JPH08962A - Exhaust gas treatment process - Google Patents

Exhaust gas treatment process

Info

Publication number
JPH08962A
JPH08962A JP6142807A JP14280794A JPH08962A JP H08962 A JPH08962 A JP H08962A JP 6142807 A JP6142807 A JP 6142807A JP 14280794 A JP14280794 A JP 14280794A JP H08962 A JPH08962 A JP H08962A
Authority
JP
Japan
Prior art keywords
exhaust gas
treatment
iron
agent
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6142807A
Other languages
Japanese (ja)
Inventor
Makoto Aritsuka
眞 在塚
Sadaichi Kohara
定一 菰原
Isao Harada
功 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6142807A priority Critical patent/JPH08962A/en
Priority to TW084100873A priority patent/TW369434B/en
Priority to KR1019950001838A priority patent/KR0154519B1/en
Priority to EP95300668A priority patent/EP0666101B1/en
Priority to DE69502412T priority patent/DE69502412T2/en
Priority to US08/383,231 priority patent/US5728642A/en
Publication of JPH08962A publication Critical patent/JPH08962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To increase the treating amount of NF3 per unit weight of an exhaust gas treatment by bringing a treating agent containing an oxide and/or metal with specified ratio of chrome to iron as effective components with exhaust gas containing nitrogen trifluoride. CONSTITUTION:An exhaust gas treatment agent containing an oxide with the ratio of 1-30wt.% of chrome to iron or/and a metal as effective components is prepared. The exhaust gas treatment agent thus prepared is filled in a column usually, and brought into contact with exhaust gas containing NF3 to carry out an aimed exhaust treatment. At that time, in the case of exhaust gas treatment in which metal is a main body as a chemical type in the treatment agent, the exhaust gas treatment agent is brought into contact with gas at comparatively low temperature, while in the case of exhaust gas treatment in which oxide is a main body in the treatment agent, the agent is brought into contact with exhaust gas at comparatively high temperature. To be concrete, the temperature range is generally 50-600 deg.C. As a result, the problem that the treatable amount of NF3 per unit weight of the treatment agent is far less than the theoritical treatment capability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造プロセスに
おいて排出されるガスを無害化処理する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying a gas discharged in a semiconductor manufacturing process.

【0002】[0002]

【従来技術】三フッ化窒素(以下、NFと記す)は、
高温やプラズマ状態では強力なフッ素化剤となるが、室
温では安定であるため保存や取り扱いが容易である。ま
た、被フッ素化物をフッ素化した後のNF由来の残留
成分がガス状(主に窒素)である特徴も有している。こ
のため、半導体製造プロセスにおいてはドライエッチン
グ剤や半導体製造装置などのクリーニングガスとして用
いられており、近年その需要は伸長している。
2. Description of the Related Art Nitrogen trifluoride (hereinafter referred to as NF 3 ) is
It is a strong fluorinating agent at high temperature and plasma, but it is stable at room temperature and easy to store and handle. Further, it is also characterized in that the residual component derived from NF 3 after fluorinating the substance to be fluorinated is gaseous (mainly nitrogen). Therefore, it is used as a dry etching agent or a cleaning gas for semiconductor manufacturing equipment in the semiconductor manufacturing process, and the demand thereof has been increasing in recent years.

【0003】このように有用である一方で、NFは毒
性を有しており、その許容濃度は10ppmに設定され
ている。このため半導体製造プロセスで使用された後の
NF を含有する排ガスは、大気中に放出される前に無
害化処理を行うことが望まれる。ところが、NFは室
温で安定であり、また水等へ殆ど吸収されないため、処
理が容易ではない。
While useful in this way, NFThreeIs poison
And its permissible concentration is set to 10 ppm.
ing. Therefore, after being used in the semiconductor manufacturing process
NF ThreeExhaust gas containing gas is not discharged before it is released into the atmosphere.
It is desirable to carry out a harmful treatment. However, NFThreeIs a room
Since it is stable at temperature and hardly absorbed by water, etc.
It doesn't make sense.

【0004】従来、このような排ガスの処理にはいくつ
かの方法が提案されており、固体の薬剤との接触により
処理を行う方法と、水素等を燃料とする火炎中で処理す
る方法、とに大別される。このうち、前者、とりわけ、
排ガス処理の操作温度において固体のフッ化物の形で、
NF中のフッ素成分を固定しうる金属(あるいは金属
化合物)を使用する排ガス処理方法は、前記した固体の
薬剤を使用する排ガス処理方法の一翼を担うものであ
る。
Conventionally, several methods have been proposed for treating such exhaust gas. One is a method of treating by contact with a solid chemical agent and the other is a method of treating in a flame using hydrogen as a fuel. It is roughly divided into. Of these, the former,
In the form of a solid fluoride at the operating temperature of the exhaust gas treatment,
The exhaust gas treatment method using a metal (or a metal compound) capable of fixing the fluorine component in NF 3 plays a role in the exhaust gas treatment method using the above-mentioned solid chemical agent.

【0005】NFの処理とは、フッ素成分(F)を分
解容易な、あるいは低毒性のフッ化物の形に変換するこ
とである。NFはフッ化物中でも熱力学ポテンシャル
が高いため、他の化学種をフッ化物に変換する反応はほ
とんどの場合熱力学的に自発的反応となる。従って、固
体の薬剤としては、原理的にほとんどの化学種が対象と
なり得る。現在提案されている固体の薬剤についても上
記の如く熱力学的な考察を行うと、全てが低温でも自発
的反応となる。
The treatment of NF 3 is to convert the fluorine component (F) into a fluoride form which is easy to decompose or has low toxicity. Since NF 3 has a high thermodynamic potential among fluorides, the reaction for converting other chemical species into fluoride is thermodynamically spontaneous in most cases. Therefore, as a solid drug, in principle, almost all chemical species can be targeted. When the thermodynamic consideration as described above is also performed on the currently proposed solid drug, all of them are spontaneous reactions even at low temperature.

【0006】NFとSb,アルカリ金属,アルカリ土
類金属,Zn,Cd,Al,Fe,Cu等の反応事例が
あり(GMELIN HANDBUCH,Volume
F:SVol.1,1959,p244〜245)、
これらは当然固体の薬剤として挙げられる。
There are reaction cases of NF 3 and Sb, alkali metals, alkaline earth metals, Zn, Cd, Al, Fe, Cu, etc. (GMELIN HANDBUCH, Volume)
F: SVol. 1, 1959, p244-245),
These are of course mentioned as solid agents.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな排ガス処理剤を使用する場合、排ガス処理剤単位重
量(または単位容量)当たりのNFの処理量(以下、
処理能力という)が、理論的な処理能力(有効成分の金
属(あるいは金属化合物)が全て処理に利用されフッ化
物になった場合のNF処理量)に比べて、はるかに少
ないという問題があった。
However, when such an exhaust gas treating agent is used, the treated amount of NF 3 per unit weight (or unit capacity) of the exhaust gas treating agent (hereinafter,
There is a problem in that the treatment capacity is much smaller than the theoretical treatment capacity (the amount of NF 3 treated when all the active ingredient metals (or metal compounds) are used for treatment to form fluorides). It was

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
の解決に関して鋭意検討を行ったところ、前記の問題
は、排ガス処理の過程で、排ガス処理剤の機能的表面
(排ガス処理反応に関与する実効表面)が減少し、処理
能力が抑えられると推定される。そこで、本発明者らは
この解決に向けて更に検討を加えた結果、少なくとも鉄
およびクロムを有効成分として含有する排ガス処理剤を
開発し、これを使用すると前記した問題が抑えられ、処
理能力が上がることを見いだし本発明を完成するに至っ
たのである。なお、該有効成分の形態は金属、酸化物あ
るいはこれらが共存する形であっても良く、またこれら
の一部が部分フッ化物の形に変わっていてもその効果に
影響はない。
Means for Solving the Problems The inventors of the present invention have made extensive studies on the solution of the above-mentioned problems. The above-mentioned problem is that the functional surface of the exhaust gas treating agent (exhaust gas treatment reaction It is estimated that the effective surface involved) is reduced and the throughput is reduced. Therefore, as a result of further investigations aimed at solving this problem, the present inventors have developed an exhaust gas treating agent containing at least iron and chromium as active ingredients, and using this agent suppresses the above-mentioned problems and improves treatment capacity. The inventors have found that they are going up and have completed the present invention. The form of the active ingredient may be a metal, an oxide, or a form in which these coexist, and even if a part of these is changed to the form of a partial fluoride, the effect is not affected.

【0009】即ち、本発明は少なくとも鉄およびクロム
を含有する酸化物または/および金属であって、鉄に対
するクロムの比率が1〜30重量%である該酸化物また
は/および該金属を有効成分として含有する処理剤と三
フッ化窒素を含有する排ガスを接触させることを特徴と
する排ガスの処理方法に関する。
That is, the present invention provides an oxide or / and a metal containing at least iron and chromium, wherein the ratio of chromium to iron is 1 to 30% by weight, and the oxide or / and the metal is used as an active ingredient. The present invention relates to a method for treating exhaust gas, which comprises bringing the treating agent contained therein into contact with the exhaust gas containing nitrogen trifluoride.

【0010】以下、本発明について更に具体的に述べ
る。排ガス処理剤に必要な成分は、鉄およびクロムであ
って、これらの化学的形態は金属状態、酸化物状態、あ
るいはこれらが共存する形態であっても問題ない。ま
た、鉄およびクロム以外の成分を含有していても差し支
えない。例えば、排ガス処理に関して不活性な成分
(例;アルカリ金属フッ化物、アルカリ土類金属フッ化
物)や、アルミナ等を含有していても良い。但し、後者
に関しては排ガス処理における活性成分となりうるが、
無論本発明の効果(影響)を享受するものではない。
The present invention will be described in more detail below. The components required for the exhaust gas treating agent are iron and chromium, and their chemical forms may be in a metallic state, an oxide state, or a form in which they coexist. Further, it does not matter if it contains components other than iron and chromium. For example, it may contain components that are inactive with respect to the treatment of exhaust gas (eg, alkali metal fluorides, alkaline earth metal fluorides), alumina, and the like. However, regarding the latter, it can be an active ingredient in exhaust gas treatment,
Of course, the effect (influence) of the present invention is not enjoyed.

【0011】鉄に対するクロムの比率は1〜30重量%
が好ましく、更に好ましくは、3〜20重量%、最も好
ましくは、5〜15重量%が好適である。鉄とクロムの
比率は重要であり、鉄に対するクロムの比率(鉄を10
0した場合のクロムの重量比率)が1重量%未満でも、
また、30重量%を超えても、本発明の効果は著しく減
退する。
The ratio of chromium to iron is 1 to 30% by weight.
Is more preferable, 3 to 20% by weight is more preferable, and 5 to 15% by weight is most preferable. The ratio of iron to chromium is important, and the ratio of chromium to iron (10
If the weight ratio of chromium when 0 is less than 1% by weight,
Further, even if it exceeds 30% by weight, the effect of the present invention is significantly reduced.

【0012】鉄およびクロムを含有する排ガス処理剤の
調整方法はいくつかの方法が挙げられる。第一は、クロ
ムを含有する鉄合金を出発原料とし、これを搗砕法によ
り一旦粉化し、これを排ガス処理剤として適当なサイズ
にペレット化する方法である。搗砕とは金属粉砕の一手
法であり、搗砕棒の運動による機械的衝撃を利用する粉
砕機を使用する。
There are several methods for preparing an exhaust gas treating agent containing iron and chromium. The first is a method in which an iron alloy containing chromium is used as a starting material, which is once pulverized by a milling method and then pelletized into an appropriate size as an exhaust gas treating agent. Smashing is a method of crushing metal and uses a crusher that utilizes mechanical impact from the motion of a crushing rod.

【0013】第二は、ポット内面に障碍物をとりつけた
改良型のミルを使用するボールミル法である。搗砕法と
同じく、機械的衝撃により鉄合金を粉砕するものであ
る。得られた粉末を排ガス処理剤に適当な形状に成形す
るのは、搗砕法と同じである。排ガス処理剤の化学的形
態として酸化物が必要な場合は、前記の方法で得られた
粉末を成形する前後いずれに依らず、酸化処理を行えば
良い。
The second is a ball mill method which uses an improved mill in which obstacles are attached to the inner surface of the pot. Similar to the milling method, the iron alloy is crushed by mechanical impact. Forming the obtained powder into an appropriate shape for an exhaust gas treating agent is the same as in the milling method. When an oxide is required as a chemical form of the exhaust gas treating agent, the oxidation treatment may be performed regardless of before or after molding the powder obtained by the above method.

【0014】第三は、水溶性鉄塩およびクロム塩を水溶
液とし、これをアルカリ処理することで酸化物を共沈さ
せる方法である。得られた沈澱をろ過、乾燥し、排ガス
処理剤として適当な形状に成形することで、容易に排ガ
ス処理剤が得られる。この場合、排ガス処理剤の化学的
形態として金属が必要な場合は、得られた沈澱を成形す
る前後いずれに依らず、適当な還元剤で還元処理を行え
ば良い。
The third method is a method in which a water-soluble iron salt and a chromium salt are made into an aqueous solution, and the aqueous solution is treated with an alkali to coprecipitate an oxide. An exhaust gas treating agent can be easily obtained by filtering the obtained precipitate, drying it, and molding it into an appropriate shape as an exhaust gas treating agent. In this case, when a metal is required as the chemical form of the exhaust gas treating agent, the reduction treatment may be performed with an appropriate reducing agent regardless of whether the obtained precipitate is formed or not.

【0015】なお、必要に応じて、排ガス処理剤を適当
な方法でフッ素化処理することも差し支えない。無論、
強力にフッ素化を行えば、排ガス処理能力が減じるため
不都合であるが、通常、付与されたフッ素量が数重量%
以下で有れば、排ガス処理能力への影響は殆ど無い。
If necessary, the exhaust gas treating agent may be fluorinated by an appropriate method. Of course,
Strong fluorination is inconvenient because it reduces the exhaust gas treatment capacity, but usually the amount of fluorine added is several% by weight.
If it is below, there is almost no influence on the exhaust gas treatment capacity.

【0016】このようにして得られた排ガス処理剤は、
通常カラムに充填し、NFを含有する排ガスと接触さ
せることで、目的の排ガス処理を行う。この際、化学的
形態として金属を主体とする排ガス処理剤の場合は、比
較的低い温度を、また、酸化物を主体とする排ガス処理
剤の場合は、前者に比べて高い温度で該排ガスと接触さ
せる。具体的な温度範囲は概ね50〜600℃である。
所定温度よりも低い場合でも、排ガス処理は可能である
が、本発明の効果は顕著に現れない。また、高温の場合
も同様である。
The exhaust gas treating agent thus obtained is
Usually, the target exhaust gas treatment is performed by packing in a column and contacting with an exhaust gas containing NF 3 . At this time, in the case of an exhaust gas treating agent mainly composed of a metal as a chemical form, at a relatively low temperature, and in the case of an exhaust gas treating agent mainly composed of an oxide, the exhaust gas is treated at a higher temperature than the former. Contact. The specific temperature range is approximately 50 to 600 ° C.
Exhaust gas treatment is possible even when the temperature is lower than a predetermined temperature, but the effect of the present invention is not remarkable. The same applies to the case of high temperature.

【0017】[0017]

【実施例】以下、実施例により本発明を更に詳細に説明
する。以下、特記しないかぎり%は重量%を表す。 実施例1 ボールミル法により得られた合金微粉末(比表面積約
0.3m/g、鉄に対するクロム比率10%)に、バ
インダー(PVA溶液)を添加し、ディスクペレッタに
より、およそ3mmφ×3mmのペレットに成形した。
これを空気中500℃で熱処理したものを排ガス処理剤
とした。次に、この排ガス処理剤30gを内径16mm
のカラムに充填し、引き続いて400℃にカラム温度を
上げ、1容量%に希釈されたNFガス(バランスガス
は窒素)を1200cc/min(空塔速度約10cm
/sec)で流した。カラム出口ガスを8分間隔で採取
し、ガスクロマトグラフィーにてNFの有無を分析し
た。その結果、NF含有ガス流通開始後約96分後に
NFが検知された。
EXAMPLES The present invention will be described in more detail below with reference to examples. Hereinafter,% means% by weight unless otherwise specified. Example 1 A binder (PVA solution) was added to an alloy fine powder (specific surface area: about 0.3 m 2 / g, ratio of chromium to iron: 10%) obtained by a ball mill method, and a disc pelleter was used to measure about 3 mmφ × 3 mm. Into pellets.
This was heat-treated in air at 500 ° C. to obtain an exhaust gas treating agent. Next, 30 g of this exhaust gas treating agent is added to an inner diameter of 16 mm.
The column temperature was raised to 400 ° C., the NF 3 gas diluted to 1% by volume (balance gas was nitrogen) was 1200 cc / min (superficial velocity about 10 cm).
/ Sec). The column outlet gas was sampled at intervals of 8 minutes, and the presence or absence of NF 3 was analyzed by gas chromatography. As a result, NF 3 was detected in about 96 minutes after the start of NF 3 containing gas flow.

【0018】実施例2 実施例1の排ガス処理剤を用いて、カラム温度を550
℃に変更した以外は、実施例1と同様に行った。その結
果、NF含有ガス流通開始後約120分後にNF
検知された。
Example 2 Using the exhaust gas treating agent of Example 1, the column temperature was increased to 550.
Example 1 was repeated except that the temperature was changed to ° C. As a result, NF 3 was detected at about 120 minutes after the start of NF 3 containing gas flow.

【0019】実施例3 実施例1の鉄合金を、鉄に対するクロム比率3%の鉄合
金を使用した他は、実施例1と同様に行った。その結
果、NF含有ガス流通開始後約80分後にNF が検
知された。
Example 3 The iron alloy of Example 1 was mixed with an iron alloy containing 3% of chromium in iron.
Example 1 was repeated except that gold was used. That conclusion
Fruit, NFThreeNF about 80 minutes after the start of gas distribution ThreeIs inspected
I was informed.

【0020】実施例4 実施例1の鉄合金を、鉄に対するクロム比率18%の鉄
合金を使用した他は、実施例1と同様に行った。その結
果、NF含有ガス流通開始後約128分後にNF
検知された。
Example 4 The same procedure as in Example 1 was carried out except that the iron alloy of Example 1 was replaced with an iron alloy having a chromium ratio of 18% to iron. As a result, NF 3 was detected at about 128 minutes after the start of NF 3 containing gas flow.

【0021】実施例5 10%硝酸(III)鉄および10%硝酸(III)ク
ロムをそれぞれ100対3及び100対15の混合比率
になるように2種類の水溶液を作成した。作成したそれ
ぞれの水溶液に水酸化ナトリウム溶液を弱アルカリにな
るまで添加し、2種類の沈澱を得た。これを水洗ろ過
し、乾燥後、打錠成形して3mmφ×3mmのタブレッ
トを得た。鉄に対するクロム比率は各々3%、15%で
あった。各々のクロム比率について、それぞれ還元処理
しないものと、還元処理したものについて、排ガス処理
剤とした。次にそれぞれの排ガス処理剤30gを、別
途、内径16mmのカラムに充填し、還元処理しないも
のはカラム温度400℃に、還元処理したものはカラム
温度60℃に設定し、それぞれに1容量%に希釈された
NFガス(バランスガスは窒素)を1200cc/m
in(空塔速度約10cm/sec)で流した。その結
果、還元処理しないものにおいて、クロム比率3%の排
ガス処理剤は152分後に、クロム比率15%の排ガス
処理剤は168分後にNFが検知された。また、還元
処理したものについては、いずれもそれぞれ40、48
分後にNF が検知された。
Example 5 10% iron (III) nitrate and 10% nitric (III) nitrate
Rom 100 to 3 and 100 to 15 respectively
Two kinds of aqueous solutions were prepared so that Created it
Add sodium hydroxide solution to each solution to make it weakly alkaline.
Until 2 hours, two types of precipitates were obtained. Wash and filter this with water
Then, after drying, tablet-molding is performed and a 3 mmφ × 3 mm tablet
Got The ratio of chromium to iron is 3% and 15%, respectively.
there were. Reduction treatment for each chromium ratio
Exhaust gas treatment for those that are not processed and those that have been reduced
I used it as an agent. Next, 30 g of each exhaust gas treatment agent
Along the way, it is packed in a column with an inner diameter of 16 mm and is not reduced.
The column temperature is 400 ° C, and the reduced one is the column
The temperature was set to 60 ° C and each was diluted to 1% by volume
NFThreeGas (balance gas is nitrogen) 1200 cc / m
It was flown at in (superficial velocity of about 10 cm / sec). That conclusion
As a result, in the case of non-reduction treatment, chromium content of 3% is eliminated.
After 152 minutes, the gas treatment agent was exhaust gas containing 15% chromium.
Treatment agent is NF after 168 minutesThreeWas detected. Also reduction
For the processed ones, 40 and 48 respectively
NF in minutes ThreeWas detected.

【0022】実施例6 実施例5の硝酸(III)鉄および硝酸(III)クロ
ムの混合比率を変更し、鉄に対するクロム比率25%を
製造し、排ガス処理剤とした。これをカラム温度を40
0℃とした他は、実施例5と同様の方法でNFガスと
接触させたところ、176分後にNFが検知された。
Example 6 An exhaust gas treating agent was prepared by changing the mixing ratio of iron (III) nitrate and chromium (III) nitrate in Example 5 to produce a chromium ratio of 25% with respect to iron. Set the column temperature to 40
When contacted with NF 3 gas in the same manner as in Example 5 except that the temperature was 0 ° C., NF 3 was detected after 176 minutes.

【0023】実施例7 実施例5と同様の方法で得たクロム比率15%のタブレ
ットを、還元処理後希薄なNFガス(濃度0.05容
量%)でフッ素化処理(フッ素化率約1%)を行い、こ
れを排ガス処理剤とした。これをカラム温度を200℃
とした他は、実施例5と同様の方法でNFガスと接触
させたところ、240分後にNFが検知され、排ガス
処理に関するフッ素化処理による特段の悪影響はなかっ
た。
Example 7 A tablet having a chromium ratio of 15% obtained in the same manner as in Example 5 was fluorinated with a diluted NF 3 gas (concentration: 0.05% by volume) after the reduction treatment (fluorination ratio of about 1). %) Was performed, and this was used as an exhaust gas treating agent. Column temperature is 200 ℃
Other than the above, when contacted with NF 3 gas in the same manner as in Example 5, NF 3 was detected after 240 minutes, and there was no particular adverse effect due to the fluorination treatment regarding exhaust gas treatment.

【0024】比較例1 実施例5と同様の方法で、クロム比率0.5%及び33
%のタブレットを得た。次にクロム比率が0.5%のも
のは還元処理を行い、また、33%のものはそのままで
排ガス処理剤とした。続いて、還元処理したものはカラ
ム温度を60℃で、還元処理しないものは400℃とし
た他は、実施例5と同様の方法で、NFと接触させ
た。その結果、クロム比率0.5%のものは24分後に
既にNFが検出された。また、クロム比率が33%の
ものは120分後にNFが検出された。
Comparative Example 1 In the same manner as in Example 5, the chromium ratio was 0.5% and 33.
Got a% tablet. Next, those having a chromium ratio of 0.5% were subjected to reduction treatment, and those having a chromium ratio of 33% were used as they were as an exhaust gas treating agent. Then, the column temperature of the reduced treatment was 60 ° C., and the column temperature of the non-reduced treatment was 400 ° C., and the column was brought into contact with NF 3 in the same manner as in Example 5. As a result, NF 3 was already detected after 24 minutes in the chromium content of 0.5%. In addition, NF 3 was detected after 120 minutes for a chromium content of 33%.

【0025】比較例2 クロムを含まない鉄を出発原料に実施例1と同様の方法
で得た排ガス処理剤について、カラム温度を400℃と
した他は実施例1と同様の方法でNFガスを流した。
その結果、56分後にNFが検出された。
Comparative Example 2 With respect to an exhaust gas treating agent obtained by the same method as in Example 1 using iron containing no chromium as a starting material, NF 3 gas was obtained in the same manner as in Example 1 except that the column temperature was 400 ° C. Shed.
As a result, NF 3 was detected after 56 minutes.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明によれば、従来技術では達成され
なかった処理剤単位重量(または単位容量)当たりのN
の処理量(以下、処理能力という)が、はるかに少
ないという問題が改善される。即ち、鉄に対するクロム
が本発明の範囲外である比較例は、破過時間が短く、N
ガスの除去が不十分である。また、鉄に対するクロ
ムが本発明の範囲内である実施例は、これらの性能が優
れているのが明らかであり、本発明の意義は大きい。
According to the present invention, N per unit weight (or unit volume) of treating agent, which has not been achieved by the prior art, is obtained.
The problem that the processing amount of F 3 (hereinafter, referred to as processing capacity) is much smaller is improved. That is, the comparative example in which chromium with respect to iron is out of the range of the present invention has a short breakthrough time and N
Insufficient removal of F 3 gas. In addition, it is clear that the examples in which chromium with respect to iron is within the range of the present invention are excellent in these performances, and the significance of the present invention is great.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも鉄およびクロムを含有する
酸化物または/および金属であって、鉄に対するクロム
の比率が1〜30重量%である該酸化物または/および
該金属を有効成分として含有する処理剤と三フッ化窒素
を含有する排ガスを接触させることを特徴とする排ガス
の処理方法。
1. A treatment containing an oxide or / and a metal containing at least iron and chromium, wherein the ratio of chromium to iron is 1 to 30% by weight, and containing the oxide or / and the metal as an active ingredient. A method for treating exhaust gas, which comprises contacting an agent with an exhaust gas containing nitrogen trifluoride.
【請求項2】 排ガスを接触させる際の温度が50〜
600℃である請求項1記載の排ガスの処理方法。
2. The temperature at which exhaust gas is contacted is 50 to 50.
The method for treating exhaust gas according to claim 1, wherein the temperature is 600 ° C.
JP6142807A 1994-02-03 1994-06-24 Exhaust gas treatment process Pending JPH08962A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6142807A JPH08962A (en) 1994-06-24 1994-06-24 Exhaust gas treatment process
TW084100873A TW369434B (en) 1994-02-03 1995-01-28 Exhaust gas treating agent and a method of treating exhaust gas using the agent
KR1019950001838A KR0154519B1 (en) 1994-02-03 1995-02-02 Exhaust gas treating agent and a method of treating exhaust gas using the agent
EP95300668A EP0666101B1 (en) 1994-02-03 1995-02-02 Exhaust gas treating agent and a method of treating exhaust gas using the agent
DE69502412T DE69502412T2 (en) 1994-02-03 1995-02-02 Exhaust treatment agent and method for treating exhaust gas therewith
US08/383,231 US5728642A (en) 1994-02-03 1995-02-03 Exhaust gas treating agent and a method of treating exhaust gas using the agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6142807A JPH08962A (en) 1994-06-24 1994-06-24 Exhaust gas treatment process

Publications (1)

Publication Number Publication Date
JPH08962A true JPH08962A (en) 1996-01-09

Family

ID=15324102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6142807A Pending JPH08962A (en) 1994-02-03 1994-06-24 Exhaust gas treatment process

Country Status (1)

Country Link
JP (1) JPH08962A (en)

Similar Documents

Publication Publication Date Title
US4923531A (en) Deoxidation of titanium and similar metals using a deoxidant in a molten metal carrier
DE69820926T2 (en) Process, device and use of a catalyst for the decomposition of fluorinated compounds
JP3986597B2 (en) Method for treating nitrogen trifluoride-containing gas and treating agent therefor
KR100243560B1 (en) Purifying method of harmful gas
EP0792681B1 (en) Process for cleaning a halogen containing gas
JP3103645B2 (en) Cerium- and zirconium-containing composite oxides having oxygen absorbing and releasing ability and method for producing the same
JPH0580402B2 (en)
JPS5915081B2 (en) Method for purifying nitrosine trifluoride-containing gas
JPH08962A (en) Exhaust gas treatment process
KR0154519B1 (en) Exhaust gas treating agent and a method of treating exhaust gas using the agent
DE602004003471T2 (en) PROCESS FOR DECOMPOSING FLUOROUS COMPOUNDS
DE60117909T2 (en) Process for removing a gas of the halogen (compound) group
JP3263264B2 (en) Exhaust gas treating agent and exhaust gas treating method using the same
JP3701741B2 (en) Hazardous gas purification agent
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JPH02144125A (en) Method for purifying exhaust gas
GB2164251A (en) Materials and systems for extinguishing fires and suppressing explosions
JP2694163B2 (en) Method for producing high-purity silica
JP2006255628A (en) Dephosphorizationagent and method for removing phosphoric acid ion
JPS6068051A (en) Harmful gas adsorbent
WO1998009715A1 (en) Method of treating exhaust gases containing halogen based compound
JPS62286521A (en) Method for purifying exhaust gas
JPH0523814B2 (en)
JP3269565B2 (en) Treatment method for exhaust gas containing nitrogen trifluoride
JPH06238124A (en) Removing method of harmful gas