-6-112302). The mounting table 32 is constructed by providing an electrostatic chuck 35 having a DC electrode 38 in a dielectric body on the upper surface of an electrode block 36. The temperature of the electrode block 36 is adjusted by circulating the refrigerant in the refrigerant passage 37, and the electrostatic chuck 35 adsorbs the sample 31. By interposing a cooling gas between the sample 31 and the electrode block 36, plasma is generated. The temperature of the sample 31 exposed to is controlled. Since the plasma treatment is performed in a vacuum, the sample 3 is used when the cooling gas is not present.
A vacuum is also created between 1 and the mounting table 32, the heat conduction of the sample 31 is very small, the temperature of the sample 31 which is irradiated with plasma rises, and normal plasma processing cannot be performed without temperature control. Therefore, as in the above-described configuration, adsorption is performed by the electrostatic chuck 35, a gas introduction path is formed in the electrode block 36 and the electrostatic chuck 35, and the cooling gas is distributed to the surface of the electrostatic chuck 35, and the electrostatic chuck 35 is statically charged. The temperature of the sample 31 can be controlled by conducting the heat of the sample 31 adsorbed by the electric chuck 35 to the temperature-adjusted electrode block 36 using the cooling gas as a medium. The adsorption of the sample 31 by the electrostatic chuck 35 is to electrostatically adsorb the sample 31 by applying a DC voltage to the DC electrode 38 included in the dielectric body. , Sample 31 to be removed off
Exchange operation is performed. However, even if the DC voltage is simply turned off, the electric charge remains due to the hysteresis of the dielectric material, and the sample 31 may be cracked or bounced due to the residual adsorption force when the sample 31 is removed. Therefore, in the conventional handling method of the plasma processing apparatus, the influence of the residual charge is avoided by controlling the DC voltage as described below (Japanese Patent Laid-Open No. 6-112302). After the sample 31 is placed on the electrostatic chuck 35, plasma is generated, a predetermined voltage is once applied to the DC electrode 38, and then a reverse voltage is applied to adsorb the sample 31 and fill it with a cooling gas. After that, plasma treatment is started. When the plasma treatment is completed, the cooling gas is discharged, the voltage applied to the DC electrode 38 is gradually reduced to zero, the DC electrode 38 is grounded, and then plasma generation is stopped, and the sample 31 is removed. By this control, the residual charge due to the hysteresis of the dielectric can be suppressed to be small.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記静
電チャックを用いたプラズマ処理装置では,以下に示す
ような問題点があった。 (1)誘電体に内包された直流電極に直流電圧を印加す
るために電極ブロック中に接続線を貫通させたり,冷却
用ガスの導入路を形成させたりする必要があるため,構
造が複雑になり,直流電位部位と高周波電位部位との絶
縁が困難であること。又,直流電極にも高周波電圧が印
加されるため,直流電極の加工精度が悪いと局部的に高
電圧が印加され,誘電体の絶縁破壊が生じやすい。 (2)高周波電圧は静電チャックを通じて試料に印加さ
れるが,このときの高周波回路を等価的に示すと,図7
に示すようになる。C1 は試料表面に生成されるプラズ
マシースの静電容量,C2 は試料と電極ブロックとの間
の静電容量,C 3 はブロッキングコンデンサの静電容量
に相当する。高周波電圧が印加されるプラズマ処理は,
上記C1 に発生する電位差によりプラズマ中のイオンを
加速することによってなされる。従って,試料に有効に
高周波電圧を印加する,即ち,V 1 を大きくするために
は,V2 ,V3 を小さくする必要がある。しかしなが
ら,上記C2 は静電チャックの構造,即ち,誘電体の厚
さに依存する静電容量であるため,静電容量を大きくす
ることはできず,この間の電圧V2 が大きくなり,V 1
が小さくなって試料に有効に高周波電圧が印加されな
い。 (3)静電チャックに残留する電荷を除去するため,直
流電圧のオン/オフ時に上記したような複雑な直流電圧
の制御操作が必要となること。 そこで,本発明の目的とするところは,静電チャックを
備えた載置台の構造を改良することにより,上記従来構
成になるプラズマ処理装置の問題点を解決するプラズマ
処理装置とプラズマ処理方法を提供することにある。
However, the above-mentioned static
The plasma processing equipment using an electric chuck is shown below.
There was such a problem. (1) Applying DC voltage to the DC electrode contained in the dielectric
In order to penetrate the connection wire in the electrode block or to cool it
Since it is necessary to form a gas introduction path,
The structure becomes complicated, and the direct current potential part and the high frequency potential part are disconnected.
The edge is difficult. In addition, high frequency voltage is also applied to the DC electrode.
Therefore, if the processing accuracy of the DC electrode is poor, it will be locally high.
When a voltage is applied, dielectric breakdown of the dielectric material is likely to occur. (2) High frequency voltage is applied to the sample through the electrostatic chuck.
The equivalent of the high-frequency circuit at this time is shown in Fig. 7.
As shown in. C1Is the plasm generated on the sample surface
The capacitance of Matthew, C2Between the sample and the electrode block
Capacitance of C 3Is the capacitance of the blocking capacitor
Is equivalent to Plasma treatment to which high frequency voltage is applied is
C above1Ions in the plasma due to the potential difference generated in
Made by accelerating. Therefore, it is effective for the sample
Apply high frequency voltage, ie V 1To make
Is V2, V3Needs to be small. But Naga
, Above C2Is the structure of the electrostatic chuck, that is, the thickness of the dielectric
Since the capacitance depends on the height, increase the capacitance.
Can not be, voltage V2Becomes larger, V 1
Becomes smaller and the high frequency voltage is not applied effectively to the sample.
Yes. (3) In order to remove the electric charge remaining on the electrostatic chuck,
Complex DC voltage as described above when current voltage is turned on / off
The control operation of is required. Therefore, the object of the present invention is to use an electrostatic chuck.
By improving the structure of the mounting table provided,
Plasma that solves the problems of plasma processing equipment
It is to provide a processing apparatus and a plasma processing method.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,真空容器内に配置された載
置台上に載置された試料を静電吸着により固定すると共
に該試料に高周波電圧を印加し,上記真空容器内に導入
された処理ガスをプラズマ化し,該プラズマにより上記
試料をプラズマ処理するプラズマ処理装置において,上
記載置台が,上記試料を載置する表面に配置された誘電
体と,上記静電吸着用直流電圧及び上記高周波電圧が交
互に印加される電極ブロックとを具備して形成されてな
ることを特徴とするプラズマ処理装置として構成されて
いる。又,本発明が採用するプラズマ処理方法は,真空
容器内に配置された載置台が,試料を載置する表面に配
置された誘電体と,直流電圧及び高周波電圧が印加され
る電極ブロックとを具備してなり,上記電極ブロックに
上記直流電圧を印加することにより載置台上に載置され
た試料を静電吸着により固定すると共に,上記電極ブロ
ックに上記高周波電圧を印加することにより上記試料に
高周波電圧を印加し,上記真空容器内に導入された処理
ガスをプラズマ化し,該プラズマにより上記試料をプラ
ズマ処理するプラズマ処理装置の取扱方法において,上
記真空容器内に予備的にプラズマを発生させると共に,
上記電極ブロックに直流電圧を印加して上記誘電体表面
に静電気力を発生させる第1工程と,上記載置台上に上
記試料を載置した後,上記直流電圧の印加を停止させる
と共に予備的なプラズマの処理を中止させる第2工程
と,上記電極ブロックに高周波電圧を印加してプラズマ
処理を開始し,所定のプラズマ処理が終了した後,上記
高周波電圧の印加を停止する第3工程と,上記電極ブロ
ックに直流電圧を印加し,プラズマ発生を停止させた
後,上記試料を取り外す第4工程と,を具備してなるこ
とを特徴とするプラズマ処理方法として構成されてい
る。
In order to achieve the above object, the means adopted by the present invention is to fix a sample mounted on a mounting table arranged in a vacuum container by electrostatic attraction and to fix the sample. In a plasma processing apparatus in which a high-frequency voltage is applied to the plasma, the processing gas introduced into the vacuum container is made into plasma, and the sample is plasma-processed by the plasma, the mounting table is placed on the surface on which the sample is mounted. And a dielectric body and an electrode block to which the DC voltage for electrostatic attraction and the high frequency voltage are alternately applied. Further, in the plasma processing method adopted by the present invention, the mounting table disposed in the vacuum container includes a dielectric disposed on the surface on which the sample is mounted and an electrode block to which a DC voltage and a high frequency voltage are applied. The sample mounted on the mounting table is fixed by electrostatic attraction by applying the DC voltage to the electrode block, and the sample is applied to the sample by applying the high frequency voltage to the electrode block. In a method of handling a plasma processing apparatus in which a high-frequency voltage is applied, the processing gas introduced into the vacuum container is turned into plasma, and the sample is plasma-processed by the plasma, a plasma is preliminarily generated in the vacuum container. ,
A first step of applying a DC voltage to the electrode block to generate an electrostatic force on the surface of the dielectric material, and after the sample is placed on the mounting table, the application of the DC voltage is stopped and a preliminary operation is performed. A second step of stopping the plasma treatment, a third step of applying a high-frequency voltage to the electrode block to start the plasma treatment, and stopping the application of the high-frequency voltage after a predetermined plasma treatment is finished, A fourth step of removing the sample after applying a DC voltage to the electrode block to stop the plasma generation, and is configured as a plasma processing method.

