JPH0896832A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH0896832A
JPH0896832A JP6231133A JP23113394A JPH0896832A JP H0896832 A JPH0896832 A JP H0896832A JP 6231133 A JP6231133 A JP 6231133A JP 23113394 A JP23113394 A JP 23113394A JP H0896832 A JPH0896832 A JP H0896832A
Authority
JP
Japan
Prior art keywords
positive electrode
paste
secondary battery
current collector
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231133A
Other languages
Japanese (ja)
Inventor
Chizuru Hatanaka
千鶴 畑中
Mitsuo Hiruma
光生 晝間
Hirohito Teraoka
浩仁 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6231133A priority Critical patent/JPH0896832A/en
Publication of JPH0896832A publication Critical patent/JPH0896832A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To enhance charging efficiency at high temperature providing a positive electrode, a negative electrode, and a specific alkaline electrolyte. CONSTITUTION: A positive electrode 1 is prepared by filling paste containing nickel hydroxide powder, a conductor, a binder, and water in a current collector, drying the paste, pressing it, then cutting the paste coated current collector in a specified size. A negative electrode 2 is prepared by filling paste obtained by kneading a negative active material, a conductor, a binder, and water in a current collector, drying the paste, and forming it. A separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and they are spirally wound, put into a cylindrical container 4 with a bottom and a circular sealing plate 6 having a hole 5 in the center is arranged in an upper opening of the container 4. An alkaline electrolyte containing 0.01-0.20wt.% boron is poured in the container 4 through the hole 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水酸化ニッケル粉末を主
成分として含むペーストを集電体に充填した構造を有す
る正極を備えたアルカリ二次電池に関し、特にアルカリ
電解液を改良したアルカリ二次電池に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery provided with a positive electrode having a structure in which a current collector is filled with a paste containing nickel hydroxide powder as a main component, and more particularly to an alkaline secondary battery having an improved alkaline electrolyte. It relates to batteries.

【0002】[0002]

【従来の技術】アルカリ二次電池は、ニッケル正極と負
極との間に合成樹脂繊維製のセパレータを介装して作製
された電極群を例えば水酸化カリウムからなるアルカリ
電解液と共に容器内に収納した構造を有する。前記ニッ
ケル正極は、水酸化ニッケル粉末と、例えばコバルト酸
化物やコバルト水酸化物などの導電剤と、結着剤と、水
を混練してペーストを調製した後、前記ペーストを例え
ば三次元スポンジ状金属多孔体や金属繊維マット等の集
電体に充填することにより製造される。
2. Description of the Related Art In an alkaline secondary battery, an electrode group made by interposing a separator made of synthetic resin fiber between a nickel positive electrode and a negative electrode is housed in a container together with an alkaline electrolyte made of potassium hydroxide, for example. It has a structure. The nickel positive electrode is prepared by kneading nickel hydroxide powder, a conductive agent such as cobalt oxide or cobalt hydroxide, a binder, and water to prepare a paste, and then forming the paste into, for example, a three-dimensional sponge form. It is manufactured by filling a current collector such as a metal porous body or a metal fiber mat.

【0003】前記正極を備えた二次電池を高温において
充電すると、前記正極の酸素過電圧が低下するため、下
記(1)式に示す前記正極の水酸化ニッケル粉末の充電
反応と、下記(2)式に示す副反応としての酸素ガス発
生反応との電位差が小さくなる。その結果、両反応が競
合するため、NiOOHの生成量が減少し、前記正極の
充電効率が低下するという問題点があった。
When the secondary battery provided with the positive electrode is charged at a high temperature, the oxygen overvoltage of the positive electrode is lowered. Therefore, the charging reaction of the nickel hydroxide powder of the positive electrode represented by the following formula (1) and the following (2) The potential difference from the oxygen gas generation reaction as a side reaction shown in the formula becomes small. As a result, the two reactions compete with each other, so that there is a problem that the amount of NiOOH produced decreases and the charging efficiency of the positive electrode decreases.

