JPH0894924A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPH0894924A
JPH0894924A JP22778694A JP22778694A JPH0894924A JP H0894924 A JPH0894924 A JP H0894924A JP 22778694 A JP22778694 A JP 22778694A JP 22778694 A JP22778694 A JP 22778694A JP H0894924 A JPH0894924 A JP H0894924A
Authority
JP
Japan
Prior art keywords
focus
lens system
image
image pickup
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22778694A
Other languages
Japanese (ja)
Inventor
Masatake Kato
正猛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22778694A priority Critical patent/JPH0894924A/en
Publication of JPH0894924A publication Critical patent/JPH0894924A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE: To obtain a focus detector whose responsiveness until a focusing state is attained is quick and which need not be provided with a complicated optical system by discriminating an out-of-focus direction by comparing out-of-focus quantity with the out-of-focus quantity obtained when the focusing action of a photographing lens system is changed. CONSTITUTION: The focus detector is provided with a correlation arithmetic operation means 8 constituted so that the photographing lens system 1, an image pickup element 5 and a light splitting means 7 splitting luminous flux transmitted through the lens system 1 into plural areas are arranged in an optical path and the out-of-focus quantity on the element 5 is obtained by extracting the characteristics of plural images simultaneously formed on the element 5 and a comparison arithmetic operation means 9 comparing the out-of-focus quantity obtained when a part or the whole part of the lens system 1 is moved on an optical axis thereafter and discriminating the out-of-focus direction. Then, when the element 5 is used as a sensor for range-finding, an area 6 used when the image is fetched may be different from the original image pickup area. Besides, the area 6 may be varied while a focus is detected. Therefore, the constitution of the detector is simplified by using the element 5 in common with the range-finding sensor. Besides, an out-of-focus detecting action and a focusing action satisfying the high-speed responsiveness necessary for a still image are executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子スチルカメラ等、
静止画撮影に適した自動焦点調節装置に関し、特に撮像
素子としての団体撮像体等を測距センサーとして兼用し
た自動調節装置に関するものである。
The present invention relates to an electronic still camera, etc.
The present invention relates to an automatic focus adjustment device suitable for still image shooting, and more particularly to an automatic adjustment device that also uses a group image pickup device or the like as an image pickup device as a distance measuring sensor.

【0002】[0002]

【従来の技術】従来、TTLタイプの自動焦点調節方式
としては、大別して、ピント相当面上のボケを検出する
ものと、ズレを検出するものの2通りが知られている。
2. Description of the Related Art Conventionally, two types of TTL-type automatic focus adjustment methods are known, that is, a method for detecting a blur on a surface corresponding to a focus and a method for detecting a shift.

【0003】前者の代表的な例は、感光体として固体撮
像素子等を用いたビデオカメラの撮像信号利用焦点調節
装置であり、後者は銀塩スチルカメラの2次結像タイプ
の専用光学系を備えたズレ検出焦点調節装置であり、各
々に特長を有している。
A typical example of the former is a focus adjusting device using an image pickup signal of a video camera using a solid-state image pickup device as a photoconductor, and the latter is a secondary optical system of a secondary image forming type of a silver salt still camera. It is a shift detection focus adjustment device equipped with each, and each has its own features.

【0004】前者の撮像信号利用焦点調節装置の構成
は、図2に示す様に、基本的には変倍レンズ群22とフ
ォーカスレンズ群23を有した変倍光学系21と感光体
24から成り、変倍光学系21を通過し、感光体24上
に結像する被写体像の先鋭度から、その合焦状態を判断
する。ビデオカメラ等においては、感光体24は固体撮
像素子等の光電変換素子であり、通常良く知られている
手法としては、合焦時に前記感光体24から得られる撮
像信号の高周波成分が高くなることを用いて、フォーカ
スレンズ群23の位置を制御する。従って、非合焦時に
は、フォーカスレンズ群23を前後に微少振動させ、合
焦にいたる方向と非合焦状態を検知することが必要とな
る。
As shown in FIG. 2, the former focus adjusting device utilizing an image pickup signal basically comprises a variable power optical system 21 having a variable power lens group 22 and a focus lens group 23, and a photoconductor 24. The in-focus state is determined from the sharpness of the subject image that passes through the variable power optical system 21 and is formed on the photoconductor 24. In a video camera or the like, the photoconductor 24 is a photoelectric conversion element such as a solid-state image pickup device, and as a well known method, a high frequency component of an image pickup signal obtained from the photoconductor 24 at the time of focusing becomes high. Is used to control the position of the focus lens group 23. Therefore, at the time of non-focusing, it is necessary to slightly vibrate the focus lens group 23 back and forth to detect the direction of focusing and the non-focusing state.