【0005】[0005]

【作用】本発明になる載置台は,電極ブロック上に誘電
体を配置させた簡易な構造で構成される。上記誘電体に
は従来構成のような直流電極はなく,上記電極ブロック
に直流電圧と高周波電圧とが交互に印加される。真空容
器内にプラズマを発生させた状態で電極ブロックに直流
電圧を印加すると,プラズマ中の電荷(電子)により誘
電体がチャージアップして誘電体と電極ブロックとの間
に静電気力が生じる。そこで,誘電体上に試料を載置し
て,直流電圧の印加を停止すると,誘電体に残された電
荷により試料が誘電体に吸着される。次いで,電極ブロ
ックに高周波電圧を印加してプラズマ処理を行う。誘電
体は電極を内包しない構造であるため,その厚さを薄く
形成することができるので,電極ブロックと試料との間
の静電容量を十分に大きく構成することができ,高周波
電圧を有効に試料に印加することができる。上記のよう
に誘電体には直流電極を内包させる必要がないため,構
造が簡単で加工精度が得やすく,直流電圧を供給するた
めの接続構造がなく絶縁対策が簡易に構成できる。請求
項1がこれに該当する。上記構成になる載置台を適用し
たプラズマ処理方法は,第1工程で真空容器内にプラズ
マを発生させた状態で電極ブロックに直流電圧を印加
し,静電気力が生じた誘電体に,第2工程で試料を載置
し,直流電圧の印加を停止すると,試料と誘電体との間
に静電気力が生じて試料が誘電体に吸着される。以上の
工程により試料が載置台に吸着されるので,試料と電極
ブロックとの間に冷却ガスを充填して試料の温度調整が
できる。そこで,第3工程では電極ブロックに高周波電
圧を印加して,プラズマ処理を開始し,これが終了した
とき電極ブロックへの高周波電圧の印加を停止する。第
4工程では電極ブロックに再び直流電圧を印加する。プ
ラズマ発生中にこの操作を行うことにより,誘電体と試
料との間の静電気力が誘電体と電極ブロックとの間に戻
るので,試料の吸着が解除され取り外しが可能になる。
上記のように本発明になるプラズマ処理方法では,プラ
ズマ発生中に電極ブロックに対する直流電圧と高周波電
圧との印加を切り換えることにより,試料の吸着と試料
への高周波電圧の印加とを行うことができる。請求項2
がこれに該当する。
The mounting table according to the present invention has a simple structure in which the dielectric is arranged on the electrode block. Unlike the conventional structure, the dielectric has no DC electrode, and DC voltage and high frequency voltage are alternately applied to the electrode block. When a DC voltage is applied to the electrode block in a state where plasma is generated in the vacuum container, the electric charge (electrons) in the plasma causes the dielectric substance to be charged up, and an electrostatic force is generated between the dielectric substance and the electrode block. Therefore, when the sample is placed on the dielectric and the application of the DC voltage is stopped, the sample is adsorbed to the dielectric due to the electric charge remaining in the dielectric. Then, a high frequency voltage is applied to the electrode block to perform plasma treatment. Since the dielectric has a structure that does not include electrodes, it can be made thin, so that the capacitance between the electrode block and the sample can be made sufficiently large, and high-frequency voltage can be effectively used. It can be applied to the sample. As described above, since it is not necessary to include the DC electrode in the dielectric, the structure is simple and the processing accuracy is easy to obtain, and there is no connection structure for supplying the DC voltage, and the insulation measure can be easily configured. Claim 1 corresponds to this. The plasma processing method using the mounting table having the above-mentioned configuration is performed by applying a DC voltage to the electrode block in a state where plasma is generated in the vacuum container in the first step, and applying a second step to the dielectric body where electrostatic force is generated. When the sample is placed on and the application of the DC voltage is stopped, an electrostatic force is generated between the sample and the dielectric, and the sample is adsorbed by the dielectric. Since the sample is adsorbed on the mounting table by the above steps, the temperature of the sample can be adjusted by filling the cooling gas between the sample and the electrode block. Therefore, in the third step, a high frequency voltage is applied to the electrode block to start the plasma treatment, and when this is finished, the application of the high frequency voltage to the electrode block is stopped. In the fourth step, the DC voltage is applied again to the electrode block. By performing this operation during plasma generation, the electrostatic force between the dielectric body and the sample returns between the dielectric body and the electrode block, so that the adsorption of the sample is released and the sample can be removed.
As described above, in the plasma processing method according to the present invention, the adsorption of the sample and the application of the high frequency voltage to the sample can be performed by switching the application of the DC voltage and the high frequency voltage to the electrode block during plasma generation. . Claim 2
Corresponds to this.

【0006】[0006]

【実施例】以下,添付図面を参照して,本発明を具体化
した実施例につき説明し,本発明の理解に供する。尚,
以下の実施例は本発明を具体化した一例であって,本発
明の技術的範囲を限定するものではない。ここに,図1
は本発明の実施例に係るプラズマ処理装置の載置台の要
部構成を断面状態で示す模式図,図2は実施例に係る載
置台を適用したプラズマ処理装置の構成を示す模式図,
図3は実施例に係る誘電体の構成を示す平面図,図4は
実施例に係るプラズマ処理方法を示す操作手順チャート
である。まず,実施例に係るプラズマ処理装置の構成に
ついて,図2を参照して説明する。該プラズマ処理装置
は半導体ウェハー(試料)を順次装置内に供給してプラ
ズマ処理する装置として構成されている。図2におい
て,プラズマ処理装置2は,真空容器3の周囲に配され
た磁気コイル4により真空容器3内に磁場が印加され,
マイクロ波導入窓5に接続された導波管6からマイクロ
波が真空容器3内に導入され,ガス導入管7から処理ガ
スが真空容器3内に導入されて,上記磁場とマイクロ波
とによる電子サイクロトロン共鳴(ECR:Electron C
yclotron Resonance)により処理ガスをプラズマ化する
ECRプラズマ処理装置として構成されている。ECR
は周知の通り,マイクロ波と磁場と処理ガス中の電子と
がECR条件のもとで電子サイクロトロン共鳴を生じて
処理ガスがプラズマ化されるプラズマ発生の一手段であ
り,プラズマ処理を実施するためのプラズマ生成は,こ
の手段に限られたものではない。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. still,
The following example is an example embodying the present invention and does not limit the technical scope of the present invention. Figure 1
1 is a schematic diagram showing a cross-sectional state of a main part configuration of a mounting table of a plasma processing apparatus according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing a configuration of a plasma processing apparatus to which the mounting table according to the embodiment is applied,
FIG. 3 is a plan view showing the structure of the dielectric according to the embodiment, and FIG. 4 is an operation procedure chart showing the plasma processing method according to the embodiment. First, the configuration of the plasma processing apparatus according to the embodiment will be described with reference to FIG. The plasma processing apparatus is configured as an apparatus that sequentially supplies semiconductor wafers (samples) into the apparatus to perform plasma processing. In FIG. 2, in the plasma processing apparatus 2, a magnetic field is applied in the vacuum container 3 by a magnetic coil 4 arranged around the vacuum container 3,
Microwaves are introduced into the vacuum container 3 from the waveguide 6 connected to the microwave introduction window 5, and processing gas is introduced into the vacuum container 3 from the gas introduction pipe 7 to generate electrons by the magnetic field and the microwave. Cyclotron resonance (ECR: Electron C
It is configured as an ECR plasma processing apparatus that converts the processing gas into plasma by using the yclotron resonance. ECR
As is well known, the microwave, the magnetic field and the electrons in the processing gas are one means of plasma generation in which the processing gas is turned into plasma by causing electron cyclotron resonance under the ECR condition, and for performing the plasma processing. The plasma generation of is not limited to this means.