【0004】 Ni(OH)2 +OH- → NiOOH+H2 O+e- (1) 4OH- → 2H2 O+O2 +4e- (2) このようなことから、前記水酸化ニッケル粉末に数%の
カドミウム又は亜鉛を含有させたり、前記アルカリ電解
液に水酸化リチウムを添加したりすることが行われてい
る。しかしながら、これらの方法では高温状態における
正極の充電効率を十分に向上させることは困難であっ
た。
Ni (OH) 2 + OH → NiOOH + H 2 O + e (1) 4OH → 2H 2 O + O 2 + 4e (2) Therefore, the nickel hydroxide powder contains several% of cadmium or zinc. The addition of lithium hydroxide to the alkaline electrolyte is performed. However, it is difficult to sufficiently improve the charging efficiency of the positive electrode in the high temperature state by these methods.

【0005】[0005]

【発明が解決しようとする課題】本発明は従来の問題を
解決するためになされたもので、高温状態での充電効率
が向上された正極を備えたアルカリ二次電池を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the conventional problems, and it is an object of the present invention to provide an alkaline secondary battery having a positive electrode with improved charging efficiency at high temperatures. is there.

【0006】[0006]

【課題を解決するための手段】本発明は、水酸化ニッケ
ル粉末を主成分として含むペーストを集電体に充填した
構造を有する正極と、負極と、前記正極と前記負極との
間に介装されるセパレータと、硼素もしくは硼素化合物
が溶解されたアルカリ電解液とを具備したことを特徴と
するアルカリ二次電池である。
According to the present invention, a positive electrode having a structure in which a paste containing nickel hydroxide powder as a main component is filled in a current collector, a negative electrode, and an interposition between the positive electrode and the negative electrode. And an alkaline electrolytic solution in which boron or a boron compound is dissolved, and an alkaline secondary battery.

【0007】以下、本発明のアルカリ二次電池を図1を
参照して説明する。正極1は、負極2との間にセパレー
タ3を介在してスパイラル状に捲回され、有底円筒状の
容器4内に収納されている。前記負極2は作製された電
極群の最外周に配置されて前記容器4と電気的に接触し
ている。アルカリ電解液は、前記容器4内に収容されて
いる。中央に穴5を有する円形の封口板6は、前記容器
4の上部開口部に配置されている。リング状の絶縁性ガ
スケット7は、前記封口板6の周縁と前記容器4の上部
開口部内面の間に配置され、前記上部開口部を内側に縮
径するカシメ加工により前記容器4に前記封口板6を前
記ガスケット7を介して気密に固定している。正極リー
ド8は、一端が前記正極1に接続、他端が前記封口板6
の下面に接続されている。帽子形状をなす正極端子9
は、前記封口板6上に前記穴5を覆うように取り付けら
れている。ゴム製の安全弁10は、前記封口板6と前記
正極端子9で囲まれた空間内に前記穴5を塞ぐように配
置されている。
The alkaline secondary battery of the present invention will be described below with reference to FIG. The positive electrode 1 is spirally wound with the separator 3 interposed between the positive electrode 1 and the negative electrode 2, and is housed in a bottomed cylindrical container 4. The negative electrode 2 is arranged on the outermost periphery of the prepared electrode group and is in electrical contact with the container 4. The alkaline electrolyte is contained in the container 4. A circular sealing plate 6 having a hole 5 in the center is arranged in the upper opening of the container 4. The ring-shaped insulating gasket 7 is arranged between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 4, and the sealing plate is attached to the container 4 by caulking to reduce the diameter of the upper opening inward. 6 is airtightly fixed via the gasket 7. One end of the positive electrode lead 8 is connected to the positive electrode 1, and the other end is the sealing plate 6.
Is attached to the underside of. Hat-shaped positive terminal 9
Is mounted on the sealing plate 6 so as to cover the hole 5. The rubber safety valve 10 is arranged so as to close the hole 5 in a space surrounded by the sealing plate 6 and the positive electrode terminal 9.

【0008】硼素もしくは硼素化合物が溶解されるアル
カリ電解液としては、例えば水酸化カリウム溶液、水酸
化カリウムに水酸化ナトリウム及び水酸化リチウムのい
ずれか一方または両者が添加された混合液を用いること
ができる。中でも、水酸化リチウム及び水酸化ナトリウ
ムを含むアルカリ電解液は高温状態における前記正極の
充電効率を更に向上できるため、好ましい。
As the alkaline electrolyte in which boron or a boron compound is dissolved, for example, a potassium hydroxide solution, a mixed solution of potassium hydroxide with one or both of sodium hydroxide and lithium hydroxide added is used. it can. Above all, an alkaline electrolyte containing lithium hydroxide and sodium hydroxide is preferable because it can further improve the charging efficiency of the positive electrode in a high temperature state.

【0009】前記硼素化合物としては、硼酸、硼酸カリ
ウム、硼酸ナトリウム、硼酸リチウムを挙げることがで
きる。硼素もしくは硼素化合物が溶解されたアルカリ電
解液の硼素濃度は、0.01重量%以上にすることが望
ましい。前記濃度が0.01重量%未満になると、高温
状態における前記正極1の充電効率を向上することが困
難になる恐れがある。前記濃度の好ましい上限値は、
0.20重量%である。これは、アルカリ電解液に硼素
もしくは硼素化合物を過剰量添加すると、前記正極1の
充電効率を向上することが可能であるものの、硼素もし
くは硼素化合物が前記二次電池の充放電に悪影響を及ぼ
して前記正極1の利用率が低下する恐れがあることによ
るものである。より好ましい硼素濃度は0.03重量%
〜0.10重量%である。
Examples of the boron compound include boric acid, potassium borate, sodium borate, and lithium borate. The boron concentration of the alkaline electrolyte in which boron or the boron compound is dissolved is preferably 0.01% by weight or more. If the concentration is less than 0.01% by weight, it may be difficult to improve the charging efficiency of the positive electrode 1 in a high temperature state. The preferred upper limit of the concentration is
It is 0.20% by weight. This is because when boron or a boron compound is added to the alkaline electrolyte in an excessive amount, the charging efficiency of the positive electrode 1 can be improved, but the boron or the boron compound adversely affects the charge and discharge of the secondary battery. This is because the utilization rate of the positive electrode 1 may decrease. More preferable boron concentration is 0.03% by weight
Is about 0.10% by weight.

【0010】前記正極1は、水酸化ニッケル粉末と、導
電剤と、結着剤と、水とを含むペーストを調製し、前記
ペーストを集電体に充填し、これを乾燥、加圧成形した
後、所望のサイズに切断することにより製造される。
For the positive electrode 1, a paste containing nickel hydroxide powder, a conductive agent, a binder, and water was prepared, the current collector was filled with the paste, and the paste was dried and pressure-molded. Then, it is manufactured by cutting into a desired size.

【0011】前記水酸化ニッケル粉末には亜鉛又はコバ
ルトを金属ニッケルと共に共沈させて固溶体として含有
させることが好ましい。このような水酸化ニッケル粉末
を含む正極は高温状態における充電効率を更に向上でき
る。
It is preferable that zinc or cobalt is coprecipitated with metallic nickel in the nickel hydroxide powder to be contained as a solid solution. The positive electrode containing such nickel hydroxide powder can further improve the charging efficiency in a high temperature state.

【0012】前記導電剤としては、例えば一酸化コバル
ト、三酸化二コバルト、水酸化コバルト等のコバルト化
合物を挙げることができる。前記結着剤としては、例え
ばポリテトラフルオロエチレン、カルボキシメチルセル
ロース、メチルセルロース、ポリアクリル酸ナトリウ
ム、ポリビニルアルコールを挙げることができる。
Examples of the conductive agent include cobalt compounds such as cobalt monoxide, dicobalt trioxide, and cobalt hydroxide. Examples of the binder include polytetrafluoroethylene, carboxymethyl cellulose, methyl cellulose, sodium polyacrylate, and polyvinyl alcohol.

【0013】前記集電体としては、例えばニッケル、ス
テンレス等の耐アルカリ性金属や、耐アルカリ性のニッ
ケルメッキが施された樹脂などからなるスポンジ状、繊
維状、フェルト状の多孔質構造を有するものを挙げるこ
とができる。
The current collector has a sponge-like, fibrous-like, or felt-like porous structure made of, for example, an alkali-resistant metal such as nickel or stainless steel, or an alkali-resistant nickel-plated resin. Can be mentioned.

【0014】前記負極2は、負極活物質に導電材を添加
し、結着剤及び水と共に混練してペーストを調製し、前
記ペーストを集電体に充填し、乾燥した後、成形するこ
とにより製造される。
The negative electrode 2 is prepared by adding a conductive material to a negative electrode active material, kneading it with a binder and water to prepare a paste, filling the current collector with the paste, drying it, and then molding it. Manufactured.