【0005】しかしながら、上記従来例では、構成が簡
易ではあるものの非合焦時のデフォーカス量が一意的に
求まらない為、合焦までの応答性が遅く、特にタイムラ
グが重要となる静止画撮影には適さない。
However, in the above-mentioned conventional example, the defocus amount at the time of non-focusing is not uniquely obtained although the configuration is simple, so that the response to focusing is slow, and the time lag is particularly important for stillness. Not suitable for photography.

【0006】一方のズレ検出焦点調節装置の構成は、図
3に示す様に、変倍レンズ群32とフォーカスレンズ群
33を有した変倍光学系31と、感光面34の中間に焦
点検出装置35へと光束を分岐する為の偏光手段36を
配し、感光面34相当の一次結像面37近傍には、フォ
ーカスレンズ38、視野マスク39、セパレータレンズ
40a,40b、測距用センサー41a,41bを配置
する。フィールドレンズ38、視野マスク39、セパレ
ータ40a,40bは、前記変倍光学系を通過する異な
る領域からの光束をとりこむ為のものであり、この光束
を前記測距用センサー41a,41bで受けて、その2
像の相関を比較し、ズレを求める。合焦時には測距用セ
ンサー41a,41b上には同一の2像が形成され、非
合焦状態にはディフォーカスの程度に応じてその2像が
横ズラシされた状態で結像される。その横ズラシの量か
ら像面上のディフォーカス量と方向を演算し、フォーカ
スレンズ群33の繰り出し量に変換することにより、一
気に合焦状態へたどりつく、所謂プレディクションが可
能となる。ズレ検出焦点調節装置の最大の利点は、この
プレディクションによる高速応答性にあり、静止画撮影
には適していると言える。
On the other hand, as shown in FIG. 3, the structure of the shift detection focus adjusting device is such that the focus detecting device is located between the variable power optical system 31 having the variable power lens group 32 and the focus lens group 33 and the photosensitive surface 34. A polarizing means 36 for branching the light flux to 35 is arranged, and in the vicinity of the primary image forming surface 37 corresponding to the photosensitive surface 34, a focus lens 38, a field mask 39, separator lenses 40a and 40b, a distance measuring sensor 41a, 41b is arranged. The field lens 38, the field mask 39, and the separators 40a and 40b are for taking in the light fluxes from different regions passing through the variable power optical system, and the light fluxes are received by the distance measuring sensors 41a and 41b, Part 2
Compare the correlations of the images and find the deviation. When focusing, the same two images are formed on the distance measuring sensors 41a and 41b, and in the non-focusing state, the two images are horizontally shifted depending on the degree of defocus. By calculating the defocus amount and the direction on the image surface from the amount of the lateral displacement and converting the defocus amount and the direction into the extension amount of the focus lens group 33, so-called prediction can be achieved in which the focus state is immediately reached. The greatest advantage of the shift detection focus adjustment device is the high-speed response due to this prediction, and it can be said that it is suitable for still image shooting.

【0007】しかしながら、上記従来例では、焦点検出
装置35へ光束を分岐する偏向手段36を、撮影時には
撮影有効光束外へ退避させる必要があり、他の主点検出
の為の二次結像光学系も含めて構成が複雑となるのは避
けえない。
However, in the above-mentioned conventional example, it is necessary to retract the deflecting means 36 for branching the light beam to the focus detecting device 35 to the outside of the effective light beam for photographing at the time of photographing, and the secondary image forming optics for detecting other principal points. It is unavoidable that the configuration including the system becomes complicated.

【0008】[0008]

【発明が解決しようとする課題】本発明は以上の難点を
解消するもので、合焦までの応答性が速く且つ複雑な光
学系を持たない焦点検出装置の提供を課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems, and to provide a focus detection device which has a fast response until focusing and does not have a complicated optical system.

【0009】[0009]

【課題を解決するための手段】本発明は、撮影レンズ系
と撮像素子、及び前記撮影レンズ系を通過する光束を複
数領域に分割する光分割手段を光路中に配し、前記撮像
素子上に同時に結像された前記複数像の特徴描出より前
記撮像素子上の焦点ズレ量を求める相関演算手段と、そ
の後に前記撮影レンズ系の一部もしくは全体を光軸上移
動させた時に求まる焦点ズレ量を比較演算手段により比
較し、方向判別を行なうことにより、簡易な構成で静止
画撮影に適した自動焦点調節装置を提案するものであ
る。
According to the present invention, a taking lens system, an image pickup device, and a light splitting means for dividing a light flux passing through the taking lens system into a plurality of regions are arranged in an optical path, and the light pickup device is provided on the image pickup device. Correlation calculating means for obtaining the amount of focus shift on the image pickup device from the feature depiction of the plurality of images formed at the same time, and the amount of focus shift obtained when the part or the whole of the taking lens system is subsequently moved on the optical axis. The present invention proposes an automatic focus adjusting device having a simple structure and suitable for still image shooting by comparing the values with the comparison calculation means and determining the direction.

【0010】[0010]

【実施例】本発明のより詳細な理解の為に、本発明の実
施例である図1及び図5のフローチャートに沿って説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS For a more detailed understanding of the present invention, an explanation will be given according to the flow charts of FIGS. 1 and 5 which are embodiments of the present invention.

【0011】図1において、1は、変倍レンズ群2,フ
ォーカスレンズ群3を含む変倍撮影レンズ系であり、4
は絞り、5は前記撮影レンズ系1により結像された被写
体像を撮像する為の撮像素子である。前記撮像素子5を
測距用センサーとして使用する時は、像を取り込む時の
エリア6は、本来の撮像領域とは異なっていても良く、
又、焦点検出中に可変としても良い。
In FIG. 1, reference numeral 1 denotes a variable magnification photographing lens system including a variable magnification lens group 2 and a focus lens group 3.
A diaphragm 5 is an image pickup device for picking up a subject image formed by the taking lens system 1. When the image pickup device 5 is used as a distance measuring sensor, the area 6 at the time of capturing an image may be different from the original image pickup area,
It may be variable during focus detection.

【0012】本実施例では絞り4近傍に、2像に光束を
分割する為の光分割手段7(移動する絞り板又は液晶
板)を配置し、既光分割手段7には2つの開口部7aと
7bが設けられているが、その位置はここに限る必要は
ない。
In this embodiment, a light splitting means 7 (moving diaphragm plate or liquid crystal plate) for splitting a light beam into two images is arranged in the vicinity of the stop 4, and the existing light splitting means 7 has two openings 7a. And 7b are provided, but their positions need not be limited here.

【0013】今、開口部7a,7bは、撮像素子5の水
平走査線方向に沿って並べられているが、像の相関を求
める際の方向がこれに合致していれば、垂直方向にあっ
ても良く、場合によっては2像でなく縦,横に計4像、
もしくはそれ以上の複数像を取り込む様に多数の開口で
も良い。
Now, the openings 7a and 7b are arranged along the horizontal scanning line direction of the image pickup element 5, but if the directions for obtaining the correlation of the images match this, they are in the vertical direction. However, in some cases, instead of two images, a total of four images vertically and horizontally,
Alternatively, a large number of apertures may be used so as to capture a plurality of images larger than that.

【0014】開口部7aと7bは光軸をはさんで略対称
に配置され、各々の開口部の重心位置間距離が、従来で
言う基線長に相当する。従って、開口部は離れているほ
ど基線長が大きく、検出精度は向上する。一方、大きく
ピントがボケた時には撮像素子5上での2像の分離巾が
大きくなりすぎて、相関が得られなくなる場合もあり、
前記検出エリア6を大きくとるか、基線長を減らすなど
の方法で、適切に設定する必要がある。
The openings 7a and 7b are arranged substantially symmetrically with respect to the optical axis, and the distance between the centers of gravity of the respective openings corresponds to the conventional baseline length. Therefore, the farther the opening is, the longer the baseline length is, and the detection accuracy is improved. On the other hand, when the image is greatly out of focus, the separation width of the two images on the image sensor 5 may become too large, and the correlation may not be obtained.
It is necessary to appropriately set the detection area 6 by increasing the size or reducing the baseline length.

【0015】尚、上記光分割手段7は、焦点調節完了
後、撮影時には光路外へ退避する、もしくは光分割手段
7を、液晶やエレクトロクロミー等の物性素子で構成
し、位置は固定としたまま、電気的なオンオフで光量透
過、不透過を行なっても良い。
After the focus adjustment is completed, the light splitting means 7 is retracted to the outside of the optical path at the time of photographing, or the light splitting means 7 is composed of a physical property element such as liquid crystal or electrochromy, and its position is fixed. As it is, the light quantity may be transmitted or non-transmitted by electrical on / off.

【0016】同時に得られた2像から像の特徴を描出し
て、その分離量を求める為の手段が相関演算手段8であ
る。
Correlation calculation means 8 is means for drawing out the characteristics of the image from the two images obtained at the same time and obtaining the amount of separation.

【0017】今、エリア6の水平走査線方向にボケた2
像〔図4(A)点線〕ができた時合成の信号〔図4
(A)実線〕をベースに2像の分離幅を求める。今、合
成信号を各ピクセル毎に差分をとり〔図4(B)〕、さ
らにその差分である微分信号〔図4(C)〕を考える。
Now, the area 2 is blurred in the horizontal scanning line direction.
When the image [dotted line in FIG. 4 (A)] is formed, the combined signal [FIG.
Based on (A) solid line], the separation width of the two images is obtained. Now, a difference is taken for each pixel of the composite signal [FIG. 4 (B)], and a differential signal [FIG. 4 (C)] which is the difference is considered.

【0018】この微分信号を徐々にずらして自己相関を
求め、これを単一評価量として求めると図4(D)の如
くになる。図4(D)は片側のみにずらした自己相関量
であり、図中Δが求める2像の分離量となる。
The differential signal is gradually shifted to obtain the autocorrelation, and this is obtained as a single evaluation amount, as shown in FIG. 4 (D). FIG. 4D shows the autocorrelation amount shifted to only one side, and Δ in the figure is the separation amount of the two images to be obtained.

【0019】こうして求まった像分離量より、合焦に必
要な撮影レンズ系1のフォーカスレンズ群3の移動量は
フォーカスレンズ群3の繰り出し敏感度を既知として演
算により決定することは可能だがこれだけでは所謂前ピ
ン,後ピンの判断ができない。なぜなら開口部7a,7
bを通過した2像が、前ピンと後ピンでは逆転する為
に、いずれの開口部による像かが特定できないからであ
る。
From the image separation amount thus obtained, it is possible to determine the amount of movement of the focus lens group 3 of the photographing lens system 1 required for focusing by calculation, with the payout sensitivity of the focus lens group 3 being known, but with this alone. The so-called front pin and rear pin cannot be judged. Because the openings 7a, 7
This is because the two images that have passed through b are reversed between the front focus and the rear focus, and it is not possible to specify which aperture image is formed.

【0020】これを解決する為に、本実施例では、一度
焦点ズレを求めた後で、撮影レンズ系の一部又は全体を
微少量光軸上移動し、再度、焦点ズレを求め直し、比較
演算手段9で、前との差を求める。
In order to solve this, in this embodiment, after the focus shift is obtained once, a part or the whole of the taking lens system is moved by a small amount on the optical axis, the focus shift is obtained again, and the comparison is made. The calculation means 9 calculates the difference from the previous one.

【0021】移動するレンズ群はフォーカスレンズ群3
が望ましいが、これに限る必要はなく全系の移動でも良
い。
The moving lens group is the focus lens group 3
However, it is not limited to this, and the entire system may be moved.

【0022】焦点ズレ量の差が減少方向であれば、フォ
ーカスレンズ群3を今回と同方向に所定量移動させれば
良く、焦点ズレ量の差が増大方向であれば逆に移動すれ
ば良い。又、差分を求める際のフォーカスレンズ群3の
初期移動量が既知であれば、これにより、フォーカスレ
ンズ群3の繰り出し敏感度も知ることができ、既知であ
る必要はない。
If the difference in the amount of defocus is decreasing, the focus lens group 3 may be moved in the same direction as this time by a predetermined amount, and if the difference in the amount of defocus is increasing, it may be moved in the opposite direction. . Further, if the initial movement amount of the focus lens group 3 when obtaining the difference is known, the payout sensitivity of the focus lens group 3 can also be known, and it is not necessary to know it.

【0023】図5のフローチャートで、例えば図示しな
いレリーズボタンの半押しでスイッチSW1がオンす
る。すると測距開始のために光分割手段が光路中に挿
入、もしくは液晶等で2開口を持った遮光板が形成され
る(ステップ51)。次いでステップ52で相関演算が
行われ、求められたズレ量がステップ53で深度幅53
と比較される。仮にズレ量が深度幅内に含まれる場合は
判定がYESとなって測距が完了する(ステップ5
4)。一方、ズレ量が深度幅に含まれない時はフォーカ
スレンズの一定駆動を指令し(ステップ55)、フォー
カスレンズを駆動(ステップ56)して再度信号を読み
取り相関演算(ステップ52)を行ってズレ量を求め
る。ステップ53でズレ量が深度幅内であれば、測距完
了(ステップ54)となるが、深度幅外であればステッ
プ51で前回のズレ量と比較を行い、ステップ58でズ
レの方向を判別し、求めたズレ方向に所定ズレ量をキャ
ンセルする様にフォーカスレンズを駆動(ステップ5
6)し、測距完了に至る。続いてレリーズボタンを更に
押し込んでSW2がオンすると光分割手段が退避(ステ
ップ59)し、物体像の撮像と蓄積(ステップ60)が
行われ、読み出された信号の記録(ステップ61)が成
される。
In the flowchart of FIG. 5, the switch SW1 is turned on by, for example, half-pressing a release button (not shown). Then, the light splitting means is inserted into the optical path to start the distance measurement, or a light shielding plate having two openings is formed by liquid crystal or the like (step 51). Next, in step 52, a correlation calculation is performed, and the calculated shift amount is determined in step 53 as the depth width 53.
Compared to. If the deviation amount is included in the depth range, the determination is YES and the distance measurement is completed (step 5
4). On the other hand, when the shift amount is not included in the depth width, the constant drive of the focus lens is instructed (step 55), the focus lens is driven (step 56), the signal is read again, and the correlation calculation (step 52) is performed to perform the shift. Find the amount. If the deviation amount is within the depth width in step 53, the distance measurement is completed (step 54), but if it is outside the depth width, it is compared with the previous deviation amount in step 51, and the deviation direction is determined in step 58. Then, the focus lens is driven so as to cancel the predetermined shift amount in the obtained shift direction (step 5
6) Then, the distance measurement is completed. Then, when the release button is further pressed to turn on the SW2, the light splitting means is retracted (step 59), the object image is captured and stored (step 60), and the read signal is recorded (step 61). To be done.

【0024】かかる構成において、上記動作を一回行う
だけでプレディクションに必要な焦点ズレの方向判別と
それを補正するフォーカスレンズ群3の繰り出し量を求
めることが可能となる。
With such a configuration, it is possible to determine the direction of the focus shift necessary for the prediction and to determine the amount of extension of the focus lens group 3 for correcting it, by performing the above operation only once.

【0025】又、ピンボケの大きい時の繰り出し敏感度
は合焦近傍時とは若干値が異なり、又その他の諸条件に
よりプレディクション1回のみでは所望の合焦精度が得
られない場合もあり、その時は本動作を反復して行えば
良い。
Further, the payout sensitivity when the out-of-focus state is large is slightly different from that near the in-focus state, and the desired in-focus precision may not be obtained by only one prediction due to various other conditions. In that case, this operation may be repeated.

【0026】さらに1回目のプレディクションのみは本
方式により行ない、合焦近傍に達した時は、従来の撮像
信号利用の焦点調節方式に切り換えても、応答時間の短
縮化には貢献しうる。
Further, only the first prediction is performed by this method, and when the vicinity of the in-focus is reached, switching to the conventional focus adjustment method using the image pickup signal can contribute to shortening the response time.

【0027】[0027]

【発明の効果】以上、説明した様に、本発明に従えば、
本来の撮像の為の撮像素子を測距センサーとして兼用す
ることで構成を簡略化し、かつ静止画に必須な高速応答
性を満足したズレ検出焦点調節が行える。
As described above, according to the present invention,
By using the image pickup device for the original image pickup as the distance measuring sensor, the structure can be simplified, and the shift detection focus adjustment satisfying the high-speed response required for a still image can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構成図。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来例の光学配置図。FIG. 2 is an optical layout diagram of a conventional example.

【図3】従来例の光学配置図。FIG. 3 is an optical layout diagram of a conventional example.

【図4】出力信号を示す図。FIG. 4 is a diagram showing an output signal.

【図5】ズレ検出のフローチャート図。FIG. 5 is a flowchart of deviation detection.

【符号の説明】[Explanation of symbols]

1 変倍撮影レンズ系 2 変倍レンズ群 3 フォーカスレンズ群 4 絞り 5 撮像素子 7 光分割手段 8 相関演算手段 9 比較演算手段 DESCRIPTION OF SYMBOLS 1 Magnification photographing lens system 2 Magnification lens group 3 Focus lens group 4 Aperture 5 Image sensor 7 Light splitting means 8 Correlation calculation means 9 Comparison calculation means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 撮影レンズ系による像を受ける撮像素子
と、撮影レンズ系を通過する光束を複数光束に分割する
分割手段と、分割手段による複数像を同時にとり込んだ
撮像素子からの信号に基づいた像の相関より撮像素子面
での焦点ズレ量を求める相関演算手段と、その状態の焦
点ズレ量と撮影レンズ系の焦点調節を変化させた時の焦
点ズレ量とを比較して焦点ズレの方向判別を行う比較演
算手段とを有することを特徴とする焦点検出装置。
1. A signal from an image pickup device for receiving an image by a photographing lens system, a dividing means for dividing a light flux passing through the photographing lens system into a plurality of light fluxes, and a signal from the image pickup element for simultaneously capturing a plurality of images by the dividing means. Correlation calculation means for obtaining the amount of defocus on the image sensor surface from the correlation of the image and the amount of defocus in that state and the amount of defocus when the focus adjustment of the photographic lens system is changed are compared. A focus detection apparatus comprising: a comparison calculation unit that determines a direction.
【請求項2】 前記分割手段は光軸に対称な開口を有す
る遮光部材である請求項1の焦点検出装置。
2. The focus detection device according to claim 1, wherein the dividing means is a light shielding member having an opening symmetrical with respect to the optical axis.
【請求項3】 撮影レンズ系の焦点調節はレンズ系の一
部又は全部を光軸方向に移動して行う請求項1の焦点検
出装置。
3. The focus detection device according to claim 1, wherein the focus adjustment of the taking lens system is performed by moving a part or all of the lens system in the optical axis direction.
JP22778694A 1994-09-22 1994-09-22 Focus detector Withdrawn JPH0894924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22778694A JPH0894924A (en) 1994-09-22 1994-09-22 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22778694A JPH0894924A (en) 1994-09-22 1994-09-22 Focus detector

Publications (1)

Publication Number Publication Date
JPH0894924A true JPH0894924A (en) 1996-04-12

Family

ID=16866367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22778694A Withdrawn JPH0894924A (en) 1994-09-22 1994-09-22 Focus detector

Country Status (1)

Country Link
JP (1) JPH0894924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059014A1 (en) * 1998-05-08 1999-11-18 Marcher Enterprises Limited Method and apparatus for focussing images

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059014A1 (en) * 1998-05-08 1999-11-18 Marcher Enterprises Limited Method and apparatus for focussing images

Similar Documents

Publication Publication Date Title
US6377305B2 (en) Image sensing apparatus
KR101395015B1 (en) Camera, focus detection method and control method
JP6045214B2 (en) Focus adjustment apparatus and control method thereof
JP2004240054A (en) Camera
JP2009175528A (en) Focus-adjusting apparatus and imaging apparatus
JP4995002B2 (en) Imaging device, focusing device, imaging method, and focusing method
JP4687291B2 (en) Focus adjustment device and imaging device
JP2006254413A (en) Imaging apparatus and camera body
JP5361598B2 (en) Focus adjustment apparatus and method, and imaging apparatus
US6636699B2 (en) Focus detection device and distance measurement device
JPH09211308A (en) Mechanism for detecting object of automatic focusing image pickup unit
JP2010060771A (en) Imaging device
JP5170266B2 (en) Imaging device and camera body
JP5240591B2 (en) Imaging device, focusing device, imaging method, and focusing method
JP2006065080A (en) Imaging device
JP6512989B2 (en) Focus detection apparatus and method, and imaging apparatus
JP6845912B2 (en) Imaging device and its control method
JP2007156304A (en) Camera, camera system, and interchangeable lens device
JP2018180135A (en) Imaging device
JP7387265B2 (en) Imaging element, imaging device, control method, and program
JP2005308960A (en) Imaging apparatus provided with automatic focusing device
JPS6227686B2 (en)
JPH0894924A (en) Focus detector
JP2005140851A (en) Autofocus camera
JP2004361431A (en) Imaging unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115