【0007】上記プラズマにより生成されるイオンやラ
ジカルを真空容器3内に配設された載置台1上に載置さ
れた試料8に照射することにより,所定のプラズマ処理
がなされる。試料8は載置台1に設けられた静電チャッ
クにより所定位置に静電吸着され,同じく載置台1に設
けられた電極ブロック10に高周波電源11からの高周
波電圧が静電チャックの誘電体を介して印加される。こ
の試料8に印加される高周波電圧によりプラズマ中のイ
オンが加速され,プラズマ処理が効率的になされる。上
記載置台1は,図1に示すように構成されている。図1
において,載置台1は,電極ブロック10と,その上面
に配置された誘電体9と,試料8を誘電体9上に載置
し,取り外す,試料8の交換動作を行うリフターピン1
2とを具備して構成されている。上記電極ブロック10
には高周波電源11と直流電源13とが接続され,それ
ぞれ高周波電圧と直流電圧とが交互に印加できるように
構成されている。又,電極ブロック10には冷媒を循環
させて温度調整するための冷媒通路が設けられ,所定温
度に保たれるよう制御される。上記誘電体9は,チタン
酸カルシウム,アルミナ,ポリイミド等の比誘電率の大
きなものを主成分として形成されており,冷却用ガスの
ガス流路14,14…が設けられている。電極ブロック
10に設けられた冷却用ガス流入路15を通じて導入さ
れる冷却用ガスは,各ガス流路14,14…から誘電体
9に吸着された試料8の吸着面に充填される。上記ガス
流路14,14…は,図3に示す誘電体9の平面図のよ
うに,ガス充填が均等になされるよう全面に均等配置さ
れている。
A predetermined plasma treatment is performed by irradiating the sample 8 mounted on the mounting table 1 arranged in the vacuum container 3 with the ions and radicals generated by the plasma. The sample 8 is electrostatically attracted to a predetermined position by the electrostatic chuck provided on the mounting table 1, and the high frequency voltage from the high frequency power source 11 is applied to the electrode block 10 also provided on the mounting table 1 via the dielectric of the electrostatic chuck. Applied. Ions in the plasma are accelerated by the high frequency voltage applied to the sample 8 and the plasma processing is efficiently performed. The above-mentioned mounting table 1 is configured as shown in FIG. Figure 1
In the mounting table 1, the lifter pin 1 for mounting the electrode block 10, the dielectric 9 arranged on the upper surface thereof, and the sample 8 on the dielectric 9 and removing and replacing the sample 8 is used.
2 is provided. The electrode block 10
A high-frequency power source 11 and a direct-current power source 13 are connected to each other, and are configured so that a high-frequency voltage and a direct-current voltage can be alternately applied. Further, the electrode block 10 is provided with a refrigerant passage for circulating the refrigerant to adjust the temperature, and is controlled to be maintained at a predetermined temperature. The dielectric 9 is formed of calcium titanate, alumina, polyimide, or the like having a large relative permittivity as a main component, and is provided with gas flow paths 14, 14 ... For cooling gas. The cooling gas introduced through the cooling gas inflow path 15 provided in the electrode block 10 is filled in the adsorption surface of the sample 8 adsorbed by the dielectric 9 from each of the gas flow paths 14, 14 ... The gas flow paths 14, 14 ... Are evenly arranged on the entire surface so that the gas is evenly filled, as in the plan view of the dielectric 9 shown in FIG.

【0008】上記電極ブロック10と誘電体9とによ
り,試料8を静電吸着する静電チャックが構成されると
共に,電極ブロック10から誘電体9を介して試料8に
高周波電圧が印加できるよう構成されている。本実施例
に係る静電チャックの構成は,従来構成のように誘電体
中に直流電極を内包したものでなく,誘電体だけの構造
になっている。直流電極を内包した従来構成では誘電体
の厚さは2mm程度以上になるが,本実施例構成では,そ
の半分以下の厚さで構成することができる。従って,電
極ブロック10と試料8との間の静電容量C2 (図7参
照)を大きくすることができ,高周波電圧を有効に試料
8に印加することができる。又,構造が簡単になるた
め,従来構成の課題であった加工精度の保持,絶縁の問
題が解消される。上記電極ブロック10及び誘電体9に
より静電チャックの動作が実行される作用の説明を含め
たプラズマ処理方法について,図4及び図1,図2を参
照して以下に説明する。図4に示す縦軸点線は,操作を
順次実行するステップを示し,(1)(2)…のステッ
プ番号は本文中の説明番号と一致する。又,横軸は各操
作部位の制御状態のステップ毎の変化を示している。 (1)真空容器3内に搬入された試料8は,リフターピ
ン12により誘電体9上に間隔を開けて支持される(図
1に示す状態)。
The electrode block 10 and the dielectric 9 constitute an electrostatic chuck for electrostatically attracting the sample 8, and a high frequency voltage can be applied to the sample 8 from the electrode block 10 through the dielectric 9. Has been done. The structure of the electrostatic chuck according to the present embodiment does not include the DC electrode in the dielectric unlike the conventional structure, but has a structure of only the dielectric. Although the thickness of the dielectric is about 2 mm or more in the conventional configuration including the DC electrode, the thickness of the dielectric of the present embodiment can be less than half that thickness. Therefore, the capacitance C 2 (see FIG. 7) between the electrode block 10 and the sample 8 can be increased, and the high frequency voltage can be effectively applied to the sample 8. Further, since the structure is simplified, the problems of maintaining the processing accuracy and insulation, which have been the problems of the conventional configuration, are solved. A plasma processing method including a description of the action of the electrostatic chuck performed by the electrode block 10 and the dielectric 9 will be described below with reference to FIGS. 4 and 1 and 2. The dotted line on the vertical axis shown in FIG. 4 indicates the step of sequentially executing the operation, and the step numbers of (1), (2), ... Match the explanation numbers in the text. The horizontal axis shows the change in the control state of each operation part for each step. (1) The sample 8 carried into the vacuum container 3 is supported by the lifter pins 12 on the dielectric 9 with a space (state shown in FIG. 1).