【0015】前記負極活物質としては、例えば金属カド
ミウム、水酸化カドミウムなどのカドミウム化合物、水
素吸蔵合金を挙げることができる。中でも、前記水素吸
蔵合金は、前記カドミウム化合物を用いた場合よりも二
次電池の容量を向上できるため、好ましい。前記水素吸
蔵合金としては、格別制限されるものではなく、電解液
中で電気化学的に発生させた水素を吸蔵でき、かつ放電
時にその吸蔵水素を容易に放出できるものであればよ
い。例えばLaNi5 、MmNi5 (Mmとは、La,
Ce,Pr,Nd,Smなどのランタン系元素の混合物
であるミッシュメタルを意味する)、LnNi5 (L
n;ランタン富化したミッシュメタル)、及びこれらの
Niの一部をAl、Mn、Co、Ti、Cu、Zn、Z
r、Cr、Bのような元素で置換した多元素系のもの、
又はTiNi系、TiFe系のものを挙げることができ
る。中でも、一般式LnNix Mnyz (ただし、A
はAl,Coから選ばれる少なくとも一種の金属、原子
比x,y,zはその合計値が4.8≦x+y+z≦5.
4を示す)で表される水素吸蔵合金は、所望の水素平衡
圧を有し、かつ前記二次電池の充放電サイクル寿命を向
上することができるため、好適である。更に好ましいの
は一般式LmNiw Cox Mny Alz (但し、原子比
w,x,y,zはそれぞれ3.1≦w≦4.8,0.2
≦x≦0.8,0.2≦y≦0.8,0.2≦z≦0.
8で、これらの合計値は5.1≦w+x+y+z≦5.
4である)で表される水素吸蔵合金である。かかる水素
吸蔵合金は充放電サイクル寿命を著しく向上することが
できる。
Examples of the negative electrode active material include cadmium compounds such as metal cadmium and cadmium hydroxide, and hydrogen storage alloys. Above all, the hydrogen storage alloy is preferable because it can improve the capacity of the secondary battery as compared with the case where the cadmium compound is used. The hydrogen storage alloy is not particularly limited as long as it can store hydrogen electrochemically generated in the electrolytic solution and can easily release the stored hydrogen during discharge. For example, LaNi 5 and MmNi 5 (Mm is La,
Ce, Pr, Nd, Sm, etc. means a misch metal which is a mixture of lanthanum-based elements), LnNi 5 (L
n; lanthanum-enriched misch metal), and some of these Nis are Al, Mn, Co, Ti, Cu, Zn, Z
multi-element system substituted with elements such as r, Cr, B,
Alternatively, TiNi-based and TiFe-based materials can be used. Above all, the general formula LnNi x Mn y A z (However, A
Is at least one metal selected from Al and Co, and the atomic ratios x, y, and z have a total value of 4.8 ≦ x + y + z ≦ 5.
4) is preferable because it has a desired hydrogen equilibrium pressure and can improve the charge / discharge cycle life of the secondary battery. More preferred formula LmNi w Co x Mn y Al z ( where atomic ratios w, x, y, z are each 3.1 ≦ w ≦ 4.8,0.2
≤x≤0.8, 0.2≤y≤0.8, 0.2≤z≤0.
8, the sum of these values is 5.1 ≦ w + x + y + z ≦ 5.
4) is a hydrogen storage alloy. Such a hydrogen storage alloy can significantly improve the charge / discharge cycle life.

【0016】前記導電材としては、例えばカーボンブラ
ック等を挙げることができる。前記結着剤としては、前
記正極1と同様なものを挙げることができる。前記集電
体としては、例えばパンチドメタル、エキスパンデッド
メタル、穿孔剛板、ニッケルネットなどの二次元基板
や、フェルト状金属多孔体や、スポンジ状金属多孔体な
どの三次元基板を挙げることができる。
Examples of the conductive material include carbon black. The same binder as the positive electrode 1 can be used as the binder. Examples of the current collector include two-dimensional substrates such as punched metal, expanded metal, perforated rigid plate and nickel net, and three-dimensional substrates such as felt-like metal porous bodies and sponge-like metal porous bodies. You can

【0017】前記セパレータ3としては、例えば、ポリ
アミド繊維製不織布、ポリエチレンやポリプロピレンな
どのポリオレフィン繊維製不織布に親水性官能基を付与
したものを挙げることができる。
Examples of the separator 3 include a nonwoven fabric made of polyamide fiber and a nonwoven fabric made of polyolefin fiber such as polyethylene and polypropylene to which a hydrophilic functional group is added.

