JPH0896827A - Solid electrolytic fuel cell module - Google Patents

Solid electrolytic fuel cell module

Info

Publication number
JPH0896827A
JPH0896827A JP6231180A JP23118094A JPH0896827A JP H0896827 A JPH0896827 A JP H0896827A JP 6231180 A JP6231180 A JP 6231180A JP 23118094 A JP23118094 A JP 23118094A JP H0896827 A JPH0896827 A JP H0896827A
Authority
JP
Japan
Prior art keywords
air
power generation
heat exchanger
regenerative heat
power generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6231180A
Other languages
Japanese (ja)
Other versions
JP3349273B2 (en
Inventor
Kenichiro Kosaka
健一郎 小阪
Hiroshi Ogata
寛 緒方
Osao Kudome
長生 久留
Katsumi Nagata
勝己 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23118094A priority Critical patent/JP3349273B2/en
Publication of JPH0896827A publication Critical patent/JPH0896827A/en
Application granted granted Critical
Publication of JP3349273B2 publication Critical patent/JP3349273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To provide a solid electrolytic fuel cell module with excellent power generating and high durability by supplying air in series to each cell tube separated with a separation wall through a regenerative heat exchanger. CONSTITUTION: A power generating chamber 3 is divided into power generating chambers 3a, 3b, 3c by separation walls 9 each separates two cell tubes 4. Air 7 introduced into a regenerative heat exchanger 10c through a supply pipe 11 from the outside is heated by high temperature exhaust air 8 exhausted from an exhaust pipe 6 of the power generating chamber 3c and introduced into a regenerative heat exchanger 10b. Similarly, the air 7 heated by the regenerative heat exchanger 10b is further heated by the regenerative heat exchanger 10a, and introduced into the power generating chamber 3a. The air introduced into the power generating chamber 3a rises along the outer circumferential surface of a cell tube 4, supplied to an air electrode, and unused supply air 7 is heated, then exhausted from the power generating chamber 3a through the exhaust pipe 6 as the exhaust air 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発電室に設置された、
固体電解質型燃料電池(SOFC)を形成する複数のセ
ルチューブの空気極に供給する空気を、直列(カスケー
ド)に流すようにした空気供給構造を具えた固体電解質
型燃料電池モジュールに関する。
BACKGROUND OF THE INVENTION The present invention is installed in a power generation room,
The present invention relates to a solid oxide fuel cell module having an air supply structure in which air supplied to the air electrodes of a plurality of cell tubes forming a solid oxide fuel cell (SOFC) is made to flow in series (cascade).

【0002】[0002]

【従来の技術】図2は、従来の固体電解質型燃料電池モ
ジュールの概略構造図である。図において、01は固体
電解質型燃料電池モジュールを構成する外壁、02は外
壁01の内部に張設された断熱材、03はSOFCを形
成するセルチューブで、セラミックス薄膜で各要素が組
み合わされ、同心円状に形成された管の内外に燃料極、
電解質、空気極が配設され、これらの燃料極、および空
気極に、燃料と空気をそれぞれ流すようにした、図示省
略した燃料通路と空気通路011が設けられ、発電室0
4内に吊設されている。
2. Description of the Related Art FIG. 2 is a schematic structural diagram of a conventional solid oxide fuel cell module. In the figure, 01 is an outer wall that constitutes a solid oxide fuel cell module, 02 is a heat insulating material stretched inside the outer wall 01, 03 is a cell tube that forms an SOFC, and each element is combined with a ceramic thin film to form a concentric circle. Fuel electrode inside and outside the tube
An electrolyte and an air electrode are provided, and a fuel passage and an air passage 011 (not shown) are provided in the fuel electrode and the air electrode.
It is hung inside 4.