【0009】(2)リフターピン12を下げて誘電体9
の表面に近づけた状態にする。これは試料8を誘電体9
上に吸着させるまでの時間を極力短くするための処置
で,静電吸着のための静電気力の発生にプラズマの作用
を利用するため,試料8が静電吸着され冷却されるまで
の間に試料8がプラズマに曝される時間を短くするため
である。 (3)電極ブロック10に直流電圧を印加する。直流電
圧は一般的には数百Vである。 (4)真空容器3内へのマイクロ波の導入をオンにして
予備的プラズマを発生させる。この予備的プラズマは,
静電吸着のためのプラズマ発生であるので,本実施例で
は試料8や誘電体9に影響を与えないように不活性ガス
をなるべく低密度で発生させる。例えば,ガス導入管7
からArガスを真空容器3内に導入し,プラズマ密度は
1×1010cm-3以下にする。このプラズマを吸着用プラ
ズマと呼称する。以上の操作により,直流電源13から
電極ブロック10,誘電体9,吸着用プラズマを通して
接地電位にある真空容器3に至る誘電体9の帯電回路が
形成され,誘電体9と電極ブロック10との間に静電気
力が発生する。 (5)吸着用プラズマを発生させたら,リフターピン1
2により速やかに試料8を誘電体9上に下ろす。以上誘
電体9上に試料8を載置するまでを第1工程という。
(2) Lower the lifter pin 12 to lower the dielectric 9
Keep it close to the surface of. This is sample 8 with dielectric 9
Since the action of the plasma is used to generate the electrostatic force for electrostatic adsorption, the sample 8 is electrostatically adsorbed and cooled before it is cooled. This is to shorten the time when 8 is exposed to plasma. (3) A DC voltage is applied to the electrode block 10. The DC voltage is generally several hundred volts. (4) The introduction of microwaves into the vacuum chamber 3 is turned on to generate preliminary plasma. This preliminary plasma
Since plasma is generated for electrostatic adsorption, in this embodiment, the inert gas is generated at a density as low as possible so as not to affect the sample 8 and the dielectric 9. For example, gas introduction pipe 7
Ar gas is introduced into the vacuum chamber 3 from the above, and the plasma density is made 1 × 10 10 cm −3 or less. This plasma is referred to as adsorption plasma. By the above operation, the charging circuit of the dielectric 9 from the DC power source 13 to the vacuum container 3 at the ground potential through the electrode block 10, the dielectric 9, and the adsorption plasma is formed, and between the dielectric 9 and the electrode block 10. Static electricity is generated on the. (5) When the adsorption plasma is generated, lifter pin 1
The sample 8 is quickly lowered onto the dielectric 9 by 2. The process up to placing the sample 8 on the dielectric 9 is referred to as the first step.

【0010】(6)電極ブロック10への直流電圧の印
加をオフにする。これにより,誘電体9上に載置された
試料8が誘電体9に吸着される。即ち,直流電圧の印加
がオフになっても誘電体9の帯電は消えないので,誘電
体9に試料8が載置された状態で直流電圧の印加をオフ
にすると,誘電体9に残された電荷により試料8は誘電
体9に静電吸着され続ける。 (7)試料8の吸着がなされたら,冷却用ガス(例え
ば,He)を冷却用ガス導入路15から一定流量で供給
し,ガス流路14,14…を通して試料8と誘電体9と
の間に充填する。 (8)吸着プラズマ用のガス導入を停止し,マイクロ波
の導入を停止させて,吸着用プラズマの発生を停止す
る。以上,試料8の吸着完了/及びまでを第2工程とい
う。 (9)以上の操作により,プラズマ処理の準備が完了す
るので,ここからプラズマ処理を開始させる。真空容器
3内にガス導入管7から処理ガスを導入し,マイクロ波
の導入をオンにしてプラズマを発生させる。このプラズ
マを処理用プラズマと呼称する。上記処理ガスは,例え
ば,プラズマ処理がポリシリコンのエッチングである場
合は塩素ガス,SiO2 のエッチングである場合はフロ
ン系ガス,SiO2 のCVDの場合はTEOSガスなど
である。又,プラズマ密度は1×1010cm-3以上で,上
記吸着用プラズマに比べて高めとする。 (10)処理プラズマが発生したら,高周波電源11を
オンにして電極ブロック10に高周波電圧を印加し,プ
ラズマ処理を開始する。高周波電圧の周波数は,数百k
Hz〜数MHz程度である。
(6) The application of the DC voltage to the electrode block 10 is turned off. As a result, the sample 8 placed on the dielectric 9 is adsorbed to the dielectric 9. That is, even if the application of the DC voltage is turned off, the charge of the dielectric 9 is not erased. Therefore, when the application of the DC voltage is turned off with the sample 8 placed on the dielectric 9, the dielectric 9 remains on the dielectric 9. The sample 8 continues to be electrostatically adsorbed on the dielectric 9 due to the generated charge. (7) When the sample 8 is adsorbed, a cooling gas (for example, He) is supplied from the cooling gas introducing passage 15 at a constant flow rate, and is passed between the sample 8 and the dielectric 9 through the gas passages 14, 14 ... To fill. (8) The introduction of the gas for the adsorption plasma is stopped, the introduction of the microwave is stopped, and the generation of the adsorption plasma is stopped. Above, the completion / adsorption of the sample 8 is referred to as the second step. (9) Since the preparation for plasma processing is completed by the above operation, the plasma processing is started from here. A processing gas is introduced into the vacuum container 3 through the gas introduction pipe 7, and introduction of microwaves is turned on to generate plasma. This plasma is called processing plasma. The processing gas is, for example, a chlorine gas when the plasma processing is etching of polysilicon, a chlorofluorocarbon gas when the etching is SiO 2 , and a TEOS gas when the CVD of SiO 2 is performed. The plasma density is 1 × 10 10 cm −3 or higher, which is higher than that of the adsorption plasma. (10) When the processing plasma is generated, the high frequency power supply 11 is turned on to apply a high frequency voltage to the electrode block 10 to start the plasma processing. The frequency of the high frequency voltage is several hundreds k
Hz to several MHz.