【0018】[0018]

【作用】本発明のアルカリ二次電池によれば、水酸化ニ
ッケル粉末を主成分として含むペーストを集電体に充填
した構造を有する正極と、硼素もしくは硼素化合物が溶
解されたアルカリ電解液とを備えることによって、硼素
が前記水酸化ニッケル粉末に吸着する。その結果、高温
状態における前記正極の酸素過電圧を高くすることがで
きるため、前述した(2)式に示す酸素ガス発生反応が
抑制され、前述した(1)式に示す前記水酸化ニッケル
粉末の充電反応が優先的に生じるため、NiOOHの生
成量が増加して前記正極の充電効率を向上することがで
きる。
According to the alkaline secondary battery of the present invention, a positive electrode having a structure in which a current collector is filled with a paste containing nickel hydroxide powder as a main component, and an alkaline electrolyte in which boron or a boron compound is dissolved are provided. By being provided, boron is adsorbed on the nickel hydroxide powder. As a result, since the oxygen overvoltage of the positive electrode in a high temperature state can be increased, the oxygen gas generation reaction represented by the above-mentioned formula (2) is suppressed, and the nickel hydroxide powder represented by the above-mentioned formula (1) is charged. Since the reaction occurs preferentially, the production amount of NiOOH can be increased and the charging efficiency of the positive electrode can be improved.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。 実施例1〜4 まず、水酸化ニッケル粉末90重量部及び一酸化コバル
ト10重量部からなる混合物に、カルボキシメチルセル
ロース0.3重量%と、ポリテトラフルオロエチレン
1.0重量%を添加し、これらに水45重量%を添加し
て混練してペーストを調製した。前記各ペーストを集電
体としての多孔度95%のニッケルメッキ繊維基板に充
填し、乾燥した後、ローラプレスして圧延成形すること
により正極を作製した。
Embodiments of the present invention will now be described in detail with reference to the drawings. Examples 1 to 4 First, 0.3% by weight of carboxymethyl cellulose and 1.0% by weight of polytetrafluoroethylene were added to a mixture of 90 parts by weight of nickel hydroxide powder and 10 parts by weight of cobalt monoxide. 45% by weight of water was added and kneaded to prepare a paste. Each of the pastes was filled in a nickel-plated fiber substrate having a porosity of 95% as a current collector, dried, and then roller pressed to form a positive electrode.

【0020】また、LaNi4.0 Co0.4 Mn0.3 Al
0.3 の組成からなる水素吸蔵合金粉末95重量部にポリ
テトラフルオロエチレン粉末3重量部と、カーボン粉末
1重量部と、結着剤としてカルボキシメチルセルロース
を1重量部添加し、水50重量部と共に混合することに
よって、ペーストを調製した。前記ペーストをニッケル
製ネットに塗布、乾燥した後、加圧成形することによっ
て水素吸蔵合金負極を作製した。
In addition, LaNi 4.0 Co 0.4 Mn 0.3 Al
To 95 parts by weight of hydrogen storage alloy powder having a composition of 0.3 , 3 parts by weight of polytetrafluoroethylene powder, 1 part by weight of carbon powder, and 1 part by weight of carboxymethyl cellulose as a binder are added and mixed with 50 parts by weight of water. To prepare a paste. The paste was applied to a nickel net, dried, and then pressure-molded to prepare a hydrogen storage alloy negative electrode.

【0021】一方、8規定の水酸化カリウム水溶液に硼
酸カリウムを溶解させて硼素濃度が0.01重量%,
0.05重量%,0.10重量%,0,20重量%であ
るアルカリ電解液を調製した。
On the other hand, potassium borate was dissolved in 8N potassium hydroxide aqueous solution to obtain a boron concentration of 0.01% by weight.
An alkaline electrolyte containing 0.05% by weight, 0.10% by weight, and 0,20% by weight was prepared.