【0003】05は吊設した複数のセルチューブ03の
間に垂設した排気管で、セルチューブ03の外側に配設
された空気極に供給された供給空気07のうち、未使用
の供給空気07がセルチューブ03の発生する高温を吸
収して、排気空気08となって、発電室04から排出さ
れる。06は空気側の再生熱交換器で、外部から空気を
供給する空気管09に連通する入口と、セルチューブ0
3の外側の空気通路011に連通する出口を具えた空気
流路と、排気管05に連通する入口と、排気空気管01
0に連通する出口を具えた排気流路を具え、空気流路0
11に流入する供給空気07と、排気流路を通過する排
気空気08の間で熱交換を行う。
Reference numeral 05 denotes an exhaust pipe vertically provided between a plurality of suspended cell tubes 03. Of the supply air 07 supplied to the air electrode arranged outside the cell tube 03, unused supply air is supplied. 07 absorbs the high temperature generated by the cell tube 03, becomes exhaust air 08, and is discharged from the power generation chamber 04. Reference numeral 06 denotes an air-side regenerative heat exchanger, which has an inlet communicating with an air pipe 09 for supplying air from the outside and a cell tube 0.
3, an air flow path having an outlet communicating with an air passage 011 outside, an inlet communicating with an exhaust pipe 05, and an exhaust air pipe 01
An exhaust passage having an outlet communicating with 0, an air passage 0
Heat exchange is performed between the supply air 07 flowing into 11 and the exhaust air 08 passing through the exhaust passage.

【0004】このような、自立型の固体電解質型燃料電
池モジュールの発電室04では、セルチューブ03内の
燃料と供給空気09が反応して発電を行うときの、自己
発熱により約1000℃の作動温度に保持される。ま
た、空気側再生熱交換器06にて予熱された供給空気0
7は、燃料との反応に使用されるだけでなく、反応に使
用されなかった未使用の供給空気07は、発電室04内
部でセルチューブ03から熱を奪うことにより、セルチ
ューブ03の過熱を防止する。さらに、発電部04で加
熱された排気空気08は、排気管05により発電部04
から排気された後、再生熱交換器06により前記の供給
空気07の予熱で冷却された後、排気空気管010によ
り外部へ放出される。なお、排気空気管010からの排
気空気08に含まれる熱エネルギーは排熱回収サイクル
の熱源として利用される。
In the power generation chamber 04 of such a self-supporting solid oxide fuel cell module, when the fuel in the cell tube 03 reacts with the supply air 09 to generate power, the self-heating causes an operation of about 1000 ° C. Hold at temperature. In addition, the supply air 0 preheated in the air side regeneration heat exchanger 06
Not only 7 is used for the reaction with the fuel, but the unused supply air 07 that is not used for the reaction removes heat from the cell tube 03 inside the power generation chamber 04, thereby overheating the cell tube 03. To prevent. Further, the exhaust air 08 heated by the power generation unit 04 is supplied to the power generation unit 04 by the exhaust pipe 05.
After being exhausted from the exhaust gas, the regenerative heat exchanger 06 cools the supply air 07 by preheating, and then the exhaust air pipe 010 discharges it to the outside. The thermal energy contained in the exhaust air 08 from the exhaust air pipe 010 is used as a heat source in the exhaust heat recovery cycle.