【0011】(11)プラズマ処理が終了したら,高周
波電源11をオフにする。 (12)冷却用ガスの供給を停止する。以上,プラズマ
処理の終了までを第3工程とする。 (13)直流電源13をオンにして電極ブロック10に
直流電圧を印加する。電極ブロック10への直流電圧の
印加により,試料8の吸着が解かれる。 (14)処理プラズマの発生を停止させる。 (15)リフターピン12により試料8を持ち上げ,真
空容器3から搬出させる。以上,プラズマ処理がなされ
た試料8の取り外しまでを第4工程とする。 上記(11)以降の操作ステップは,高周波電源11を
オフにした後,処理用プラズマの発生を停止し,冷却用
ガスの供給を停止して,真空容器3内に上記吸着用プラ
ズマを発生させ,直流電源13をオンにする操作を行っ
てもよい。又,直流電圧は吸着時と同じ電圧を印加する
ことが基本であるが,異なる電圧を印加して着脱の精度
を向上させることもできる。
(11) When the plasma processing is completed, the high frequency power supply 11 is turned off. (12) Stop the supply of the cooling gas. The above is the third step until the plasma processing is completed. (13) Turn on the DC power supply 13 to apply a DC voltage to the electrode block 10. By applying a DC voltage to the electrode block 10, the adsorption of the sample 8 is released. (14) Stop the generation of processing plasma. (15) The sample 8 is lifted by the lifter pin 12 and carried out from the vacuum container 3. The above is the fourth step until the removal of the sample 8 that has been plasma-treated. In the operation steps after (11), after turning off the high frequency power supply 11, the generation of the processing plasma is stopped, the supply of the cooling gas is stopped, and the adsorption plasma is generated in the vacuum container 3. The operation of turning on the DC power supply 13 may be performed. In addition, the DC voltage is basically applied at the same voltage as that at the time of adsorption, but different voltages can be applied to improve the attachment / detachment accuracy.

【0012】[0012]