【0022】次いで、前記各正極と前記負極との間に親
水処理を施したオレフィン樹脂製不織布からなるセパレ
ータを介装して渦巻状に捲回して電極群を作製し、有底
円筒状容器に収納した。前記アルカリ電解液を前記容器
に注液し、前記容器の開口部を封口することにより前述
した図1に示す構造を有し、容量が1100mAhのA
Aサイズの円筒形ニッケル水素二次電池を組み立てた。 比較例1 8規定の水酸化カリウム水溶液のみからなるアルカリ電
解液を用いた以外、実施例1〜4と同様な構成で前述し
た図1に示す構造を有し、容量が1100mAhのAA
サイズのニッケル水素二次電池を組み立てた。
Next, a separator made of a non-woven fabric made of olefin resin, which has been subjected to a hydrophilic treatment, is interposed between each of the positive electrodes and the negative electrodes and spirally wound to prepare an electrode group, which is then formed into a bottomed cylindrical container. Stowed. By pouring the alkaline electrolyte into the container and closing the opening of the container, the structure shown in FIG. 1 is provided and the capacity is 1100 mAh.
An A size cylindrical nickel-hydrogen secondary battery was assembled. Comparative Example 1 AA having the same structure as that of Examples 1 to 4 except that an alkaline electrolyte consisting of only 8N potassium hydroxide aqueous solution was used and having the structure shown in FIG. 1 and having a capacity of 1100 mAh.
A size nickel-hydrogen secondary battery was assembled.

【0023】得られた実施例1〜4及び比較例1の二次
電池を100個ずつ用意し、45℃で24時間エージン
グを行った。前記各電池を25℃において0.1Cの電
流で150%の深度まで充電した後、1Cの電流で放電
する充放電サイクルを20サイクル繰り返し、放電容量
を安定させた。各種類の電池について20サイクル目の
放電容量がほぼ同じものを10個ずつ選び出した。選択
された電池について45℃の高温において0.1Cの電
流で150%の深度まで充電した後、25℃において1
Cの電流で放電した。測定された放電容量から放電容量
比(20サイクル目の容量選別時の放電容量を100と
する)を求め、45℃において0.1C充電を行った際
の充電効率とし、その結果を図2に示す。
100 of each of the obtained secondary batteries of Examples 1 to 4 and Comparative Example 1 were prepared and aged at 45 ° C. for 24 hours. Each of the batteries was charged at 25 ° C. with a current of 0.1 C to a depth of 150%, and then a charge / discharge cycle of discharging with a current of 1 C was repeated 20 times to stabilize the discharge capacity. For each type of battery, 10 batteries having substantially the same discharge capacity at the 20th cycle were selected. After charging the selected batteries at a high temperature of 45 ° C with a current of 0.1 C to a depth of 150%, then at 25 ° C for 1
It was discharged with a current of C. From the measured discharge capacity, the discharge capacity ratio (the discharge capacity at the time of 20th cycle capacity selection is set to 100) was obtained, and the charging efficiency was obtained when 0.1 C charging was performed at 45 ° C., and the result is shown in FIG. Show.

【0024】図2から明らかなように、硼酸カリウムが
溶解されたアルカリ電解液を備えた実施例1〜4の二次
電池は、45℃の高温状態における充電効率が75を越
え、高いことがわかる。これに対し、硼酸カリウムが無
添加のアルカリ電解液を備えた比較例1の二次電池は、
高温状態における充電効率が69と著しく低いことがわ
かる。 実施例5 前記硼酸カリウムの代りに硼酸を8規定の水酸化カリウ
ム水溶液に溶解させ、硼素濃度が0.07重量%である
アルカリ電解液を調製した。前記アルカリ電解液と、実
施例1〜4と同様な正極、負極、セパレータを用いて前
述した図1に示す構造を有するAAサイズのニッケル水
素二次電池を組み立てた。
As is apparent from FIG. 2, the secondary batteries of Examples 1 to 4 provided with the alkaline electrolyte in which potassium borate was dissolved had a high charging efficiency of over 75 at a high temperature of 45 ° C. Recognize. On the other hand, the secondary battery of Comparative Example 1 provided with the alkaline electrolyte containing no potassium borate was
It can be seen that the charging efficiency in the high temperature state is extremely low at 69. Example 5 Boric acid was dissolved in an 8N potassium hydroxide aqueous solution in place of the potassium borate to prepare an alkaline electrolyte having a boron concentration of 0.07% by weight. Using the alkaline electrolyte and the same positive electrode, negative electrode and separator as in Examples 1 to 4, an AA size nickel-hydrogen secondary battery having the structure shown in FIG. 1 was assembled.