【0005】しかしながら、上述の様に構成された固体
電解質型燃料電池モジュールでは、空気側再生熱交換器
06の1パスで熱交換が行われるため、空気極に供給す
る供給空気流量制御が難しいという問題がある。すなわ
ち、空気管09から供給される供給空気07は、3分割
され供給量の1/3が再生熱交換器06で予熱されてセ
ルチューブ03の外周面に供給されることになり、流路
抵抗、配置上の違いから均等に流すことは難しい。一
方、固体電解質型燃料電池モジュールに、空気管09か
らの供給空気07の流量が少ないと、発電部04での排
気空気08の温度上昇が大きくなり、排気空気08温度
の上昇に伴い、下流部のセルチューブ03の温度が上昇
し、必要以上に過熱される問題が生じる。セルチューブ
03の過熱は、セルチューブ03をはじめとする装置の
性能・耐久性に影響をおよぼすため、下流側の空気温度
を抑えるため供給空気07の流量を増やす必要がある。
However, in the solid oxide fuel cell module configured as described above, heat exchange is performed in one pass of the air side regenerative heat exchanger 06, so it is difficult to control the flow rate of the supply air supplied to the air electrode. There's a problem. That is, the supply air 07 supplied from the air pipe 09 is divided into three parts, and 1/3 of the supply amount is preheated by the regenerative heat exchanger 06 and supplied to the outer peripheral surface of the cell tube 03. , It is difficult to distribute evenly because of the difference in arrangement. On the other hand, when the flow rate of the supply air 07 from the air pipe 09 is small in the solid oxide fuel cell module, the temperature rise of the exhaust air 08 in the power generation unit 04 becomes large, and the temperature of the exhaust air 08 rises, so that the downstream portion There is a problem that the temperature of the cell tube 03 rises and is overheated more than necessary. Since the overheating of the cell tube 03 affects the performance and durability of the device including the cell tube 03, it is necessary to increase the flow rate of the supply air 07 in order to suppress the air temperature on the downstream side.

【0006】しかし、空気管09からの供給空気07流
量が多いと、セルチューブ03の自己発熱量は、一定
(発電効率一定時)なため、再生熱交換器06による加
熱温度が小さくなり、上流側のセルチューブ03の空気
極に供給される供給空気の温度が下がり、発電性能が低
下する不具合が生じる。
However, when the flow rate of the supplied air 07 from the air tube 09 is large, the self-heating amount of the cell tube 03 is constant (when the power generation efficiency is constant), so the heating temperature by the regenerative heat exchanger 06 becomes small and the upstream The temperature of the supply air supplied to the air electrode of the side cell tube 03 is lowered, and the power generation performance is deteriorated.

【0007】さらに、空気流量の増加は、補機動力、お
よび空気排熱を増加し、システム効率が低下するという
不具合も生じる。また、固体電解質型燃料電池モジュー
ルの規模が大きくなると、発電室05内の空気流れを均
一化するために、多数の熱交換器06と排気空気管01
0を設け、発電室05内を流れる、空気の分配の偏りを
是正しないと、局所的な温度分布が発電室04内に発生
し、発電特性・耐久性に悪影響をおよぼす不具合があ
る。
Further, an increase in the air flow rate causes an increase in auxiliary machine power and air exhaust heat, resulting in a problem that the system efficiency is lowered. Further, when the solid oxide fuel cell module becomes large in size, a large number of heat exchangers 06 and exhaust air pipes 01 are provided in order to make the air flow in the power generation chamber 05 uniform.
If 0 is provided and the uneven distribution of air flowing in the power generation chamber 05 is not corrected, a local temperature distribution is generated in the power generation chamber 04, which adversely affects power generation characteristics and durability.

【0008】[0008]

【発明が解決しようとする課題】このため、本発明は発
電部に設置された複数のセルチューブに流れる供給空気
の全量は同じにして、各セルチューブに流れる流量を大
きく、しかも均等にして、セルチューブを流れる間の供
給空気の温度変化を小さくして、発電特性、および耐久
性に秀れた固体電解質型燃料電池モジュールを提供する
ことを課題とする。
Therefore, according to the present invention, the total amount of supply air flowing through the plurality of cell tubes installed in the power generation section is the same, and the flow rate through each cell tube is large and even. An object of the present invention is to provide a solid oxide fuel cell module having excellent power generation characteristics and durability by reducing the temperature change of supply air while flowing through a cell tube.