【発明の効果】以上の説明の通り本発明に係るプラズマ
処理装置に適用される載置台は,電極ブロック上に誘電
体を配置させた簡易な構造で構成される。上記誘電体に
は従来構成のような直流電極はなく,上記電極ブロック
に直流電圧と高周波電圧とが交互に印加される。真空容
器内にプラズマを発生させた状態で電極ブロックに直流
電圧を印加すると,誘電体がプラズマ中の電荷により帯
電し,誘電体上に試料を載置して,直流電圧の印加を停
止すると,誘電体に残された電荷により試料が誘電体に
吸着される。次いで,電極ブロックに高周波電圧を印加
してプラズマ処理を行うとき,誘電体は電極を内包しな
い構造であるため,その厚さを薄く形成することができ
るので,電極ブロックと試料との間の静電容量を十分に
大きく構成することができ,高周波電圧を有効に試料に
印加することができる。上記のように誘電体には直流電
極を内包させる必要がないため,構造が簡単で加工精度
が得やすく,直流電圧を供給するための接続構造がなく
絶縁対策が簡易に構成できる。(請求項1) 又,上記構成になる載置台を適用したプラズマ処理方法
は,第1工程で真空容器内にプラズマを発生させた状態
で電極ブロックに直流電圧を印加し,静電気力が生じた
誘電体に,第2工程で試料を載置し,直流電圧の印加を
停止すると,試料と誘電体との間に静電気力が生じて試
料が誘電体に吸着される。以上の工程により試料が載置
台に吸着されるので,試料と電極ブロックとの間に冷却
ガスを充填して試料の温度調整ができる。そこで,第3
工程では電極ブロックに高周波電圧を印加して,プラズ
マ処理を開始し,これが終了したとき電極ブロックへの
高周波電圧の印加を停止する。第4工程では電極ブロッ
クに再び直流電圧を印加する。プラズマ発生中にこの操
作を行うことにより,誘電体と試料との間の静電気力が
誘電体と電極ブロックとの間に戻るので,試料の吸着が
解除され取り外しが可能になる。上記のように本発明に
なる取扱方法では,プラズマ発生中に電極ブロックに対
する直流電圧と高周波電圧との印加を切り換えることに
より,試料の吸着と試料への高周波電圧の印加とを行う
ことができ,直流電圧の複雑な制御を必要としない。
(請求項2)
As described above, the mounting table applied to the plasma processing apparatus according to the present invention has a simple structure in which the dielectric is arranged on the electrode block. Unlike the conventional structure, the dielectric has no DC electrode, and DC voltage and high frequency voltage are alternately applied to the electrode block. When a DC voltage is applied to the electrode block while plasma is generated in the vacuum container, the dielectric is charged by the electric charge in the plasma, the sample is placed on the dielectric, and the application of DC voltage is stopped. The sample is adsorbed on the dielectric due to the electric charge left on the dielectric. Then, when a high frequency voltage is applied to the electrode block for plasma treatment, the dielectric can be formed thin because the structure does not include the electrode, so that the dielectric between the electrode block and the sample can be reduced. The capacitance can be made sufficiently large, and high-frequency voltage can be effectively applied to the sample. As described above, since it is not necessary to include the DC electrode in the dielectric, the structure is simple and the processing accuracy is easy to obtain, and there is no connection structure for supplying the DC voltage, and the insulation measure can be easily configured. (Claim 1) Further, in the plasma processing method using the mounting table having the above-mentioned configuration, a DC voltage is applied to the electrode block while plasma is generated in the vacuum container in the first step, and electrostatic force is generated. When the sample is placed on the dielectric in the second step and the application of the DC voltage is stopped, an electrostatic force is generated between the sample and the dielectric, and the sample is adsorbed to the dielectric. Since the sample is adsorbed on the mounting table by the above steps, the temperature of the sample can be adjusted by filling the cooling gas between the sample and the electrode block. Therefore, the third
In the process, a high frequency voltage is applied to the electrode block to start the plasma treatment, and when this is finished, the application of the high frequency voltage to the electrode block is stopped. In the fourth step, the DC voltage is applied again to the electrode block. By performing this operation during plasma generation, the electrostatic force between the dielectric body and the sample returns between the dielectric body and the electrode block, so that the adsorption of the sample is released and the sample can be removed. As described above, in the handling method according to the present invention, it is possible to perform adsorption of the sample and application of the high frequency voltage to the sample by switching the application of the DC voltage and the high frequency voltage to the electrode block during plasma generation. Does not require complicated control of DC voltage.
(Claim 2)

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例に係るプラズマ処理装置に適用された
載置台の構成を示す模式図。
FIG. 1 is a schematic diagram showing a configuration of a mounting table applied to a plasma processing apparatus according to an embodiment.

【図2】 実施例に係るプラズマ処理装置の構成を示す
模式図。
FIG. 2 is a schematic diagram showing a configuration of a plasma processing apparatus according to an embodiment.

【図3】 実施例に係る誘電体の平面図。FIG. 3 is a plan view of a dielectric according to an example.

【図4】 実施例に係るプラズマ処理装置の取扱方法の
手順を示す操作手順チャート。
FIG. 4 is an operation procedure chart showing a procedure of a handling method of the plasma processing apparatus according to the embodiment.

【図5】 従来例に係るプラズマ処理装置の構成を示す
模式図。
FIG. 5 is a schematic diagram showing a configuration of a plasma processing apparatus according to a conventional example.

【図6】 従来例に係るプラズマ処理装置に適用された
載置台の構成を示す模式図。
FIG. 6 is a schematic diagram showing a configuration of a mounting table applied to a plasma processing apparatus according to a conventional example.

【図7】 試料への高周波電圧印加の状態を説明する等
価回路図。
FIG. 7 is an equivalent circuit diagram illustrating a state in which a high frequency voltage is applied to a sample.

【符号の説明】[Explanation of symbols]

1…載置台 2…プラズマ処理装置 3…真空容器 8…試料 9…誘電体 10…電極ブロック 11…高周波電源 12…リフターピン 13…直流電源 DESCRIPTION OF SYMBOLS 1 ... Mounting table 2 ... Plasma processing apparatus 3 ... Vacuum container 8 ... Sample 9 ... Dielectric 10 ... Electrode block 11 ... High frequency power supply 12 ... Lifter pin 13 ... DC power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02N 13/00 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H02N 13/00 D

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に配置された載置台上に載置
された試料を静電吸着により固定すると共に該試料に高
周波電圧を印加し,上記真空容器内に導入された処理ガ
スをプラズマ化し,該プラズマにより上記試料をプラズ
マ処理するプラズマ処理装置において,上記載置台が,
上記試料を載置する表面に配置された誘電体と,上記静
電吸着用直流電圧及び上記高周波電圧が交互に印加され
る電極ブロックとを具備して形成されてなることを特徴
とするプラズマ処理装置。
1. A sample mounted on a mounting table arranged in a vacuum container is fixed by electrostatic adsorption, a high frequency voltage is applied to the sample, and a processing gas introduced into the vacuum container is converted into plasma. In the plasma processing apparatus which converts the sample into a plasma by using the plasma,
A plasma treatment, characterized in that it is formed by including a dielectric disposed on the surface on which the sample is placed and an electrode block to which the electrostatic attraction DC voltage and the high frequency voltage are alternately applied. apparatus.
【請求項2】 真空容器内に配置された載置台が,試料
を載置する表面に配置された誘電体と,直流電圧及び高
周波電圧が印加される電極ブロックとを具備してなり,
上記電極ブロックに上記直流電圧を印加することにより
載置台上に載置された試料を静電吸着により固定すると
共に,上記電極ブロックに上記高周波電圧を印加するこ
とにより上記試料に高周波電圧を印加し,上記真空容器
内に導入された処理ガスをプラズマ化し,該プラズマに
より上記試料をプラズマ処理するプラズマ処理装置の取
扱方法において,上記真空容器内に予備的にプラズマを
発生させると共に,上記電極ブロックに直流電圧を印加
して上記誘電体表面に静電気力を発生させる第1工程
と,上記載置台上に上記試料を載置した後,上記直流電
圧の印加を停止させると共に予備的なプラズマの発生を
中止させる第2工程と,上記電極ブロックに高周波電圧
を印加してプラズマ処理を開始し,所定のプラズマ処理
が終了した後,上記高周波電圧の印加を停止する第3工
程と,上記電極ブロックに直流電圧を印加し,プラズマ
発生を停止させた後,上記試料を取り外す第4工程と,
を具備してなることを特徴とするプラズマ処理方法。
2. A mounting table arranged in a vacuum container comprises a dielectric material arranged on a surface on which a sample is mounted, and an electrode block to which a DC voltage and a high frequency voltage are applied.
The DC voltage is applied to the electrode block to fix the sample placed on the mounting table by electrostatic attraction, and the high frequency voltage is applied to the electrode block to apply the high frequency voltage to the sample. In a method of handling a plasma processing apparatus in which a processing gas introduced into the vacuum container is made into plasma and the sample is plasma-processed by the plasma, a plasma is preliminarily generated in the vacuum container and the electrode block is The first step of applying a DC voltage to generate an electrostatic force on the surface of the dielectric, and after placing the sample on the mounting table, stop the application of the DC voltage and generate a preliminary plasma. The second step of stopping, and the high frequency voltage is applied to the electrode block to start the plasma treatment, and after the predetermined plasma treatment is finished, After a third step of stopping the application of the frequency voltage, which is applied a DC voltage to the electrode block, and the plasma generation is stopped, a fourth step of removing the sample,
A plasma processing method comprising:
JP22631994A 1994-09-21 1994-09-21 Plasma treatment device and plasma treatment method Pending JPH0896989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22631994A JPH0896989A (en) 1994-09-21 1994-09-21 Plasma treatment device and plasma treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22631994A JPH0896989A (en) 1994-09-21 1994-09-21 Plasma treatment device and plasma treatment method

Publications (1)

Publication Number Publication Date
JPH0896989A true JPH0896989A (en) 1996-04-12

Family

ID=16843334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22631994A Pending JPH0896989A (en) 1994-09-21 1994-09-21 Plasma treatment device and plasma treatment method

Country Status (1)

Country Link
JP (1) JPH0896989A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128615A (en) * 2004-10-28 2006-05-18 Hynix Semiconductor Inc High density plasma chemical vapor deposition apparatus and manufacturing method of semiconductor element using it
WO2015129719A1 (en) * 2014-02-28 2015-09-03 株式会社 アルバック Plasma etching method, plasma etching method, plasma processing method, and plasma processing device
JP2016143785A (en) * 2015-02-03 2016-08-08 株式会社ディスコ Decompression processing unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128615A (en) * 2004-10-28 2006-05-18 Hynix Semiconductor Inc High density plasma chemical vapor deposition apparatus and manufacturing method of semiconductor element using it
WO2015129719A1 (en) * 2014-02-28 2015-09-03 株式会社 アルバック Plasma etching method, plasma etching method, plasma processing method, and plasma processing device
CN105103274A (en) * 2014-02-28 2015-11-25 株式会社爱发科 Plasma etching method, plasma etching method, plasma processing method, and plasma processing device
JP5840820B1 (en) * 2014-02-28 2016-01-06 株式会社アルバック Plasma etching method, plasma etching apparatus, plasma processing method, and plasma processing apparatus
TWI595557B (en) * 2014-02-28 2017-08-11 愛發科股份有限公司 Plasma etching method, plasma etching apparatus, plasma processing method, and plasma processing apparatus
US9837251B2 (en) 2014-02-28 2017-12-05 Ulvac, Inc. Plasma etching method, plasma etching device, plasma processing method, and plasma processing device
JP2016143785A (en) * 2015-02-03 2016-08-08 株式会社ディスコ Decompression processing unit

Similar Documents

Publication Publication Date Title
US5460684A (en) Stage having electrostatic chuck and plasma processing apparatus using same
KR100298910B1 (en) Semiconductor wafer chucking device and method for stripping semiconductor wafer
US20020119670A1 (en) Plasma etching apparatus and plasma etching method
EP1166323A1 (en) Method and apparatus for compensating non-uniform wafer processing in plasma processing
KR102526304B1 (en) Separation control method and plasma processing apparatus
JP2879887B2 (en) Plasma processing method
JP4322484B2 (en) Plasma processing method and plasma processing apparatus
JP4642809B2 (en) Plasma processing method and plasma processing apparatus
JP2009239062A (en) Plasma processing apparatus and method
JP2869384B2 (en) Plasma processing method
JP4035225B2 (en) Plasma processing method
JPH0896989A (en) Plasma treatment device and plasma treatment method
JP2000331996A (en) Plasma processing device
JPH1027780A (en) Plasma treating method
JP2000164582A (en) Plasma processing system
JP3162272B2 (en) Plasma processing method
JPH0982787A (en) Plasma treating apparatus and method
JP4381694B2 (en) Sample surface treatment method
JP2002319577A (en) Plasma processing system
JPH03169041A (en) Vacuum treatment apparatus
JP2000150487A (en) Plasma treatment method
JP2002367967A (en) Method and apparatus for treating plasma
JP2003163201A (en) Plasma etching device
JPH06169008A (en) Electrostatic chucking device and method
JP3368743B2 (en) Plasma processing apparatus and plasma processing method