【0025】得られた実施例5の二次電池について実施
例1〜4と同様な方法で45℃の高温状態において0.
1C充電を行った際の充電効率を求めたところ、83と
高かった。 比較例2 活物質として3〜5重量%の亜鉛が共沈された水酸化ニ
ッケル粉末を含み、かつマンガン化合物無添加の正極
と、1規定の水酸化リチウムと7規定の水酸化カリウム
からなるアルカリ電解液とを用いた以外、実施例1〜4
と同様な構成で前述した図1に示す構造を有するAAサ
イズのニッケル水素二次電池を組み立てた。
The obtained secondary battery of Example 5 was manufactured by the same method as in Examples 1 to 4 at a high temperature of 45 ° C.
When the charging efficiency at the time of 1C charging was obtained, it was as high as 83. Comparative Example 2 A positive electrode containing nickel hydroxide powder co-precipitated with 3 to 5% by weight of zinc as an active material and containing no manganese compound, and an alkali containing 1N lithium hydroxide and 7N potassium hydroxide. Examples 1 to 4 except that an electrolytic solution was used
An AA size nickel-hydrogen secondary battery having the structure shown in FIG.

【0026】得られた比較例2の二次電池について実施
例1〜4と同様な方法で45℃の高温状態において0.
1C充電を行った際の充電効率を求めたところ、69と
低かった。
With respect to the obtained secondary battery of Comparative Example 2, the same procedure as in Examples 1 to 4 was carried out at a high temperature of 45 ° C.
When the charging efficiency when 1C charging was performed, it was as low as 69.

【0027】[0027]

【発明の効果】以上詳述したように本発明のアルカリ二
次電池によれば、高温状態における正極の充電効率を向
上できる等の顕著な効果を奏する。
As described in detail above, according to the alkaline secondary battery of the present invention, remarkable effects such as improvement of charging efficiency of the positive electrode in a high temperature state can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るアルカリ二次電池を示す斜視図。FIG. 1 is a perspective view showing an alkaline secondary battery according to the present invention.

【図2】本発明の実施例における硼酸カリウムの硼素換
算量と高温状態における正極の充電効率との関係を示す
特性図。
FIG. 2 is a characteristic diagram showing a relationship between a boron conversion amount of potassium borate and a charging efficiency of a positive electrode in a high temperature state in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…セパレータ、4…容器、6…
封口板、7…絶縁ガスケット。
1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 4 ... Container, 6 ...
Seal plate, 7 ... Insulation gasket.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケル粉末を主成分として含む
ペーストを集電体に充填した構造を有する正極と、負極
と、前記正極と前記負極との間に介装されるセパレータ
と、硼素もしくは硼素化合物が溶解されたアルカリ電解
液とを具備したことを特徴とするアルカリ二次電池。
1. A positive electrode having a structure in which a current collector is filled with a paste containing nickel hydroxide powder as a main component, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and boron or boron. An alkaline secondary battery comprising an alkaline electrolyte in which a compound is dissolved.
JP6231133A 1994-09-27 1994-09-27 Alkaline secondary battery Pending JPH0896832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231133A JPH0896832A (en) 1994-09-27 1994-09-27 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231133A JPH0896832A (en) 1994-09-27 1994-09-27 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH0896832A true JPH0896832A (en) 1996-04-12

Family

ID=16918804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231133A Pending JPH0896832A (en) 1994-09-27 1994-09-27 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH0896832A (en)

Similar Documents

Publication Publication Date Title
JP3925963B2 (en) Alkaline secondary battery
JP3686139B2 (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JPH09274932A (en) Manufacture of alkaline secondary battery
JPH0896832A (en) Alkaline secondary battery
JPH0831448A (en) Alkaline secondary battery
JPH0896807A (en) Alkaline secondary battery
JP3742149B2 (en) Alkaline secondary battery
JP2000200612A (en) Rectangular alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP3151379B2 (en) Manufacturing method of alkaline secondary battery
JPH08315850A (en) Alkaline secondary battery and its manufacture
JPH10255789A (en) Nickel hydrogen secondary battery
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JPH11297353A (en) Manufacture of nickel-hydrogen secondary battery
JPH0963635A (en) Alkaline secondary battery
JPH1197003A (en) Nickel hydrogen secondary cell
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH10223205A (en) Secondary battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery
JPH10255788A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH08222211A (en) Manufacture of nickel-hydrogen secondary battery
JPH11162469A (en) Electrode, alkaline secondary battery, and manufacture of alkaline secondary battery