【0009】[0009]

【課題を解決するための手段】このため、本発明の固体
電解質型燃料電池モジュールは、次の手段とした。固体
電解質型燃料電池モジュールを構成する、複数のセルチ
ューブが設置された発電室に、セルチューブを区画する
隔壁を設け、区画された発電室毎に設けられた空気側再
生熱交換器を介して、個々のセルチューブへ供給される
供給空気が、複数のセルチューブをカスケードに流れる
ようにした。なお、隔壁は単体のセルチューブを区画し
ても良く、実施例に示すように排気管を共用する二つの
セルチューブを区画するようにしても良く、さらには、
多くのセルチューブを区画するように設けても良いもの
である。
Therefore, the solid oxide fuel cell module of the present invention has the following means. A solid oxide fuel cell module is configured, a partition wall for partitioning the cell tubes is provided in a power generation chamber in which a plurality of cell tubes are installed, and an air-side regenerative heat exchanger is provided in each of the partitioned power generation chambers. The supply air supplied to each cell tube is made to flow in a cascade through a plurality of cell tubes. Incidentally, the partition may partition a single cell tube, or may partition two cell tubes sharing an exhaust pipe as shown in the embodiment, and further,
It may be provided so as to divide many cell tubes.

【0010】[0010]

【作用】分割された発電室内で供給空気はセルチューブ
で加熱される。各発電室毎に取り付けられた空気側再生
熱交換器は、供給空気との熱交換で発電室出口の供給空
気を冷却し、各発電室入口の供給空気温度を等しくす
る。これにより、セルチューブの発電効率を良くする温
度の供給空気が、セルチューブの空気極に供給されると
ともに、耐久性を損うような過熱された供給空気になる
ことはない。また、発電部内の温度分布が均一化される
ため、各セルチューブとも均一化された効率の良い発電
を行い、高効率の固体電解質型燃料電池モジュールが得
られる。
The supply air is heated by the cell tube in the divided power generation chamber. The air-side regenerative heat exchanger attached to each power generation chamber cools the supply air at the outlet of the power generation chamber by heat exchange with the supply air to equalize the temperature of the supply air at the inlet of each power generation chamber. As a result, the supply air having a temperature that improves the power generation efficiency of the cell tube is supplied to the air electrode of the cell tube and does not become overheated supply air that impairs durability. In addition, since the temperature distribution in the power generation section is made uniform, uniform power generation is performed efficiently in each cell tube, and a highly efficient solid oxide fuel cell module is obtained.

【0011】[0011]

【実施例】以下、本発明の固体電解質型燃料電池モジュ
ールを実施例にもとづき説明する。図1は、本発明の固
体電解質型燃料電池モジュールの一実施例を示す概略構
造図である。図において、1は固体電解質型燃料電池モ
ジュールを構成する外壁、2は外壁1の内部に貼付され
た断熱材、3は外壁1の内部に画成された発電室であ
る。発電室3には、2本の後述するセルチューブ4を仕
切る隔壁9によって、発電室3a,3b,3cに分割さ
れている。そして、各発電室3a,3b,3cの頂部か
ら、円筒型に形成されたセルチューブ4が垂下され、設
けられている。各セルチューブ4の外周には、セルチュ
ーブ4の外周面に電子導電性のセラミックスLaCoO
3 ,LaMnO3 等の薄膜で形成された、空気極に供給
する供給空気7の空気通路5が形成されている。
EXAMPLES The solid oxide fuel cell module of the present invention will be described below based on examples. FIG. 1 is a schematic structural diagram showing one embodiment of the solid oxide fuel cell module of the present invention. In the figure, 1 is an outer wall constituting a solid oxide fuel cell module, 2 is a heat insulating material attached inside the outer wall 1, and 3 is a power generation chamber defined inside the outer wall 1. The power generation chamber 3 is divided into power generation chambers 3a, 3b, 3c by a partition wall 9 that partitions two cell tubes 4 described later. A cylindrical cell tube 4 is provided so as to hang down from the top of each power generation chamber 3a, 3b, 3c. On the outer periphery of each cell tube 4, the outer peripheral surface of the cell tube 4 is provided with electronically conductive ceramics LaCoO 2.
3 , an air passage 5 of supply air 7 to be supplied to the air electrode is formed of a thin film of LaMnO 3 or the like.

【0012】また、各発電室3a,3b,3cには、垂
下されたセルチューブ4の上端部、すなわち後流端部に
開口を設けた排気管6が垂設され、セルチューブ4の下
端から導入され、セルチューブ4の外周面の空気通路5
を上昇する供給空気7のうち、セルチューブ4で反応し
ない未使用の排気空気8を発電室3a,3b,3cから
排出する。
In addition, an exhaust pipe 6 having an opening at the upper end of the suspended cell tube 4, that is, the wake end is vertically provided in each of the power generation chambers 3a, 3b, 3c, and extends from the lower end of the cell tube 4. Introduced, the air passage 5 on the outer peripheral surface of the cell tube 4
The unused exhaust air 8 that does not react in the cell tube 4 is discharged from the power generation chambers 3a, 3b, 3c among the supply air 7 rising.

【0013】さらに、各発電室3a,3b,3cの下方
には、供給空気7の流路と排気空気8の流路をそれぞれ
具え、セルチューブ4の外周面に沿って上昇するとき、
セルチューブ4の自己発熱によって過熱された排気空気
8によって、供給空気7を予熱する、再生熱交換器10
a,10b,10cが設けられている。外部からの供給
管11で、再生熱交換器10cに導入された供給空気7
は、発電室3cの排気管6から排出される高温の排気空
気8によって加熱され、再生熱交換器10bに導入され
る。同様に、再生熱交換器10bで加熱された供給空気
7は、再生熱交換器10aでさらに加熱されて発電室3
aへ導入される。
Further, below the respective power generating chambers 3a, 3b, 3c, there are provided a flow path for the supply air 7 and a flow path for the exhaust air 8, respectively, and when rising along the outer peripheral surface of the cell tube 4,
Regeneration heat exchanger 10 for preheating supply air 7 with exhaust air 8 overheated by self-heating of cell tube 4.
a, 10b, 10c are provided. Supply air 7 introduced into the regenerative heat exchanger 10c through a supply pipe 11 from the outside
Is heated by the high temperature exhaust air 8 discharged from the exhaust pipe 6 of the power generation chamber 3c and introduced into the regenerative heat exchanger 10b. Similarly, the supply air 7 heated by the regenerative heat exchanger 10b is further heated by the regenerative heat exchanger 10a, and is supplied to the power generation chamber 3
It is introduced into a.

【0014】発電室3aへ導入された供給空気7は、セ
ルチューブ4の外周面を上昇し、空気極に供給空気7を
供給するとともに、未使用の供給空気7は、加熱されて
排気空気8となって排気管6により発電室3aから排出
され、再生熱交換器10aの排気通路へ導入される。排
気空気8は、再生熱交換器10aで、前記したように、
供給空気7を予熱することにより冷却され、供給空気7
となって、発電室3bに導入される。同様にして加熱、
冷却をくり返し、セルチューブ4において、燃料との反
応を行い発電を行う。発電室3cに設置されたセルチュ
ーブ4の外周面を通過しても、使用されなかった排気空
気8は、排気管6から再生熱交換器10cを通り、供給
空気7を予熱した後、固体電解質型燃料電池モジュール
から外部へ排出され、プラントに必要な動力に使用され
る。
The supply air 7 introduced into the power generation chamber 3a rises on the outer peripheral surface of the cell tube 4 to supply the supply air 7 to the air electrode, and the unused supply air 7 is heated and exhausted air 8 Is discharged from the power generation chamber 3a by the exhaust pipe 6 and introduced into the exhaust passage of the regenerative heat exchanger 10a. Exhaust air 8 is regenerated heat exchanger 10a, as described above,
The supply air 7 is cooled by preheating the supply air 7
Then, it is introduced into the power generation room 3b. Heating in the same way,
The cooling is repeated, and the cell tube 4 reacts with the fuel to generate electricity. Even if the exhaust air 8 that has not passed through the outer peripheral surface of the cell tube 4 installed in the power generation chamber 3c passes from the exhaust pipe 6 to the regenerative heat exchanger 10c to preheat the supply air 7, the solid electrolyte It is discharged from the fuel cell module to the outside and used for the power required for the plant.

【0015】このように、本実施例では、発電室3は3
パスに分割されている。従って、各パスを流れる空気流
量は分割を行わない場合の3倍となる。また、発電室3
aからの排気空気8は再生熱交換器10aで冷却された
後に、供給空気7として発電室3bに供給される。発電
室3b,3cについても、同様である。図3は供給空気
7、および排気空気8の温度プロファイルを示したもの
である。図に示されるように、本実施例においては、1
パスのときの温度上昇に比べて、発電室3内の空気温度
の上昇は約1/3に抑えることができる。
As described above, in this embodiment, the power generation chamber 3 has three
It is divided into paths. Therefore, the flow rate of the air flowing through each path is three times that in the case without division. In addition, power generation room 3
The exhaust air 8 from a is cooled by the regenerative heat exchanger 10a and then supplied as supply air 7 to the power generation chamber 3b. The same applies to the power generation chambers 3b and 3c. FIG. 3 shows temperature profiles of the supply air 7 and the exhaust air 8. As shown in the figure, in this embodiment, 1
The rise in the air temperature in the power generation chamber 3 can be suppressed to about 1/3 of the rise in the temperature during the pass.

【0016】また、各再生熱交換器10a,10b,1
0cと各発電室3a,3b,3cは直列に接続されてお
り、流量のアンバランスは発生しない。さらに、再生熱
回収後の再生熱交換器10cからの排気空気8の温度は
1パスのときよりも高く、排気空気管12の後流に設置
された排熱回収サイクルの効率を、高くすることが可能
となる。
Further, each regenerative heat exchanger 10a, 10b, 1
0c and each of the power generation chambers 3a, 3b, 3c are connected in series, and no flow rate imbalance occurs. Further, the temperature of the exhaust air 8 from the regenerative heat exchanger 10c after the regenerative heat recovery is higher than that in the case of one pass, and the efficiency of the exhaust heat recovery cycle installed in the downstream of the exhaust air pipe 12 is increased. Is possible.

【0017】[0017]

【発明の効果】以上述べたように、本発明の固体電解質
型燃料電池モジュールによれば、特許請求の範囲に示す
構成により、セルチューブの発電効率を良くする温度の
空気が、セルチューブの空気極全体に供給されるととも
に、セルチューブ等の耐久性を損うような過熱された空
気になることはない。また、発電部内の温度分布が均一
化されるため、各セルチューブとも、均一化された効率
の良い発電を行うことができる。
As described above, according to the solid oxide fuel cell module of the present invention, the air having a temperature that improves the power generation efficiency of the cell tube is the air of the cell tube due to the configuration described in the claims. The air is supplied to the entire pole and does not become overheated air that impairs the durability of the cell tube or the like. In addition, since the temperature distribution in the power generation unit is made uniform, uniform and efficient power generation can be performed in each cell tube.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解質型燃料電池モジュールの一
実施例を示す概略構造図、
FIG. 1 is a schematic structural diagram showing an embodiment of a solid oxide fuel cell module of the present invention,

【図2】従来の固体電解質型燃料電池モジュールを示す
概略構造図、
FIG. 2 is a schematic structural diagram showing a conventional solid oxide fuel cell module,

【図3】図1に示す実施例における、空気の温度プロフ
ァイルを示す図である。
FIG. 3 is a diagram showing a temperature profile of air in the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 外壁 2 断熱材 3,3a,3b,3c 発電室 4 セルチューブ 5 空気通路 6 排気管 7 供給空気 8 排気空気 9 隔壁 10a,10b,10c 再生熱交換器 11 供給管 1 Outer Wall 2 Heat Insulating Materials 3, 3a, 3b, 3c Power Generation Chamber 4 Cell Tube 5 Air Passage 6 Exhaust Pipe 7 Supply Air 8 Exhaust Air 9 Partition Walls 10a, 10b, 10c Regenerative Heat Exchanger 11 Supply Pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 勝己 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Nagata 1-1, Atsunouramachi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発電室に設置され発電を行うセルチュー
ブの自己発熱で作動温度を維持する固体電解質型燃料電
池モジュールにおいて、前記発電室に設置された複数の
前記セルチューブを区画する隔壁を設け、前記セルチュ
ーブへ供給される供給空気が再生熱交換器を介して、前
記隔壁で離隔した前記セルチューブのそれぞれへカスケ
ードに流れるようにしたことを特徴とする固体電解質型
燃料電池モジュール。
1. A solid oxide fuel cell module for maintaining an operating temperature by self-heating of a cell tube installed in a power generation chamber for generating power, wherein a partition wall for partitioning the plurality of cell tubes installed in the power generation chamber is provided. The solid electrolyte fuel cell module is characterized in that the supply air supplied to the cell tubes flows in cascade to each of the cell tubes separated by the partition wall via a regenerative heat exchanger.
JP23118094A 1994-09-27 1994-09-27 Solid oxide fuel cell module Expired - Fee Related JP3349273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23118094A JP3349273B2 (en) 1994-09-27 1994-09-27 Solid oxide fuel cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23118094A JP3349273B2 (en) 1994-09-27 1994-09-27 Solid oxide fuel cell module

Publications (2)

Publication Number Publication Date
JPH0896827A true JPH0896827A (en) 1996-04-12
JP3349273B2 JP3349273B2 (en) 2002-11-20

Family

ID=16919580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23118094A Expired - Fee Related JP3349273B2 (en) 1994-09-27 1994-09-27 Solid oxide fuel cell module

Country Status (1)

Country Link
JP (1) JP3349273B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070730A (en) * 2007-09-14 2009-04-02 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2009110857A (en) * 2007-10-31 2009-05-21 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2015052147A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical apparatus and operation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070730A (en) * 2007-09-14 2009-04-02 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2009110857A (en) * 2007-10-31 2009-05-21 Mitsubishi Heavy Ind Ltd Fuel cell module
JP2015052147A (en) * 2013-09-06 2015-03-19 株式会社東芝 Electrochemical apparatus and operation method thereof

Also Published As

Publication number Publication date
JP3349273B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
RU2334928C2 (en) Heat exchanger
JP5129452B2 (en) Fuel cell power generation system
EP0813253A2 (en) Thermoelectric generator
JP4906248B2 (en) Fuel cell assembly
JPH04306568A (en) Method for dissipating heat from fuel cell and temperature balancing member
JP2005537126A5 (en)
WO2023202332A1 (en) Drying oven for coating machine, and waste gas recovery system for coating machine
US7374834B2 (en) Gas flow panels integrated with solid oxide fuel cell stacks
JP2005078859A (en) Fuel cell system
JP3164828B2 (en) Power generator with fuel cell
JPH0896827A (en) Solid electrolytic fuel cell module
JP4262030B2 (en) Fuel cell assembly
JP2005533359A (en) Fuel cell stack comprising a counter-flow cooling system and a plurality of coolant accumulation ducts arranged parallel to the stack axis
US8445154B2 (en) Header for supplying gas in fuel cell and fuel cell power system
JPS61243662A (en) Cooling device for fuel cell
CN115212820B (en) Reaction device and semiconductor waste gas treatment system
JPH08287939A (en) Solid electrolyte fuel cell module
JPH06163067A (en) Solid electrolytic fuel cell stack
JP3555703B2 (en) Hollow cylindrical plate reformer
JP2004245515A (en) Heat exchanging device
JP2000294262A (en) Fuel cell power generating device
JP2002124274A (en) Fuel cell
JP2023039180A (en) Steam electrolysis system
JPH07220744A (en) Fuel cell system
JPH08293317A (en) Solid electrolytic fuel cell module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees