JPH0896809A - Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material - Google Patents

Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material

Info

Publication number
JPH0896809A
JPH0896809A JP6257296A JP25729694A JPH0896809A JP H0896809 A JPH0896809 A JP H0896809A JP 6257296 A JP6257296 A JP 6257296A JP 25729694 A JP25729694 A JP 25729694A JP H0896809 A JPH0896809 A JP H0896809A
Authority
JP
Japan
Prior art keywords
cobalt
aqueous solution
lithium secondary
tricobalt tetroxide
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6257296A
Other languages
Japanese (ja)
Inventor
Eiji Funatsu
英司 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6257296A priority Critical patent/JPH0896809A/en
Publication of JPH0896809A publication Critical patent/JPH0896809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide tricobalt tetroxide with high pulverizing capability and a BET mean particle size of 0.1-0.5μm at low cost, used as a positive electrode material of a lithium secondary battery. CONSTITUTION: Cobalt sulfate aqueous solution is reacted with an aqueous solution containing bicarbonate ions equivalent or mote to cobalt ions contained in the cobalt sulfate aqueous solution. After reaction, ammonium is added until pH becomes 7.0-8.5, and they are stirred for one hour or more, obtained precipitation is separated from the solution, washed, dried, then baked under coexistence of oxygen such as in the air at 600-700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池の正
極用材料として使用されるリチウム含有複合酸化物の原
料となる四酸化三コバルト(Co34)、および、その
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to tricobalt tetroxide (Co 3 O 4 ) which is a raw material of a lithium-containing composite oxide used as a material for a positive electrode of a lithium secondary battery, and a method for producing the same.

【0002】[0002]

【従来の技術】リチウム電池は、自己放電が少なく保存
性に優れた電池として知られ、特に5〜10年という長
期間使用が要求される電子腕時計や種々のメモリーバッ
クアップ用電源として広く利用されている。このリチウ
ム電池は、負極に対してドープまたは脱ドープ物質とし
てリチウムを使用し、電解質に有機電解液を使用してい
る。従来から使用されているリチウム電池は通常一次電
池であるが、長期間経済的に使用できる電源としての再
充電可能なリチウム二次電池に対する要望が多く、各方
面で研究が進められている。負極にカーボン等を用いた
リチウム二次電池は、その高エネルギー密度電池として
の性能が買われ、携帯電話機やビデオカメラ用などの
他、電気自動車用として急速に期待が高まってきてい
る。
2. Description of the Related Art Lithium batteries are known as batteries having less self-discharge and excellent storage stability, and are widely used as power supplies for electronic wrist watches and various memory backups, which are required to be used for a long period of 5 to 10 years. There is. In this lithium battery, lithium is used as a doping or dedoping substance for the negative electrode, and an organic electrolyte solution is used as an electrolyte. Conventionally used lithium batteries are usually primary batteries, but there are many demands for rechargeable lithium secondary batteries as a power source that can be economically used for a long period of time, and research is progressing in various fields. Lithium secondary batteries using carbon or the like for the negative electrode have been expected to have high performance as high energy density batteries, and are rapidly expected to be used not only for mobile phones and video cameras but also for electric vehicles.

【0003】従来より、リチウムまたはリチウム化合物
を負極とするリチウム二次電池は高電圧で高エネルギー
密度となることが期待されている。特に、これら電池の
正極活物質としてMnO2 やTiS2 が提案されている
が、よりエネルギー密度が高い電池を得るため、LiC
oO2 を正極活物質として用いることが提案されている
(例えば、米国特許4567031号)。上記リチウム
二次電池用の正極活物質として用いられるLiCoO2
は、空気中でLi2CO3等のLi化合物とCo34等の
Co化合物を加熱することによって合成されている。例
えばLi2CO3とCo34を用いた場合、LiCoO2
は以下のようにして合成される。
It has been conventionally expected that a lithium secondary battery having lithium or a lithium compound as a negative electrode has a high voltage and a high energy density. In particular, MnO 2 and TiS 2 have been proposed as the positive electrode active material for these batteries, but in order to obtain batteries with higher energy density, LiC
It has been proposed to use oO 2 as a positive electrode active material (for example, US Pat. No. 4,567,031). LiCoO 2 used as a positive electrode active material for the lithium secondary battery
Is synthesized by heating a Li compound such as Li 2 CO 3 and a Co compound such as Co 3 O 4 in air. For example, when Li 2 CO 3 and Co 3 O 4 are used, LiCoO 2
Is synthesized as follows.

【0004】 [0004]

【0005】近年、携帯電話機やビデオカメラの小型化
から、使用されるリチウム二次電池の小型化が求めら
れ、使用される四酸化三コバルトにも粒径が1μm以下
の小さなものが望まれている。上記四酸化三コバルトの
製造方法として、2価のコバルト塩水溶液にまたは2価
のコバルト複塩スラリーに対し、その2価コバルトイオ
ン量の1.2倍当量以上の苛性アルカリを作用させて水
酸化コバルトを得て、この水酸化コバルトを水洗・乾燥
し、300〜900℃の温度で焼成する方法が提案され
ている(特公昭58−25052号)。しかしながら、
この方法で製造した水酸化コバルトは粒径が0.01μ
m程度の非常に細かい粒子であるため、水溶液でゲル状
となり、沈澱による固液分離が容易でなく、水和スラッ
ジ化防止の対策が必要であり、また、水酸化コバルトか
らCo34を得るには、Co(OH)2 を焼成するが、
このようにして得られるCo34は焼結して粒子が1μ
m以上となり、Li2CO3主体のリチウム塩との反応性
を確保、促進するための微粉体を得るためには多段粉砕
が必要となるという欠点がある。
In recent years, due to the miniaturization of mobile phones and video cameras, miniaturization of lithium secondary batteries to be used has been demanded, and tricobalt tetroxide to be used has a small particle size of 1 μm or less. There is. As the method for producing the above-mentioned tricobalt tetraoxide, a caustic alkali of 1.2 times the equivalent amount of the divalent cobalt ion is applied to the divalent cobalt salt aqueous solution or to the divalent cobalt double salt slurry to effect the hydroxylation. A method has been proposed in which cobalt is obtained, the cobalt hydroxide is washed with water, dried, and calcined at a temperature of 300 to 900 ° C (Japanese Patent Publication No. 58-25052). However,
Cobalt hydroxide produced by this method has a particle size of 0.01μ
Because it is very fine particles of about m, it gelled in aqueous solution, it is not easy solid-liquid separation by precipitation, measures hydrated sludge prevention is necessary, also the Co 3 O 4 from cobalt hydroxide To obtain, we fire Co (OH) 2 ,
The Co 3 O 4 thus obtained is sintered and the particles are 1 μm.
Since it is more than m, there is a drawback that multistage pulverization is required to obtain fine powder for securing and promoting reactivity with a lithium salt mainly composed of Li 2 CO 3 .

【0006】また、水溶性Co(II)塩を含む溶液に等
量の水溶性炭酸塩の水溶液を1〜3時間にわたって添加
し、不活性雰囲気を維持しながら54〜60℃(130
〜140゜F)で1〜10時間加熱して反応させた後、
不活性雰囲気を保持しながら82〜100℃(180〜
212゜F)に加熱してCoCO3 を得る方法が特開昭
61−91018号に提案されている。しかしながらこ
の方法で得られたCoCO3 を空気中等の酸素共存下で
焼成して四酸化三コバルトを得ようとすると、やはり得
られた四酸化三コバルトが焼結し、多段粉砕が必要とな
るという欠点がある。さらに、特開昭63−10002
2号にNi,Co,CuおよびZnを含有する溶液から
CuおよびZnを硫化物として沈澱・分離した後、溶液
を30〜80℃に加熱し、Na2CO3等の炭酸塩イオン
をpH6.0〜9.0になるまで添加してNiCO3
たはCoCO3 を沈澱させる方法が提案されている。し
かしこの方法では上記と同様に、得られるCoCO3
0.01μm以下と非常に細かく、空気中などの酸素共
存下で四酸化三コバルトを得ようとすると、得られた四
酸化三コバルトが焼結し、多段粉砕が必要となり、さら
に、pHを高くするために、反応に必要な炭酸塩イオン
の他に、pHを上げるための炭酸塩イオン供給源が必要
となり、コスト高になるという欠点がある。
Further, an equal amount of an aqueous solution of a water-soluble carbonate is added to a solution containing a water-soluble Co (II) salt over 1 to 3 hours, and the temperature is maintained at 54 to 60 ° C. (130
After reacting by heating at ~ 140 ° F) for 1-10 hours,
82-100 ° C (180-
A method for obtaining CoCO 3 by heating to 212 ° F.) is proposed in JP-A-61-91018. However, when the CoCO 3 obtained by this method is calcined in the presence of oxygen such as in the air to obtain tricobalt tetroxide, the obtained tricobalt tetroxide is also sintered and multistage pulverization is required. There are drawbacks. Furthermore, JP-A-63-10002
After precipitation and separation of Cu and Zn as sulfides from a solution containing Ni, Co, Cu and Zn in No. 2, the solution was heated to 30 to 80 ° C., and carbonate ions such as Na 2 CO 3 were added at pH 6. A method has been proposed in which NiCO 3 or CoCO 3 is precipitated by adding it until it becomes 0 to 9.0. However, in this method, similarly to the above, the obtained CoCO 3 is very fine as 0.01 μm or less, and when tricobalt tetroxide is tried to be obtained in the coexistence of oxygen such as in air, the obtained tricobalt tetroxide is burnt. Therefore, in order to raise the pH, a carbonate ion supply source for raising the pH is required in addition to the carbonate ion required for the reaction, which results in a high cost. is there.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記状況に鑑
みなされたものであり、リチウム二次電池の正極用材料
等として使用される、解砕性が良く、かつ、BET法で
測定した平均粒径が0.1〜0.5μmである四酸化コ
バルトの安価な製造方法に関する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and is used as a material for a positive electrode of a lithium secondary battery, has good crushability, and has an average measured by the BET method. It relates to an inexpensive method for producing cobalt tetraoxide having a particle size of 0.1 to 0.5 μm.

【0008】[0008]

【課題を解決するための手段】すなわち、上記課題を解
決するための本発明は、硫酸コバルト水溶液と、その水
溶液中に含まれるコバルトイオンに対して当量以上の炭
酸水素イオンを含む水溶液を反応させ、反応後さらにア
ンモニアを添加し、pHを7.0〜8.5にして1時間
以上攪拌し、得られた塩基性炭酸コバルトの沈澱を固液
分離・洗浄・乾燥させて、好ましくは空気中など酸素共
存下で600〜700℃の温度でばい焼することを特徴
とするリチウム二次電池用四酸化三コバルトの製造方法
である。上記製造方法では、解砕性が良く、かつBET
法で測定した平均粒径が0.1〜0.5μmであるリチ
ウム二次電池用四酸化三コバルトを得られる。
[Means for Solving the Problems] That is, according to the present invention for solving the above-mentioned problems, an aqueous cobalt sulfate solution is reacted with an aqueous solution containing an equivalent amount or more of hydrogen carbonate ion to cobalt ion contained in the aqueous solution. After the reaction, further ammonia is added to adjust the pH to 7.0 to 8.5, and the mixture is stirred for 1 hour or more. The obtained basic cobalt carbonate precipitate is solid-liquid separated, washed and dried, preferably in air. A method for producing tricobalt tetroxide for a lithium secondary battery, comprising roasting at a temperature of 600 to 700 ° C. in the presence of oxygen. In the above manufacturing method, the crushability is good and BET
It is possible to obtain tricobalt tetroxide for a lithium secondary battery, which has an average particle size measured by the method of 0.1 to 0.5 μm.

【0009】[0009]

【作用】リチウム二次電池正極材料用四酸化三コバルト
(Co34)の平均粒径をBET法の測定で0.1〜
0.5μmとする理由は、次の通りである。すなわち、
0.1μm未満であると、Li2CO3主体のリチウム化
合物との混合時に四酸化三コバルト粒子が舞い上がって
しまい、収率が悪くなる。また、リチウム化合物との粒
度が違いすぎて均一混合が困難になる。逆に、0.5μ
mを超えると、リチウム化合物と混合したときに均一混
合が困難となり、LiCoO2 の収率が悪くなり、特性
の低下を招くおそれがある。
[Function] The average particle size of tricobalt tetroxide (Co 3 O 4 ) for the positive electrode material of the lithium secondary battery is 0.1 to 0.1 by the BET method.
The reason why the thickness is 0.5 μm is as follows. That is,
If it is less than 0.1 μm, tricobalt tetroxide particles fly up when mixed with a lithium compound mainly composed of Li 2 CO 3 and the yield deteriorates. Further, the particle size of the lithium compound is too different, which makes uniform mixing difficult. On the contrary, 0.5μ
If it exceeds m, uniform mixing becomes difficult when mixed with a lithium compound, the yield of LiCoO 2 may be deteriorated, and the characteristics may be deteriorated.

【0010】以下に本発明の製造方法の詳細について説
明する。使用する硫酸コバルト水溶液のコバルト濃度に
ついては特に限定するものではないが、余りに低くする
と生産性が悪化するため、コバルトイオンとして10g
/リットルとすることが望ましい。また上限に次いては
硫酸コバルトの水への溶解度からおのずと決定される。
また炭酸水素イオンを含む水溶液としては、例えば炭酸
水素ナトリウムまたは炭酸水素アンモニウム等の水溶液
を用いることができる。その炭酸水素イオンは、本発明
方法の条件下においては、コバルトと反応し、塩基性炭
酸塩を生成する。よって反応させる炭酸水素イオンの量
は溶液中に含有されるコバルトイオンの量の当量以上あ
ればよい。しかし、余りに多くするとコスト高になるの
で、好ましくはコバルトイオンの量の1.01〜1.0
5当量とすることが望ましい。
The details of the manufacturing method of the present invention will be described below. The cobalt concentration of the cobalt sulfate aqueous solution to be used is not particularly limited, but if it is too low, the productivity deteriorates.
It is desirable to set it to / liter. Next to the upper limit, it is naturally determined from the solubility of cobalt sulfate in water.
As the aqueous solution containing hydrogen carbonate ions, for example, an aqueous solution of sodium hydrogen carbonate or ammonium hydrogen carbonate can be used. Under the conditions of the method of the present invention, the hydrogen carbonate ion reacts with cobalt to form a basic carbonate. Therefore, the amount of hydrogen carbonate ions to be reacted may be equal to or more than the amount of cobalt ions contained in the solution. However, if the amount is too large, the cost becomes high. Therefore, the amount of cobalt ion is preferably 1.01 to 1.0.
It is desirable that the amount be 5 equivalents.

【0011】次に硫酸コバルト水溶液と炭酸水素イオン
を含む水溶液を反応後、スラリーのpHを7.0〜8.
5とするが、pHが7.0より低いと、塩基性炭酸塩の
平均粒径が沈澱分離に長時間かかるように小さくなり、
また、pHが8.5より高いと塩基性炭酸塩中の水酸化
物量が多くなりすぎて、スラリーの固液分離に非常に時
間がかかるという欠点がある。上記のpH調整剤として
は、アンモニア水が望ましい。アンモニア水の場合、通
常10〜28%程度の濃度のものを使用することが適当
である。反応温度は室温でも充分反応するが、反応速度
を速めるためには加温する方が良い。しかし反応温度が
低く攪拌時間が短いとスラリーを固液分離・洗浄・乾燥
した塩基性炭酸塩が凝集し作業性の悪いものになってし
まい、これを回避するためには12時間以上の攪拌時間
が必要となる。また液温が高すぎると、液中の炭酸水素
イオンが炭酸ガスとなって系外に逃げてしまいコバルト
イオンが残存して生産性が悪化するため反応温度は20
〜80℃とすることが必要であり、好ましくは40〜6
0℃とすることが望ましい。
Next, after reacting the aqueous solution of cobalt sulfate with the aqueous solution containing hydrogen carbonate ions, the pH of the slurry is adjusted to 7.0 to 8.
However, if the pH is lower than 7.0, the average particle size of the basic carbonate becomes small so that precipitation separation takes a long time,
On the other hand, if the pH is higher than 8.5, the amount of hydroxide in the basic carbonate becomes too large, and it takes a very long time for solid-liquid separation of the slurry. Ammonia water is desirable as the pH adjuster. In the case of aqueous ammonia, it is usually suitable to use one having a concentration of about 10 to 28%. Although the reaction temperature is sufficient even at room temperature, it is better to heat it to increase the reaction rate. However, if the reaction temperature is low and the stirring time is short, the basic carbonate obtained by solid-liquid separation / washing / drying of the slurry will agglomerate, resulting in poor workability. To avoid this, stirring time of 12 hours or more is required. Is required. If the liquid temperature is too high, hydrogen carbonate ions in the liquid become carbon dioxide gas and escape to the outside of the system, leaving cobalt ions and deteriorating the productivity.
It is necessary to set the temperature to -80 ° C, preferably 40 to 6
It is desirable to set it to 0 ° C.

【0012】また、攪拌時間は短すぎるとスラリーを固
液分離・洗浄・乾燥した塩基性炭酸塩が凝結し作業性の
悪いものになってしまうため、1時間以上が必要であ
り、好ましくは2〜6時間が望ましい。このようにして
得られた沈澱中には液中に存在する各種イオンを含んで
いるため、これをそのままばい焼すると得られる四酸化
三コバルト中の不純物が上昇するので、純水を用いて洗
浄する必要がある。ばい焼温度を600〜700℃とし
たのは、高すぎると四酸化三コバルトが焼結し、BET
法で測定した平均粒径が0.1〜0.5μmのリチウム
塩との反応性のよい、かつ反応のかたよりのない四酸化
三コバルトを得るためには長時間の微粉砕が必要とな
る。逆に低すぎると、中間物である塩基性炭酸塩が残存
する危険性がある。
If the stirring time is too short, the basic carbonate obtained by solid-liquid separation / washing / drying of the slurry will condense, resulting in poor workability, so that one hour or more is required, and preferably 2 ~ 6 hours is desirable. Since the precipitate thus obtained contains various ions existing in the liquid, the impurities in tricobalt tetroxide obtained by roasting it as it is will increase, so wash with pure water. There is a need to. The roasting temperature was set to 600-700 ° C because tricobalt tetroxide sinters when it is too high, and BET
In order to obtain tricobalt tetroxide having good reactivity with a lithium salt having an average particle size of 0.1 to 0.5 μm measured by the method and having no reaction tendency, it is necessary to pulverize for a long time. On the other hand, if it is too low, there is a risk that the intermediate basic carbonate will remain.

【0013】なお、ばい焼時間は用いる炉、雰囲気、そ
して温度により異なるため一義的に特定できないが、し
かし、例えば沈澱を厚さ40mmの層としてマッフル炉
中で、600〜700℃にてばい焼する場合には2〜4
時間が必要とされる。このように、硫酸コバルト水溶液
と炭酸水素イオンを含む水溶液とを反応し、その後pH
を7.0〜8.5とし、1時間以上攪拌することによ
り、得られる塩基性炭酸コバルトは粉砕が必要でなく、
平均粒径が0.1〜0.5μmの四酸化三コバルトを得
るためのばい焼温度を600〜700℃に低下させるこ
とができる。
The roasting time cannot be uniquely specified because it depends on the furnace used, the atmosphere, and the temperature. However, for example, the roasting is carried out at 600 to 700 ° C. in a muffle furnace as a layer having a thickness of 40 mm. If you do 2-4
Time is needed. In this way, the aqueous solution of cobalt sulfate is reacted with the aqueous solution containing hydrogen carbonate ions, and then the pH
To 7.0-8.5 and stirred for 1 hour or more, the basic cobalt carbonate obtained does not need to be pulverized,
The roasting temperature for obtaining tricobalt tetraoxide having an average particle size of 0.1 to 0.5 μm can be lowered to 600 to 700 ° C.

【0014】[0014]

【実施例】以下、実施例および比較例を挙げて、本発明
を詳細に説明する。 (実施例1)炭酸水素アンモニウム344.3gを純水
2.2リットルに溶解した溶液を40℃に維持した状態
で攪拌しながら、コバルトとして60g/リットルの硫
酸コバルト水溶液2リットルを全量添加して反応させ、
ついで28%アンモニア水を60ミリリットル添加して
スラリーとした。このときの液中のpHは7.3であっ
た。その後該スラリーを40℃に維持した状態で攪拌し
ながら4時間保持して沈澱させた。沈澱は容易に行われ
た。この沈澱を固液分離し、洗浄し、乾燥し、塩基性炭
酸コバルトの粉末236.4gを得た。この塩基性炭酸
コバルトをマッフル炉を用いて大気中630℃で4時間
ばい焼して145.3gの四酸化三コバルトを得た。こ
の四酸化三コバルトのBET法で測定した平均粒径は
0.25μmであった。
The present invention will be described in detail below with reference to examples and comparative examples. (Example 1) While stirring a solution prepared by dissolving 344.3 g of ammonium hydrogen carbonate in 2.2 liters of pure water at 40 ° C., 2 liters of a 60 g / liter cobalt sulfate aqueous solution as cobalt was added in total. Let it react,
Then, 60 ml of 28% aqueous ammonia was added to form a slurry. The pH in the liquid at this time was 7.3. Then, the slurry was maintained at 40 ° C. for 4 hours while stirring to precipitate the slurry. The precipitation was done easily. The precipitate was solid-liquid separated, washed, and dried to obtain 236.4 g of basic cobalt carbonate powder. This basic cobalt carbonate was roasted in a muffle furnace in the atmosphere at 630 ° C. for 4 hours to obtain 145.3 g of tricobalt tetraoxide. The average particle size of this tricobalt tetroxide measured by the BET method was 0.25 μm.

【0015】(実施例2、3および比較例1、2)実施
例1と同一条件によって塩基性炭酸コバルトを得て、ば
い焼温度について調査した。調査の結果を表1に示す。
(Examples 2 and 3 and Comparative Examples 1 and 2) Basic cobalt carbonate was obtained under the same conditions as in Example 1 and the roasting temperature was investigated. The results of the investigation are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】上記表1から明らかなように、塩基性炭酸
コバルトのばい焼温度が低い比較例1(500℃)の場
合は、生成される四酸化三コバルトが微粒すぎて焼結し
やすくなり、また、ばい焼温度が高い比較例2(730
℃)の場合は、生成される四酸化三コバルトの解砕が必
要となる。これに対し、本発明による実施例2、3で
は、リチウム二次電池の正極用材料として使用可能な四
酸化三コバルトが得られた。
As is apparent from Table 1 above, in the case of Comparative Example 1 (500 ° C.) in which the basic cobalt carbonate has a low roasting temperature, the produced tricobalt tetroxide is too fine and is easily sintered, In addition, Comparative Example 2 (730
In the case of (° C.), It is necessary to disintegrate the produced tricobalt tetroxide. On the other hand, in Examples 2 and 3 according to the present invention, tricobalt tetroxide that can be used as the material for the positive electrode of the lithium secondary battery was obtained.

【0018】(実施例4)炭酸水素ナトリウム349.
1gを純水2.2リットルに溶解した溶液を60℃に維
持した状態で攪拌しながら、コバルトとして60g/リ
ットルの硫酸コバルト水溶液2リットルを全量添加して
反応させ、ついで28%アンモニア水を60ミリリット
ル添加してスラリーを得た。このときの液中のpHは
7.1であった。その後該スラリーを40℃に維持した
状態で攪拌しながら4時間保持して沈澱させた。沈澱は
容易に行われた。この沈澱を固液分離し、洗浄し、乾燥
し、塩基性炭酸コバルトの粉末235.7gを得た。こ
の塩基性炭酸コバルトをマッフル炉を用いて大気中66
0℃で4時間ばい焼して144.5gの四酸化三コバル
トを得た。この四酸化三コバルトのBET法で測定した
平均粒径は0.22μmであった。
(Example 4) Sodium hydrogencarbonate 349.
While stirring a solution prepared by dissolving 1 g in 2.2 liters of pure water at 60 ° C., 2 liters of cobalt sulfate aqueous solution of 60 g / liter as cobalt was added and reacted, and then 28% ammonia water was added to 60%. A milliliter was added to obtain a slurry. The pH in the liquid at this time was 7.1. Then, the slurry was maintained at 40 ° C. for 4 hours while stirring to precipitate the slurry. The precipitation was done easily. The precipitate was subjected to solid-liquid separation, washed and dried to obtain 235.7 g of basic cobalt carbonate powder. This basic cobalt carbonate was used in a muffle furnace in the atmosphere 66
The mixture was roasted at 0 ° C. for 4 hours to obtain 144.5 g of tricobalt tetroxide. The average particle size of this tricobalt tetroxide measured by the BET method was 0.22 μm.

【0019】(比較例3)炭酸水素アンモニウム34
4.3gを純水2.2リットルに溶解した溶液を40℃
に維持した状態で攪拌しながら、コバルトとして60g
/リットルの硫酸コバルト水溶液2リットルを全量添加
して反応させスラリーを得た。このときの液中のpHは
6.7であった。その後該スラリーを40℃に維持した
状態で攪拌しながら4時間保持して沈澱させた。この沈
澱の固液分離には実施例1の場合の5倍の時間を必要と
した。そして洗浄し、乾燥し、塩基性炭酸の粉末コバル
ト228.8gを得た。この塩基性炭酸コバルトをマッ
フル炉を用いて大気中650℃で4時間ばい焼して14
2.1gの四酸化三コバルトを得た。この四酸化三コバ
ルトは電子顕微鏡写真を観察すると1次粒子の焼結が進
んでおり、BET法で測定した平均粒径は0.1μm未
満であった。
Comparative Example 3 Ammonium hydrogen carbonate 34
A solution prepared by dissolving 4.3 g in 2.2 liters of pure water is 40 ° C.
60g as cobalt while stirring while maintaining
2 liter of cobalt sulfate aqueous solution of 1 liter / liter was added and reacted to obtain a slurry. The pH in the liquid at this time was 6.7. Then, the slurry was maintained at 40 ° C. for 4 hours while stirring to precipitate the slurry. The solid-liquid separation of this precipitate required 5 times as long as in Example 1. Then, it was washed and dried to obtain 228.8 g of basic carbonate powder cobalt. This basic cobalt carbonate was roasted in the atmosphere at 650 ° C. for 4 hours in a muffle furnace to obtain 14
2.1 g of tricobalt tetroxide was obtained. Observation of electron micrographs revealed that the primary particles of this tricobalt trioxide were sintered, and the average particle diameter measured by the BET method was less than 0.1 μm.

【0020】(比較例4)実施例1で攪拌を行わなかっ
た以外は同一の条件で塩基性炭酸コバルトを得た。なお
このときの固液分離時間は実施例1の時の6倍の時間を
必要とした。得た塩基性炭酸コバルトをマッフル炉を用
いて大気中650℃で4時間ばい焼して四酸化三コバル
トを得た。この四酸化三コバルトは電子顕微鏡写真を観
察すると1次粒子の焼結が進んでおり、BET法で測定
した平均粒径は0.1μm未満であった。
Comparative Example 4 Basic cobalt carbonate was obtained under the same conditions as in Example 1 except that stirring was not performed. The solid-liquid separation time at this time required 6 times as long as that in Example 1. The obtained basic cobalt carbonate was roasted in the atmosphere at 650 ° C. for 4 hours using a muffle furnace to obtain tricobalt tetroxide. Observation of electron micrographs revealed that the primary particles of this tricobalt trioxide were sintered, and the average particle diameter measured by the BET method was less than 0.1 μm.

【0021】[0021]

【発明の効果】本発明によれば、塩基性炭酸コバルト中
の水酸化物量を多くしたものをばい焼するので、解砕性
が良く、かつ、BET法で測定した平均粒径が0.1〜
0.5μmであり、リチウム二次電池の正極用材料とし
て使用可能な四酸化コバルトを容易に得ることができ
る。
According to the present invention, since basic cobalt carbonate having a large amount of hydroxide is roasted, the crushability is good and the average particle diameter measured by the BET method is 0.1. ~
It is 0.5 μm, and cobalt tetraoxide that can be used as a material for a positive electrode of a lithium secondary battery can be easily obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 硫酸コバルト水溶液と、該水溶液に含ま
れるコバルトイオンに対して当量以上の炭酸水素イオン
を含む水溶液を反応させ、反応後さらにアンモニアを添
加し、pHを7.0〜8.5にして1時間以上攪拌した
後沈澱させ、得られた沈澱を固液分離、洗浄、乾燥させ
て、塩基性炭酸コバルトの粉末を得て、該粉末を酸素含
有雰囲気でばい焼することを特徴とするリチウム二次電
池正極材料用四酸化三コバルトの製造方法。
1. A cobalt sulfate aqueous solution is reacted with an aqueous solution containing an equivalent amount or more of hydrogen carbonate ions with respect to cobalt ions contained in the aqueous solution. After the reaction, ammonia is further added to adjust the pH to 7.0 to 8.5. After stirring for 1 hour or more, the resulting precipitate is solid-liquid separated, washed and dried to obtain a powder of basic cobalt carbonate, and the powder is roasted in an oxygen-containing atmosphere. Method for producing tricobalt tetroxide for lithium secondary battery positive electrode material.
【請求項2】 酸素含有雰囲気が空気であり、ばい焼温
度が600〜700℃である請求項1に記載の製造方
法。
2. The method according to claim 1, wherein the oxygen-containing atmosphere is air and the roasting temperature is 600 to 700 ° C.
【請求項3】 リチウム二次電池正極材料用四酸化三コ
バルトの平均粒径がBET法の測定で0.1〜0.5μ
mである請求項1に記載の製造方法。
3. The average particle size of tricobalt tetroxide for a lithium secondary battery positive electrode material is 0.1 to 0.5 μm as measured by the BET method.
The manufacturing method according to claim 1, wherein m is m.
JP6257296A 1994-09-28 1994-09-28 Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material Pending JPH0896809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6257296A JPH0896809A (en) 1994-09-28 1994-09-28 Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6257296A JPH0896809A (en) 1994-09-28 1994-09-28 Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material

Publications (1)

Publication Number Publication Date
JPH0896809A true JPH0896809A (en) 1996-04-12

Family

ID=17304405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6257296A Pending JPH0896809A (en) 1994-09-28 1994-09-28 Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material

Country Status (1)

Country Link
JP (1) JPH0896809A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129489A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2006291215A (en) * 2006-05-29 2006-10-26 C I Kasei Co Ltd Cobalt-base black pigment and method for producing the same
CN106058263A (en) * 2016-06-23 2016-10-26 江苏科技大学 Preparation method and application of cobaltosic oxide porous fiber material
CN112320854A (en) * 2020-10-26 2021-02-05 合肥融捷金属科技有限公司 Method for improving production rate of cobaltosic oxide
CN112760710A (en) * 2020-12-18 2021-05-07 湖南杉杉能源科技股份有限公司 Doped cobaltosic oxide and preparation method thereof
CN113149084A (en) * 2021-02-09 2021-07-23 荆门市格林美新材料有限公司 Preparation method of superfine cobalt oxide
CN113292106A (en) * 2020-02-24 2021-08-24 荆门市格林美新材料有限公司 Three-time calcination preparation method of large-particle-size aluminum-doped cobaltosic oxide
CN113735186A (en) * 2021-09-01 2021-12-03 荆门市格林美新材料有限公司 Preparation method of small-particle-size cobaltosic oxide with uniformly distributed magnesium
WO2024060542A1 (en) * 2022-09-19 2024-03-28 广东邦普循环科技有限公司 Preparation method for rare earth element-doped cobalt carbonate and use thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518865B2 (en) * 2003-09-30 2010-08-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2005129489A (en) * 2003-09-30 2005-05-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2006291215A (en) * 2006-05-29 2006-10-26 C I Kasei Co Ltd Cobalt-base black pigment and method for producing the same
CN106058263A (en) * 2016-06-23 2016-10-26 江苏科技大学 Preparation method and application of cobaltosic oxide porous fiber material
CN106058263B (en) * 2016-06-23 2019-01-18 江苏科技大学 A kind of Preparation method and use of cobaltosic oxide porous fibrous material
CN113292106A (en) * 2020-02-24 2021-08-24 荆门市格林美新材料有限公司 Three-time calcination preparation method of large-particle-size aluminum-doped cobaltosic oxide
CN113292106B (en) * 2020-02-24 2023-07-25 荆门市格林美新材料有限公司 Three-time calcination preparation method of large-particle-size aluminum-doped cobaltosic oxide
CN112320854A (en) * 2020-10-26 2021-02-05 合肥融捷金属科技有限公司 Method for improving production rate of cobaltosic oxide
CN112760710A (en) * 2020-12-18 2021-05-07 湖南杉杉能源科技股份有限公司 Doped cobaltosic oxide and preparation method thereof
WO2022127129A1 (en) * 2020-12-18 2022-06-23 巴斯夫杉杉电池材料有限公司 Doped cobaltosic oxide and preparation method therefor
CN113149084A (en) * 2021-02-09 2021-07-23 荆门市格林美新材料有限公司 Preparation method of superfine cobalt oxide
CN113735186A (en) * 2021-09-01 2021-12-03 荆门市格林美新材料有限公司 Preparation method of small-particle-size cobaltosic oxide with uniformly distributed magnesium
WO2024060542A1 (en) * 2022-09-19 2024-03-28 广东邦普循环科技有限公司 Preparation method for rare earth element-doped cobalt carbonate and use thereof

Similar Documents

Publication Publication Date Title
JP7265096B2 (en) MOF-coated single-crystal ternary positive electrode material and method for producing its precursor
JP4546937B2 (en) Cathode active material for non-aqueous electrolyte lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2729176B2 (en) Method for producing LiM3 + O2 or LiMn2O4 and LiNi3 + O2 for cathode material of secondary battery
WO2023092989A1 (en) Ferrous manganese phosphate, and preparation method therefor and use thereof
CN110048120B (en) Preparation method of nano lithium ferrite
CN107863530B (en) Method for preparing high-density lithium iron phosphate by adopting siderite
JPH04270125A (en) Manganese oxide compound
JPH10316431A (en) Lithium-nickel complex oxide and its production, and active substance of cathod for lithium secondary battery
WO2015027826A1 (en) Positive electrode material for lithium-ion battery and method for preparing same
KR100734225B1 (en) A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
WO2023216377A9 (en) Multi-element co-doped sodium-ion positive electrode material, and preparation method therefor and use thereof
JPH0896809A (en) Manufacture of tricobalt tetroxide for lithium secondary battery positive electrode material
CN114804235A (en) High-voltage nickel cobalt lithium manganate positive electrode material and preparation method and application thereof
CN113582235B (en) Method for preparing lithium manganate cathode material from pyrolusite
CN107863531B (en) Method for preparing lithium ion battery anode material by using siderite
CN114105117A (en) Preparation method of precursor and nickel lithium iron phosphate cathode material
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JPH1179752A (en) Nickel oxide particles and their production
KR20060122452A (en) Manganese oxides by co-precipitation method, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
US20050142058A1 (en) Low temperature process for preparing tricobalt tetraoxide
KR20170136779A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex doped nikel oxide
JPH0778611A (en) Preparation of positive electrode for lithium secondary battery
KR100679380B1 (en) Low temperature lithiation of cobalt, nickel and manganese containning hydroxides using a wet process
CN115285962A (en) Preparation method of low-cost phosphoric acid series positive electrode material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040726

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040816

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees